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ABSTRACT

In this paper, a novel method for the recognition of facial
expressions in videos is proposed. The system first extracts
the deformed Candide facial grid that corresponds to the fa-
cial expression depicted in the video sequence. The mean
Euclidean distance of the deformed grids is then calculated
to create a new metric multidimensional scaling. The clas-
sification of the sample under examination to one of the 7
possible classes of facial expressions, i.e. anger, disgust,
fear, happiness, sadness, surprise and neutral, is performed
using multiclass SVMs defined in the new space. The ex-
periments were performed using the Cohn-Kanade database
and the results show that the above mentioned system can
achieve an accuracy of 95.6%.

1. INTRODUCTION

In the last two decades, facial expression recognition has
attracted scientific interest due to its vital role in many ap-
plications such as human centered interfaces, e.g. virtual
reality, video-conferencing, user profiling and customer sat-
isfaction studies for broadcast and web services. Psycholo-
gists have defined a set of facial expressions that are thought
to be expressed in a similar way all over the world, thus
making the facial expression recognition more standard. These
facial expressions are anger, disgust, fear, happiness, sad-
ness and surprise [1]. These basic facial expressions in ad-
dition with the neutral state are the target of facial expres-
sion recognition systems developed nowadays. A survey on
automatic facial expression recognition can be found in [2].

Recently, in [3], a method for the recognition of the six
basic facial expressions has been proposed. The user man-
ually places some of the Candide grid’s points to the face
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depicted at the first frame. A grid adaptation system, based
on deformable models, tracks the entire Candide grid as the
facial expression evolves through time, thus producing a
grid that corresponds to the greatest intensity of the facial
expression, as depicted at the last frame. The geometrical
displacement information of the grid points, defined as the
coordinates’ difference between the last and the first frame,
is extracted to be the input to a six class SVMs system. The
system requires the presence of neutral state in order to cal-
culate the geometrical information that is used for classifi-
cation. Thus, the recognition of neutral state is not feasible.

In this paper, a novel method for the recognition of facial
expressions is proposed. The system incorporates the same
tracking system as in [3] and the deformed grid that corre-
sponds to the facial expression depicted on the last frame is
obtained. Unlike the method proposed in [3], knowledge of
the grid that corresponds to the neutral state is not necessary,
as the proposed system requires only the deformed grid ob-
tained from the grid tracking system and does not need to
calculate the grid coordinates difference between the neu-
tral and fully expressed image. Thus, the system can take
as an input a video sequence starting from any facial ex-
pression and classify each frame to one of the seven facial
expression classes (6 basic facial expressions plus neutral
state). The system achieved an accuracy rate of 95.6% on
experiments performed in the Cohn-Kanade database.

2. SYSTEM DESCRIPTION

The diagram of the system used for the experiments is shown
in Figure 1. The information extraction subsystem consists
of the grid tracking system described in [4]. The extracted
information, is used as an input to the information process-
ing subsystem, that includes the calculation of the mean Eu-
clidean distances and the embedding part. Finally, the infor-
mation classification subsystem consists of a 7-class SVMs
system that classifies the embedded deformed grid into one
of the 7 facial expression classes under examination.
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Fig. 1. Flow chart of the proposed system

3. INFORMATION EXTRACTION SUBSYSTEM

The Candide grid [5] that was used is a parameterized face
mask specifically developed for model-based coding of hu-
man faces. A frontal view of the model can be seen in Figure
2. The low number of its triangles allows fast face anima-
tion with moderate computing power.

Fig. 2. The Candide grid.

The geometrical information extraction is performed by
a grid tracking system, based on deformable models [4],
that uses a pyramidal implementation of the well-known
Kanade-Lucas-Tomasi (KLT) algorithm. The user has to
place manually a number of Candide grid nodes on the cor-
responding positions of the face depicted at the first frame
of the image sequence. For automatic grid displacement
elastic graph matching techniques [6] can be used. The al-
gorithm automatically adjusts the grid to the face and then
tracks it through the image sequence, as it evolves through
time to reach its highest intensity, thus producing the de-
formed Candide grid.

The deformed Candide grids are firstly normalized. The

normalization procedure involves their scaling, translation
and rotation. More precisely, the scaling was performed in
such a way that the width and the height of all deformed
grids would be the same for all test samples. The translation
included the translation of each deformed grid so that the
node corresponding to the tip of the nose would be placed
at the center of the coordinate system. Last, the rotation
included the rotation of each deformed grid so that the grids
that were produced would be aligned. In order to achieve
that, an angle was defined as the one created by the vertical
line that connects the center of the mouth with the center
of the forehand and by the horizontal line that connects the
inner nodes of the eyes.

4. METRIC MULTIDIMENSIONAL SCALING

4.1. Mean Grid Node Euclidean distance

Given two Candide grid sets of points: A = {a1, . . . ,ap}
and B = {b1, . . . ,bp} the distance that is adopted is the
mean Euclidean distance, defined as:

dM (A,B) =
1

N(A)

∑
‖ai − bi‖. (1)

This distance is similar to the Euclidean distance be-
tween two grids but is calculated in a node-wise manner as
we are interested in the deformation of each node indepen-
dently. It should be noted here, that for the Candide grid the
nodes correspondences are known. The set of points creat-
ing the grid is combined with a predefined way, thus the cor-
respondences of points between two random Candide grids
are known, i.e. point ai corresponds to point bi. In the pro-
posed approach we use the mean Euclidean distance in (1)
in order to create a feature space, using a new embedding so
as to define later a multiclass SVM classifier in this space.

4.2. Embedding to the new space

It can be easily proven that the measure in (1) satisfies the
following properties:

• reflectivity i.e., dMH(Ai,Ai) = 0

• positivity i.e., dMH(Ai,Aj) > 0 if Ai 6= Aj
• symmetry i.e., dMH(Ai,Aj) = d(Aj ,Ai)

• triangle inequality i.e., d(Ai,Aj) ≤ d(Ai,B)+d(B,Aj)
∀Ai,Aj ,B Candide grid points sets.

Thus, the mean Euclidean distance used is a metric measure
[7]. We will use this metric in order to define an embedding
in a new multidimensional space [8] [9]. The procedure
that will be described below is like a Principal Component
Analysis [10], but is now applied in a node wise manner



(equation 1) since we are interested in the deformation of
each node independently.

Let {A1, . . . ,AN} be the set of training facial grid database.
The dissimilarity matrix of the training is defined as:

[D]i,j = dM (Ai,Aj). (2)

We will use the similarity matrix D in order to define an
embedding X ∈ <k×N , where k ≤ N is the dimensionality
of the embedding and the i-th column of X, denoted as xi,
corresponds to the feature vector of the facial grid Ai in the
new space. In order to find the embedding X, the matrix B
is defined as:

B = −1

2
JDJ (3)

where J = IN×N − 1
N 1N1TN ∈ <N×N is the centering

matrix, where IN×N is the N × N identity matrix and 1N
is the N-dimensional vector of ones. The matrix J projects
the data so that the embedding X has zero mean. The eigen-
decomposition of the matrix B will give us the desired em-
bedding. The matrix B is positive semi-definite (i.e., it has
real and non-negative eigenvalues), if and only if the dis-
tance matrix D is Euclidean [7]. Let p be the number of
positive eigenvalues of matrix B. Then, the matrix B can
be written as:

B = QΛQT = QΛ
1
2

[
Ip×p

0

]
Λ

1
2 QT = XTMX

(4)
where Λ is a diagonal matrix with the diagonal consisting
of the p positive eigenvalues, which are presented in the fol-
lowing order: first, positive eigenvalues in decreasing order
and then the zero values. The matrix Ip×p is the identity
p× p matrix. The matrix Xp is the embedding of the set of
facial grids in the new space <p [7]:

Xp = Λ
1
2
p QT

p (5)

where Λp contains only the non-zero diagonal elements of
Λ and Qp is the matrix with the corresponding eigenvectors.

The new embedding is purely Euclidean. As already
mentioned, the vector xpi , i.e. the i-th column of the matrix
Xp corresponds to the feature vector of the grid Ai in the
new space.

5. MULTICLASS SVMS FOR CLASSSIFICATION

5.1. Training phase

The new space is purely Euclidean and a multi-class SVM
is built now to classify the vectors xli (the features of theAi
Candide training grid). The training data are (xl1, l1), . . .
. . . , (xlN , lN ) where xli ∈ <L are the feature vectors and
lj ∈ {1, . . . , 7} are the facial expression labels of the fea-
ture vectors. The multi-class SVMs problem solves only

one optimization problem [11]. It constructs 7 facial expres-
sions rules, where the k−th function wT

k φ(xli)+bk separates
training vectors of the class k from the rest of the vectors,
by minimizing the objective function:

min
w,b,ξ

1

2

7∑

k=1

wT
k wk + C

N∑

j=1

∑

k 6=lj
ξkj (6)

subject to the constraints:

wT
ljφ(xli) + blj ≥ wT

k φ(xli) + bk + 2− ξkj (7)

ξkj ≥ 0, j = 1, . . . , N, k ∈ {1, . . . , 7}\lj .

φ is the function that maps the deformation vectors to a
higher dimensional space, where the data are supposed to
be linearly or near linearly separable. C is the term that pe-
nalizes the training errors. The vector b = [b1 . . . b7]T is
the bias vector and ξ = [ξ1

1 , . . . , ξ
k
i , . . . , ξ

7
N ]T is the slack

variable vector.
It is not necessary to know the explicit form of the func-

tion φ, since only the close form of the dot products in H,
the so called kernel trick is required:

h(x,y) = φ(x)Tφ(y) (8)

where the function h is known as kernel function. The typ-
ical kernels that have been used in the literature have been
the polynomial and the Radial Basis Functions (RBF) ker-
nels:

h(x,y) = φ(x)Tφ(y) = (xTy + 1)d (9)

h(x,y) = φ(x)Tφ(y) = e−γ(x−y)T (x−y)

where d ∈ N is the degree of the polynomial and γ is the
spread of the Gaussian cluster.

For the solution of the optimization problem (6) subject
to the constraints (7) one can refer to [11, 12]. The solu-
tion of (6) subject to (7) provides us with normal vectors
w1, . . . ,w7 and with seven bias terms b1, . . . , b7.

5.2. Facial grid classification using the trained SVMs

In this Section we will show how features from previously
”unseen” facial grids are embedded in the new Euclidean
space using the proposed similarity measure. The features
are afterwards classified with the multi-class SVMs system.
Let {G1, . . . ,Gn} be a set of n testing facial grids. We cre-
ate the matrix Dn ∈ <n×N , with [Dn]i,j = dMH(Gi,Aj).
The matrix Dn represents the similarity, with respect to the
distance, between the n test facial grids and all the training
facial grids. The matrix Bn ∈ <n×N of inner products that
relates all the new (test) facial grids to all facial grids from
the training set is then found as follows:

Bn = −1

2
(DnJ−UDJ) (10)



where J is the centering matrix and U = 1
N 1n1TN ∈ <n×N .

The embedding Yn ∈ <l×n of the test facial grids is defined
as:

Yn = Λ
− 1

2

l QT
l BT

n . (11)

The columns of the matrix Yn are the features used for clas-
sification. Let yi,n ∈ <l be the i-th column of the matrix
Yn, i.e. the vector that contains the features of the grid Gi.
The classification of Gi to one of the seven facial expression
classes is performed by the decision function:

h(Gi) = arg max
k=1,...,7

(wT
k φ(yi,n) + bk), (12)

where wk and bk have been found during training, as de-
scribed in Section 5.1.

6. EXPERIMENTAL RESULTS

The database used for the facial expression recognition ex-
periments was created using the Cohn-Kanade database [13].
This database is annotated with FAUs. These combinations
of FAUs were translated into facial expressions according
to [2], in order to define the corresponding ground truth for
the facial expressions. In Figure 3, a sample of the grids
acquired for one person from the database used for the ex-
periments, is shown. The classifier accuracy was measured

Happiness SurpriseFearDisgustNeutral SadnessAnger

Fig. 3. An example of the grids extracted for a poser from
the Cohn-Kanade database.

using the leave-one-out cross-validation approach described
below, in order to make maximal use of the available data
and produce averaged classification accuracy results. The
image sequences contained in the database are divided into
7 classes, each one corresponding to one of the 7 facial ex-
pressions. Each class consists of the same number of fully
expressive facial expression grid samples (37 facial grids
for every expression). One facial expression sample from
each class is used for the test set, while the remaining sam-
ples form the training set. During the training procedure the
distance matrix D of the training samples is calculated. Af-
terwards, the new embedding is performed and finally the
multiclass SVM system is trained.

The seven test samples are then projected in the new em-
bedding, as described in Section 5.2, and afterwards classi-
fied using (12). Subsequently, the samples forming the test
set are incorporated into the current training set and a new
set of samples (one for each class) is extracted to form the
new test set. The remaining samples create the new training
set. This procedure is repeated until all of the samples are
used as test sets. The classification accuracy is measured as
the mean value of the percentages of the correctly classified
facial expressions.

We have experimented with the dimensionality of the
new embedding which can be modified by keeping only the
p eigenvectors with the largest eigenvalues (i.e. using a ma-
trix X ∈ <p×(36×7)). Figure 4 depicts the facial expression
recognition rate achieved versus the dimensionality of the
embedding space. The accuracy achieved with the proposed
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Fig. 4. Facial expression recognition rate (7 facial expres-
sions) versus dimensionality of the new embedding in the
Cohn-Kanade database

system was equal to 95.6% when SVMs were used with a
polynomial kernel of degree equal to 3 for p = 260.

A comparison of the recognition rates achieved for each
facial expression with the state of the art when six facial
expressions were examined (the neutral state was not taken
under consideration) can be found in [14]-[17]. As can be
seen, our recognition rates are among the highest for each
facial expression. A decrease of 4.1% was noticed when
compared with the method proposed in [18]. This is due
to the introduction of the neutral state in the recognition
process. The recognition of the neutral state was attempted
as almost in all cases the first image of an image sequence
does not depict the neutral state. Therefore the method pro-
posed in [18] could not be applied. Furthermore, a person
may experience many psychological changes through time,
thus depicting many facial expressions variations. A sys-
tem should be able to recognize them and to achieve that



the recognition of the neutral state is vital.

7. CONCLUSIONS

A novel method for the classification of seven facial expres-
sions (i.e. anger, disgust, fear, happiness, sadness, surprise
and neutral) using only facial grids that have been deformed
to find the facial characteristics in videos, has been pre-
sented. The mean Euclidean distance has been exploited
in order to create a new embedding space and a multiclass
SVM system has been defined in this space to be used for
the classification of expression. Experiments showed that
the proposed technique achieved an accuracy rate of 95,6%
when recognizing seven facial expressions (6 basic facial
expressions plus neutral).
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