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ABSTRACT
There is evidence in neuroscience indicating that prediction
of spatial and temporal patterns in the brain plays a key
role in perception. This has given rise to prediction-based
fusion as a method of combining information from audio and
visual modalities. Models are trained on a per-class basis, to
learn the mapping from one feature-space to another. When
presented with unseen data, each model predicts the respec-
tive feature-sets using its learnt mapping, and the predic-
tion error is combined within each class. The model which
best describes the audiovisual relationship (by having the
lowest combined prediction error) provides its label to the
input data. Previous studies have only used neural networks
to evaluate this method of combining modalities - this pa-
per extends this to other learning methods, including Long
Short-Term Memory recurrent neural networks (LSTMs),
Support Vector Machines (SVMs), Relevance Vector Ma-
chines (RVMs), and Gaussian Processes (GPs). Our results
on cross-database experiments on nonlinguistic vocalisation
recognition show that feature-prediction significantly out-
performs feature-fusion for neural networks, LSTMs, and
GPs, while performance on SVMs and RVMs is more am-
biguous and neither model gains an absolute advantage over
the other.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: Pattern Recognition—
Applications; J.m [Computer Applications]: Miscella-
neous

General Terms
Algorithms, Experimentation
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Prediction-based Classification/Fusion, Audiovisual Fusion,
Nonlinguistic Information Processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’12, October 29–November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1089-5/12/10 ...$10.00.

1. INTRODUCTION
Audiovisual fusion approaches have been successfully ap-

plied to speech recognition [11], affect recognition [13] and
very recently to laughter recognition [7, 9]. However, the op-
timal fusion type remains an open issue and largely depends
on the problem.

The most common types of audiovisual fusion are feature-
level fusion [12], where audio and visual feature vectors are
concatenated and fed to some learning algorithm, and decision-
level fusion [12], where each modality is modelled indepen-
dently, and predicted labels are combined in some manner,
using e.g. a linear sum rule, or a second level classifier. Re-
cently, other types of fusion have also been proposed, like
prediction-based fusion [7, 10].

Prediction-based fusion is based on the idea that the rela-
tionships between real-valued audio and visual features are
different within each class. These relationships are therefore
explicitly modelled, by learning the mapping from the audio-
to-visual and visual-to-audio features, within each class, us-
ing some regression method. It is expected that the model
which corresponds to the true class will produce a better
prediction than all others. Class labels are predicted by se-
lecting the model that produces the lowest error and most
accurately describes the relationship between the two fea-
tures sets for that class. The absolute error value for a pre-
diction is unimportant - only its relative value compared to
the predictions of other models is important.

In this study we compare the performance of prediction-
based fusion with feature-level fusion on nonlinguistic vo-
calisations recognition. Our motivation is to investigate
if the superior performance of prediction-based fusion over
feature-level fusion using neural networks [7] generalises to
other learning algorithms. We use five different algorithms
that support both classification and regression: SVMs, RVMs,
GPs, feedforward neural networks NNs and LSTMs. The
performance is evaluated on cross-database experiments us-
ing 3 datasets, which poses a challenging test condition.
Our results show that prediction-based fusion outperforms
feature-level fusion in most cases (NNs, LSTMs and GPs),
while for SVMs and RVMs neither classification model gains
an absolute performance advantage over the other; either
one method always performs worse than the other in at least
one performance metric, or the difference in performance is
not statistically significant.

2. DATABASES
For the purpose of this study we used three datasets which

correspond to the different scenarios as explained below.



Table 1: Description of the datasets.

AMI

Type No Episodes / Total Duration Mean / Std
No Subjects (sec) (sec)

Laughter 124 / 10 145.4 1.17 / 0.7

Speech 154 / 10 285.9 1.86 / 1.1

SAL - Training

Laughter 57 / 10 80.6 1.4 / 0.8

Speech 96 / 10 204.3 2.1 / 0.8

SAL - Validation

Laughter 37 / 5 50.3 1.4 / 0.7

Speech 81 / 5 159.3 2.0 / 0.8

MAHNOB

Laughter 554 / 22 863.7 1.56 / 2.2

Speech 845 / 22 2430.9 2.88 / 2.3

AMI: In the AMI Meeting Corpus [5] people show a huge
variety of spontaneous expressions. We only used the close-
up video recordings of the subject’s face and the correspond-
ing audio recordings from individual subject headsets. The
camera is fixed, and since people are involved in a multi-
participant discussion, there is significant head movement.
For our experiments we used seven meetings (IB4001 to
IB4011) and the corresponding recordings of ten partici-
pants, 8 males and 2 females.
SAL: In the SAL database [2], the subjects interact with 4
different agents that have different personalities, and the au-
diovisual response of the subjects while interacting is record-
ed. For our experiments we used 15 subjects - 8 males and
7 females, out of which 10 are used for training and 5 for
validation. We used the close-up video recordings of the sub-
jects’ face and the related audio recordings. Subjects have
mostly frontal pose, and head movements are small.
MAHNOB: In the MAHNOB database [1, 8], laughter was
elicited by showing amusing videos to subjects. There are 22
subjects in total - 12 males and 10 females. There is signifi-
cant variation in the types of laughter recorded. The camera
is fixed, and since subjects are watching a fixed screen, they
are mostly in frontal pose. Two audio streams are available,
from the camera microphone and from the lapel microphone.
In this study, we used audio from the camera microphone
only, since the data is noisier, and poses a more challenging
generalisation problem.
All laughter and speech episodes used in this study were

pre-segmented based on audio. This means that the start
and end point of a laughter episode is pre-defined for the
audio signal and then the corresponding video frames are
extracted. For the AMI [5] and MAHNOB [1] datasets,
laughter episodes were selected based on the annotations
provided. For the SAL dataset, we manually annotated
laughter episodes. Details of the four datasets are given
in Table 1.

3. FEATURES
Audio Features: Cepstral features, such as MFCCs, have
been widely used in speech recognition and have also been
successfully used for laughter detection [4]. We use the first
6 MFCCs (together with 6 ∆MFCCs), given the findings in
[4]. These are computed every 10ms, over a window of 40ms,
making the frame rate 100 frames per second (fps).
Visual Features: Changes in facial expression are cap-
tured by tracking 20 facial points. These points are the

corners of the eyebrows (2 points), the eyes (4 points), the
nose (3 points), the mouth (4 points) and the chin (1 point)
[6]. For each video segment containing K frames, we ob-
tain a set of K vectors containing 2D coordinates of the 20
points. Using a Point Distribution Model (PDM), by ap-
plying principal component analysis to the matrix of these
K vectors, head movement can be decoupled from facial
expression. Using the approach proposed in [3], the facial
expression movements are encoded by the projection of the
tracking points coordinates to the N principal components
(PCs) of the PDM which correspond to facial expressions.
For the SAL dataset, it was found that 3 PCs encode mostly
facial expressions (PCs 5,6,7). Further details of the feature
extraction procedure can be found in [9, 3].

4. PREDICTION-BASED FUSION
For each class (speech, laughter) we train two regression

models - one model learns the mapping from audio to visual
features, one model learns the mapping from visual to audio
features.

So, the first model takes an audio feature-vector as in-
put, and gives its prediction for the corresponding visual
feature-vector at the same frame, as output. The second
model takes a visual feature-vector as input, and gives its
prediction for the corresponding audio feature-vector at the
same frame, as output. Therefore the relationship between
the audio (AL, AS) and visual (V L, V S) features in speech
and laughter is modelled by (fL

AV ), (fL
V A) for laughter and

(fS
AV ), (fS

V A) for speech.

fL
AV (AL) = V̂ L ≈ V L (1)

fL
V A(V

L) = ÂL ≈ AL (2)

fS
AV (AS) = V̂ S ≈ V S (3)

fS
V A(V

S) = ÂS ≈ AS (4)

Once the mappings (fL, fS) are learnt, an unseen example
is classified using the pair of models that produce the lowest
prediction error. When a new frame is available the audio
and visual features are computed, and are then fed to the
models from eq. 1 - 4, and 4 error values are produced, eq.
5 - 8. We use mean squared error (MSE). We then compute
the combined MSE for each class, which takes into account
the bidirectional relationship of audio and visual features,
as shown in eq. 9 and 10, where w is a weighting factor.

eLAV = MSE(V̂ L, V L) (5)

eLV A = MSE(ÂL, AL) (6)

eSAV = MSE(V̂ S , V S) (7)

eSV A = MSE(ÂS , AS) (8)

eL = wL × eLAV + (1− wL)× eLV A (9)

eS = wS × eSAV + (1− wS)× eSV A (10)

A frame is labelled as laughter or speech depending on
which pair of models (corresponding to a particular class)
produced the best feature reconstruction, i.e. the pair with
the lowest combined prediction error, eq. 9 and 10. In other
words, a frame is labelled based on the following rule:

IF eS > eL THEN L ELSE S (11)



5. EXPERIMENTAL STUDIES
In order to assess the performance of the method pre-

sented in section 4, cross database experiments between
SAL, AMI and MAHNOB were performed. We performed
experiments using feedforward NNs, LSTMs, SVMs, RVMs,
and GPs, using both feature-level fusion and prediction-
based fusion to combine modalities. The Matlab neural net-
work toolbox, Pybrain, LIBSVM, SparseBayes, and GPML
packages were used for each of learning algorithms, respec-
tively.

5.1 Experimental Setup
Preprocessing: As mentioned in section 3, we used 3 visual

features and 12 audio features in our experiments. Before
training, the audio and visual features are synchronised by
upsampling the visual features (using linear interpolation),
to match the frame rate of the audio features (100fps). All
the audio and visual features are z-normalized per subject
in order to remove subject and recording variability.
Training: For training feedforward NNs, LSTMs and SVMs
the first ten subjects of the SAL database are used, amount-
ing to 28488 samples. GPs and RVMs compute a distance
matrix between every pair of samples during training; this
matrix is subsequently inverted. This operation is imprac-
tical given 28488 samples, and the distance matrix is likely
near-singular, precluding inversion. We therefore randomly
subsample, selecting 2000 samples from the pool of the first
10 subjects of SAL, and run the experiment 10 times, re-
porting mean and standard deviation.
Laughter and speech feature-prediction models are only

trained with samples from their respective classes, while bi-
nary classifiers using feature fusion are trained on samples
from both classes.
Parameter Optimization: Each underlying learning algo-

rithm has its own unique set of parameters, whose values
significantly affect performance. These are optimized as fol-
lows:
NNs, LSTMs: In both feedforward and LSTM cases, we
trained networks with only one hidden layer. The size of
this hidden layer (number of hidden neurons) was optimized
using a line search across the range [5-30], in steps of 5 for
feedforward networks, and the range of [10-90] in steps of
10 for LSTM networks. LSTM and feedforward networks
were trained using resilient backpropagation, with a train-
ing epoch limit of 500.
SVMs: For binary classification, SVMs require two param-
eters to be optimized - the kernel width and the soft-margin
cost, while support vector regression also takes ϵ, the width
of the loss-insensitive region in the loss function. In both
cases, these are found using a single-resolution gridsearch.
Kernel width was optimized across the range 0.05 to 0.8,
soft-margin cost 0.1 to 8, and ϵ 0.1 to 1.1.
RVMs: RVMs require only the kernel width to be opti-
mized, for which we used a line search using the range 0.05
to 1.5.
GPs: Gaussian processes require only the kernel width to
be optimized, for which we used a line search using the range
0.05 to 1.5.
In addition, feature prediction also requires optimization

of the weights wL and wS from eq. 9, 10, with regard to
classification performance. This is performed using a single-
resolution gridsearch in steps of 0.05, subject to 0 < w < 1.
For each point in the parameter space (for a particu-

Table 2: F1 and Unweighted Average Recall Rates
(UAR) for the feature-level fusion (FF) system and
the prediction based system tested on the AMI
dataset.

Classification F1 F1 UAR

System Laughter Speech

NN

A + V (FF) 66.7 (2.5) 81.3 (1.0) 73.9 (1.6)

A + V Pred. 73.3 (1.1) 84.2 (0.5) 78.3 (0.8)

LSTM

A + V (FF) 54.3 (6.9) 79.2 (1.5) 68.3 (3.4)

A + V Pred. 68.6 (3.7) 82.5 (1.3) 75.4 (2.9)

SVM

A + V (FF) 71.6 (0.0) 83.9 (0.0) 77.4 (0.0)

A + V Pred. 72.4 (0.0) 78.0 (0.0) 75.2 (0.0)

RVM

A + V (FF) 71.9 (4.5) 82.8 (1.7) 77.1 (6.3)

A + V Pred. 72.3 (3.6) 82.1 (1.8) 76.9 (4.5)

GP

A + V (FF) 49.5 (12.5) 16.5 (12.9) 40.1 (16.1)

A + V Pred. 77.8 (2.1) 85.5 (0.9) 81.3 (2.6)

lar learning algorithm), we train a classifier, using either
feature-fusion or feature-prediction as a classification model.
This is then evaluated on a validation set, consisting of the
remaining 5 subjects of SAL. Both the feature-fusion and
feature-prediction methods produce a class label per frame
- we use majority voting over an entire sequence to convert
this ”bag” of frame labels to a sequence label. The best per-
forming model is chosen (using f1 performance as a selection
criterion), and tested as below.

Testing: SVMs, GPs, and RVMs are all deterministic
methods, hence are retrained and tested once. LSTM and
feedforward NNs are trained using resilient backpropagation,
which gives random initial values to each of the network
weights (hence each training process produces a different
model); therefore we train and test 10 times, reporting mean
and standard deviation. The performance measures we use
are F1-score and Unweighted Average Recall (UAR) rates.

5.2 Results
Table 2 shows the experimental results on the AMI dataset.

We see that feature prediction outperforms feature-fusion
on both feedforward neural networks and LSTM networks,
across all three measures of performance - laughter F1, speech
F1, and UAR. Unusually, even though LSTMs take tempo-
ral information into account, we see that they perform worse
than static feedforward networks - this may be due to Py-
brain’s inability to specify as many stopping criteria as the
Matlab NNs toolbox (such as minimum gradient), possibly
leading to overfitting. Feature-prediction using SVR is out-
performed by feature-fusion on both speech F1 and UAR,
by 5.9% and 2.2% respectively, though it does beat feature-
fusion on laughter F1, suggesting that SVMs tend to favour
speech, which is the class with the most examples. There
appears to be no statistically significant difference in per-
formance between feature-prediction and feature-fusion us-
ing relevance-vector machines for any performance measure.
Gaussian process-based feature-prediction dramatically out-



Table 3: F1 and Unweighted Average Recall Rates
(UAR) for the feature-level fusion (FF) system
and the prediction based system tested on the
MAHNOB dataset.

Classification F1 F1 UAR

System Laughter Speech

NN

A + V (FF) 60.5 (1.1) 81.4 (0.4) 70.3 (0.6)

A + V Pred. 73.0 (1.7) 85.2 (0.7) 78.2 (1.2)

LSTM

A + V (FF) 54.6 (7.8) 81.8 (1.8) 68.2 (4.5)

A + V Pred. 69.9 (2.4) 84.5 (0.7) 81.8 (2.7)

SVM

A + V (FF) 60.4 (0.0) 82.5 (0.0) 70.7 (0.0)

A + V Pred. 65.0 (0.0) 73.8 (0.0) 70.1 (0.0)

RVM

A + V (FF) 70.4 (4.3) 83.7 (1.5) 83.6 (6.8)

A + V Pred. 68.3 (3.4) 81.0 (1.7) 74.4 (6.3)

GP

A + V (FF) 41.9 (15.8) 18.5 (25.1) 36.8 (18.7)

A + V Pred. 80.1 (1.3) 88.2 (0.6) 83.5 (2.2)

performs feature-fusion, by 28.3% on laughter-F1, 69% on
speech-F1, and 41.2% on UAR, with relatively small stan-
dard deviation.
In Table 3 we can see the experiment results on the MAH-

NOB database. As with AMI, there is a statistically signifi-
cant difference between the performance of feature-prediction
over feature-fusion when using feedforward networks and
LSTM networks, although feedforward networks once again
outperform LSTM networks on both feature-prediction and
feature-fusion. As when tested on AMI, SVR-based feature-
prediction is outperformed by feature-fusion on speech-F1
and UAR, with the converse applying for laughter-F1. Pre-
diction based on GPs once again significantly outperforms
feature-fusion, despite the fact that the standard deviation
for feature-fusion is very high; once again, GP-based pre-
diction has an extremely small standard deviation. This
suggests that Gaussian processes are sensitive to the size
and quality of training data. The relative performance of
RVMs on the MAHNOB dataset, however, is quite different
from the performances on the AMI dataset. We see that
feature-fusion for binary classification outperforms feature-
prediction by a statistically significant amount for both speech-
F1 and UAR; for laughter-F1 feature-fusion also outper-
forms feature-prediction, however the result is not statisti-
cally significant due to the high standard deviation of both
methods.

6. CONCLUSIONS
We have compared the prediction-based fusion approach

to feature-level fusion across different statistical models, in
order to analyse the performance characteristics. Models
based on NNs, LSTMs, SVMs, RVMs, and GPs were evalu-
ated in cross-database experiments, to determine generaliza-
tion capability when faced with testing data thats differs sig-
nificantly from the training data. The key idea is that class
predictions are made based on the model that best describes
the spatial relationship between the audio and visual fea-

tures, rather than their absolute values in the feature space.
This should provide more robust performance. We find that
for feedforward NNs, LSTMs and GPs, feature-prediction
outperforms feature-level fusion, while for SVMs and RVMs,
prediction-based fusion only outperforms feature-fusion in
some cases, and performance depends on the quality of the
training data.

7. ACKNOWLEDGMENTS
The research presented in this paper has been funded by

the European Research Council under the ERC Starting
Grant agreement no. ERC-2007-StG-203143 (MAHNOB).

8. REFERENCES
[1] http://mahnob-db.eu/laughter/.

[2] E. Douglas-Cowie, R. Cowie, C. Cox, N. Amir, and
D. Heylen. The Sensitive Artificial Listener: an
induction technique for generating emotionally
coloured conversation. In Workshop on Corpora for
Research on Emotion and Affect, pages 1–4.

[3] D. Gonzalez-Jimenez and J. L. Alba-Castro. Toward
pose-invariant 2-d face recognition through point
distribution models and facial symmetry. IEEE Trans.
Inform. Forensics and Security, 2(3):413–429, 2007.

[4] L. Kennedy and D. Ellis. Laughter detection in
meetings. In NIST Meeting Recognition Workshop,
2004.

[5] I. McCowan, J. Carletta, W. Kraaij, S. Ashby,
S. Bourban, M. Flynn, M. Guillemot, T. Hain,
J. Kadlec, and V. Karaiskos. The AMI meeting
corpus. In Int’l. Conf. on Methods and Techniques in
Behavioral Research, pages 137–140, 2005.

[6] I. Patras and M. Pantic. Particle filtering with
factorized likelihoods for tracking facial features. In
FG, pages 97–104, 2004.

[7] S. Petridis, A. Asghar, and M. Pantic. Classifying
laughter and speech using audio-visual feature
prediction. In IEEE ICASSP, pages 5254–5257, 2010.

[8] S. Petridis, B. Martinez, and M. Pantic. The
MAHNOB laughter database. In Submitted to Image
and Vision Computing Journal, 2012.

[9] S. Petridis and M. Pantic. Audiovisual discrimination
between speech and laughter: Why and when visual
information might help. IEEE Transactions on
Multimedia, 13(2):216–234, April 2011.

[10] S. Petridis, M. Pantic, and J. Cohn. Prediction-based
classification for audiovisual discrimination between
laughter and speech. In IEEE FG, pages 619–626,
Santa Barbara, CA, USA, 2011.

[11] G. Potamianos, C. Neti, G. Gravier, A. Garg, and
A. W. Senior. Recent advances in the automatic
recognition of audiovisual speech. Proc. of the IEEE,
91(9):1306–1326, 2003.

[12] C. Snoek, M. Worring, and A. Smeulders. Early versus
late fusion in semantic video analysis. In ACM
Multimedia, pages 399–402, 2005.

[13] Z. Zeng, M. Pantic, G. Roisman, and T. Huang. A
survey of affect recognition methods: Audio, visual
and spontaneous expressions. IEEE Trans. Pattern
Analysis and Machine Intelligence, 31(1):39–58, 2009.


