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ABSTRACT

We present a novel dimensionality reduction method which

aims to identify a low dimensional projection subspace,

where samples form classes that are better discriminated

and separated with maximum margin. The proposed method

brings certain advantages, both to data embedding and clas-

sification. It improves classification performance, reduces

the required training time of the SVM classifier, since it is

trained over the projected low dimensional samples and also

data outliers and the overall data samples distribution inside

classes do not affect its performance. The proposed method

has been applied for facial expression recognition in Cohn-

Kanade database verifying its superiority in this task, against

other state-of-the-art dimensionality reduction techniques.

Index Terms— Subspace learning, maximum margin

projections, support vector machines, facial expression recog-

nition

1. INTRODUCTION

One of the most crucial problems that every facial image anal-

ysis algorithm encounters is the high dimensionality of the

image data, which can range from several hundreds to thou-

sands of extracted image features. Directly dealing with such

high dimensional data is not only computational inefficient,

but also yields several problems in subsequently performed

statistical learning algorithms, due to the so-called “curse of

dimensionality”. Thus, various techniques have been pro-

posed for efficient data embedding (or dimensionality reduc-

tion) that obtain a more manageable problem and alleviate

computational complexity. Moreover, reducing the dimen-

sionality of the original data can reveal the actual hidden un-

derlying data structure that can be efficiently described using

only a small number of degrees of freedom. Such a popular

category of methods is the subspace image representation al-

gorithms which aim to discover the latent image features by

projecting linearly or non-linearly the high-dimensional input
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samples to a low-dimensional subspace, where an appropri-

ately formed criterion is optimized.

Focusing on the underlying optimization criterion, a pop-

ular category of subspace learning algorithms are those that

attempt to enhance classes discrimination in the reduced di-

mensional projection space. These algorithms aim to identify

a discriminative subspace, in which the data samples from dif-

ferent classes are far apart from each other. Linear Discrimi-

nant Analysis (LDA) [1] and its variants, are such representa-

tive methods that extract discriminant information by finding

projection directions that achieve intra-class compactness and

inter-class separability.

Margin maximizing embedding algorithms [2, 3, 4] in-

spired by the great success of Support Vector Machines

(SVMs) [5] also aim to enhance data discrimination in the low

dimensional space. In [3] the Maximum Margin Projection

(MMP) algorithm has been proposed, which is an unsuper-

vised embedding method that attempts to find different sub-

space directions that separate data points in different clusters

with maximum margin. To do so, MMP seeks for such a data

labelling, so that, if an SVM classifier is trained, the resulting

separating hyperplanes can separate different data clusters

with the maximum margin. He et. al in [2] also exploited the

margin maximization concept proposing a semisupervised di-

mensionality reduction method for image retrieval that aims

to discover both geometrical and discriminant structures of

the data manifold. This algorithm constructs a within-class

and a between-class graph by exploiting both class and neigh-

borhood information and finds a linear transformation matrix

that maps image data to a subspace, where, at each local

neighborhood, the margin between relevant and irrelevant

images is maximized.

In this paper we integrate optimal data embedding and

SVM classification in a single framework to be called Maxi-

mum Margin Discriminant Projections (MMDP). MMDP al-

gorithm directly operates on the random features extracted

using an orthogonal Gaussian random projection matrix and

derives an optimal projection matrix such that the separating

margin between the projected samples of different classes is

maximized, by exploiting the decision hyperplanes obtained

from training a SVM classifier. The MMDP approach brings

certain advantages, both to data embedding and classification.
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Since it is combined with a classification method, MMDP

is appropriately tuned towards improving classification per-

formance. Furthermore, the SVM classifier is trained over

the projected low dimensional data samples determined by

MMDP, thus the required computational effort is significantly

reduced. Moreover, since the decision hyperplane identified

by SVM training is explicitly determined by the support vec-

tors, data outliers and the overall data samples distribution in-

side classes do not affect MMDP performance, in contrast to

other discrimination enhancing subspace learning algorithms,

such as LDA, which assumes a Gaussian data distribution for

optimal classes discrimination.

The rest of the paper is organized as follows. Section 2

presents the proposed linear dimensionality reduction algo-

rithm, while Section 3 discusses its initialization. Section

4 describes the conducted experiments for facial expression

recognition and concluding remarks are drawn in Section 5.

2. MAXIMUMMARGIN DISCRIMINANT

PROJECTIONS

Given a set X = {(x1, y1), ..., (xN , yN)} of N training data

pairs, where xi ∈ Rm, i = 1, ..., N are the m-dimensional

input feature vectors and yi ∈ {−1, 1} is the class label asso-
ciated with each sample xi, a binary SVM classifier attempts

to find the separating hyperplane that separates training data

points of the two classes with maximum margin, while mini-

mizes the classification error defined according to which side

of the decision hyperplane training samples of each class fall

in. Considering that each training sample of X is firstly pro-

jected to a low-dimensional subspace using a projection ma-

trix R ∈ Rr×m, where r ≪ m and performing the lin-

ear transformation x́i = Rxi, the binary SVM optimization

problem is formulated as follows:

min
w,ξi

1

2
wTw + C

N
∑

i=1

ξi (1)

subject to the constraints:

yi
(

wTRxi + b
)

≥ 1− ξi (2)

ξi ≥ 0, i = 1, . . . , N, (3)

wherew ∈ Rr is the r-dimensional normal vector of the sep-

arating hyperplane, b ∈ R is its bias term, ξ = [ξ1, . . . , ξN ]T

are the slack variables, each one associated with a training

sample and C is the term that penalizes the training error.

The MMDP algorithm attempts to learn a projection ma-

trixR, such that the low-dimensional data sample projection

is performed efficiently, thus enhancing the discrimination be-

tween the two classes. To quantify the discrimination power

of the projection matrix R, we formulate our MMDP algo-

rithm based on geometrical arguments. To do so, we employ

a combined iterative optimization framework, involving the

simultaneous optimization of the separating hyperplane nor-

mal vectorw and the projection matrixR, performed by suc-

cessively updating the one variable, while keeping the other

fixed. Next we first discuss the derivation of the optimal sep-

arating hyperplane normal vector wo, in the projection sub-

space determined byR and subsequently, we demonstrate the

projection matrix update with respect to the fixedwo.

2.0.1. Finding the optimalwo in the projection subspace de-

termined byR

The optimization with respect tow, is essentially the conven-

tional binary SVM training problem performed in the projec-

tion subspace determined byR, rather than in the input space.

To solve the constrained optimization problem in (1) with re-

spect tow, we introduce positive Lagrangemultipliers αi and

βi each associated with one of the constraints in (2) and (3),

respectively and formulate the Lagrangian function:

L(w, ξ,R,α,β) =
1

2
wTw+ C

N
∑

i=1

ξi

−
N
∑

i=1

αi

[

yi
(

wTRxi + b
)

− 1 + ξi
]

−
N
∑

i=1

βiξi. (4)

The solution can be found from the saddle point of the La-

grangian function, which has to be maximized with respect

to the dual variables α and β and minimized with respect

to the primal ones w, ξ and b. According to the Karush-

Kuhn-Tucker (KKT) conditions the partial derivatives of

L(w, ξ,R,α,β) with respect to the primal variables w, ξ

and b vanish deriving the following equalities:

∂L(w, ξ,R,α,β)

∂w
= 0 ⇒ w =

N
∑

i=1

αiyiRxi, (5)

∂L(w, ξ,R,α,β)

∂b
= 0 ⇒

N
∑

i=1

αiyi = 0, (6)

∂L(w, ξ,R,α,β)

∂ξi
= 0 ⇒ βi = C − αiyi. (7)

By substituting the terms from the above equalities into (4),

we switch to the dual formulation, where the optimization

problem in (1) is reformulated to the maximization of the fol-

lowing Wolfe dual problem:

max
α

N
∑

i=1

αi −
1

2

N
∑

i,j

αiαjyiyjx
T
i R

TRxj . (8)

subject to the constraints:

N
∑

i=1

αiyi = 0, αi ≥ 0, ∀ i = 1, . . . , N. (9)
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Consequently, solving (8) for α the optimal separating hy-

perplane normal vector wo in the reduced dimensional space

determined byR, is subsequently derived from (5).

2.0.2. Maximum margin projection matrix update for fixed

wo

At each optimization round t we seek to update the projection

matrix R(t−1), so that its new estimate R(t) maximizes the

separating margin between the two classes. To do so, we first

project the high dimensional training samples xi from the in-

put space to a low dimensional subspace, using the projection

matrix R(t−1) derived during the previous step, and subse-

quently, train the binary SVM classifier in order to obtain the

optimal Lagrangemultipliersαo specifying the normal vector

of the separating hyperplanew
(t)
o .

To formulate the optimization problem for the projection

matrixR update, we exploit the dual form of the binary SVM

cost function defined in (8). However, since term
∑N

i=1 αi

is constant with respect to R, we can remove it from the cost

function. Moreover, in order to retain the geometrical correla-

tion between samples in the projection subspace, we constrain

the derived updated projection matrix R(t) to be orthogonal.

Consequently, the constrained optimization problem for the

projection matrixR update can be summarized as follows:

max
R

O(R) =
1

2

N
∑

i,j

αi,oαj,oyiyjx
T
i R

TRxj , (10)

subject to the constraint:

RRT = I, (11)

where I is a r × r identity matrix.

In order to apply the constraint RR
T = I we first solve

(10), without the orthogonality constraints on its rows and ob-

tain Ŕ. Thus, we solve (10) forR keepingw
(t)
o fixed, by ap-

plying a steepest ascent optimization algorithm, which, at a

given iteration t, invokes the following update rule:

Ŕ(t) = R(t−1) + λt∇O(R(t−1)), (12)

where λt is the learning step parameter for the t-th itera-

tion evaluated using the methodology presented in [6] and

∇O(R(t−1)) is the partial derivative of the objective function
in (10) with respect toR(t−1), evaluated as:

∇O(R(t−1)) =

N
∑

i,j

αi,oαj,oyiyjR
(t−1)xix

T
j

=

N
∑

i=1

αi,oyiw
(t)
o xT

i . (13)

Thus, Ŕ(t) is derived as:

Ŕ(t) = R(t−1) + λt

(

N
∑

i=1

αi,oyiw
(t)
o xT

i

)

. (14)

Obtaining the projection matrix Ŕ(t) that increases the sepa-

rating margin between the two classes in the projection sub-

space, we subsequently orthonormalize its rows by perform-

ing a Gram-Schmidt procedure, to deriveR(t).

After deriving the new projection matrix R(t), the previ-

ously identified separating hyperplane is no longer optimal,

since it has been evaluated in the projection subspace deter-

mined by R(t−1). Consequently, it is required to re-project

the training samples using R(t) and retrain the SVM classi-

fier to obtain the current optimal separating hyperplane and

its normal vector. Thus, MMDP algorithm iteratively updates

the projection matrix and evaluates the normal vector of the

optimal separating hyperplanewo in the projection subspace

determined by R, until the algorithm converges. In order to

determine algorithms convergencewe track the partial deriva-

tive value in (13) to identify stationarity. The following sta-

tionarity check step is performed, which examines whether

the following termination condition is satisfied:

||∇O(R(t))||F ≤ eR||∇O(R(0))||F , (15)

where eR is a predefined stopping tolerance. In our con-

ducted experiments, we considered that eR = 10−3. The

combined iterative optimization process of the MMDP algo-

rithm is summarized in Algorithm 1.

Algorithm 1MaximumMargin Discriminant Projections Al-

gorithm Considering a Binary Classification Problem.

1: Input: The set X = {(xi, yi), i = 1, . . . , N} of N

m-dimensional two class train data samples.

2: Output: The optimal maximum margin projection ma-

trix Ro and the optimal separating hyperplane normal

vectorwo.

3: Initialize: t = 1 and R(0) ∈ Rr×m as an orthogonal

Gaussian random projection matrix.

4: repeat

5: Project xi to a low dimensional subspace performing

the linear transformation:

x́i = R(t−1)xi ∀i = 1, . . . , N .

6: Train the binary SVM classifier in the projection sub-

space by solving the optimization problem in (8) sub-

ject to the constraints in (9) to obtain the optimal La-

grange multipliersαo .

7: Obtain the normal vector of the optimal separating hy-

perplane as:

w
(t)
o =

∑N

i=1 αi,oyiR
(t−1)xi.

8: Determine learning rate λt.

9: Evaluate∇O(R(t−1)) = −
∑N

i=1 αi,oyiw
(t)
o xT

i .

10: Update projection matrixR(t−1) givenw
(t)
o as:

R(t) = Orthogonalize
(

R(t−1) −

λt

∑N

i=1 αi,oyiw
(t)
o xT

i

)

.

11: t = t+ 1,Ro = R(t) andwo = w(t).

12: until ||∇O(R(t))||F ≤ 10−3||∇O(R(0))||F

3
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3. MMDP ALGORITHM INITIALIZATION

To initialize MMDP, it is first required to train the binary

SVM classifier and obtain the optimal wo in a low dimen-

sional subspace determined by an initial projection matrix

R(0), used in order to perform dimensionality reduction and

form the basis of the projection subspace. To do so, we con-

structR(0) as an orthogonal Gaussian random projection ma-

trix. To derive R(0), the following procedure is applied. We

create a m × m matrix G of i.i.d., zero-mean, unit variance

Gaussian random variables and partition it into them× r ma-

trixQ and them× (m− r)matrixP, thusG = [Q P]. Con-
sequently, we orthonormalize the columns of G and create

an orthonormal matrix G⊥ = [Q⊥ P⊥]. To do so, we nor-
malize the first column ofG and orthogonalize the remaining

columns with respect to the first, via a Gram-Schmidt proce-

dure. This procedure results in the Gaussian random projec-

tion matrixR(0) = QT
⊥
having orthonormal rows that can be

used for the initialization of the iterative optimization frame-

work.

4. EXPERIMENTAL RESULTS

To visualize the ability of MMDP algorithm to estimate use-

ful subspaces that enhance data discrimination, we applied the

proposed algorithm in a two class toy classification problem

using artificial data, aiming to learn a 2D projection space.

To generate our toy dataset we collected 500 300-dimensional

samples for each class, with the first class features drawn ran-

domly from a standard normal distribution N (0, 1) and the

second class drawn from a N (0.2, 1) normal distribution and
used 100 of them for training, while the rest were used to

compose the toy test set. Figure 1 shows the 2D projection

of the two classes data samples after different iterations of

the MMDP algorithm. As can be observed, the proposed al-

gorithm was able, after a few iterations, to perfectly separate

linearly the two classes, by continuously maximizing the sep-

arating margin.

In addition we compared the performance of the pro-

posed method for facial expression recognition, on the Cohn-

Kanade database [7], with that of several state-of-the-art di-

mensionality reduction techniques, such as Eigenfaces (PCA)

[8], Fisherfaces (LDA), Laplacianfaces (LPP) [9] and Ran-

domfaces (RP) resulting by projecting facial images using

random projections. For baseline comparison we also di-

rectly feed the initial high dimensional samples to a linear

SVM classifier. In our implementation we have combined

our optimization algorithm with LIBSVM [10], which pro-

vides an efficient implementation for solving several binary

linear SVMs for multiclass classification problems. Simi-

larly, the discriminant low-dimensional facial representations

derived from the other examined algorithms were also fed to

LIBSVM for classification.

Each subject in each video sequence of the Cohn-Kanade

database poses a facial expression, starting from the neutral

emotional state and finishing at the expression apex. To form

our data collection we considered only the last video frame

depicting each formed facial expression at its highest inten-

sity. Face detection was performed on these images and the

resulting facial regions of interest were manually aligned with

respect to the eyes position, anisotropically scaled to a fixed

size of 150×200 pixels and converted to grayscale. Thus, we
used in total 407 images depicting 100 subjects, posing 7 dif-

ferent expressions. To measure the facial expression recogni-

tion accuracy, we randomly partitioned the available samples

into 5-folds and a cross-validation has been performed. Fig-
ure 2 shows example images from the Cohn-Kanade dataset,

depicting the 7 recognized facial expressions arranged in the

following order: anger, fear, disgust, happiness, sadness, sur-

prise and the neutral emotional state.

Fig. 2. Sample images depicting facial expressions in the

Cohn-Kanade database.

Table 1 summarizes the best average facial expression

recognition rates achieved by each examined embedding

method, across different subspace dimensionalities varying

from 3 to 500. The best recognition rate attained by MMDP

is 80.4% using 150-dimensional discriminant representations
of the initial 30,000-dimensional input samples. MMDP

outperforms all other competing embedding algorithms by

more than 3% compared against the second best performing

method, which is PCA. The best average expression recog-

nition rate attained by PCA, LDA, LPP and RP were 77.3%,

74.2%, 76.6% and 75.2%, respectively.

Table 1. Best average expression recognition accuracy rates

(%) in Cohn-Kanade database. In parentheses is shown the di-

mension that results in the best performance for each method.

SVM PCA LDA LPP RP MMDP

73.4 77.3 74.2 76.6 75.2 80.4

(30, 000) (325) (6) (6) (500) (150)

5. CONCLUSION

We proposed a discrimination enhancing subspace learning

method called MMDP that aims to identify a low dimensional

projection subspace where samples form classes that are sep-

arated with maximum margin. MMDP directly works with

4
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Iteration 1 Iteration 7 Iteration 30

Iteration 40 Iteration 100 Iteration 150

Fig. 1. 2D projection of the initial data at different iterations of theMMDP algorithm. Circled data samples denote the identified

support vectors which reduce during MMDP algorithms convergence. As a result, the SVM training process converges faster

and into a sparser solution, since the number of identified support vector decreases as classes discrimination is enhanced.

random features obtained using an orthogonal random Gaus-

sian projection matrix and exploits the separating hyperplane

obtained from training a SVM classifier in the identified low

dimensional space. Experimental results showed that the

proposed method outperforms current state-of-the-art em-

bedding methods for facial expression recognition on the

Cohn-Kanade database.
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