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ABSTRACT

In this paper, a novel supervised feature extraction method
is presented. The method employs discriminant analysis in
the features derived by Non-negative Matrix Factorization
(NMF). In this way, a two phase discriminant feature extrac-
tion procedure is implemented, namely NMF plus Linear
Discriminant Analysis (LDA). The introduced method has
been applied to the problem of frontal face verification us-
ing the well known XM2VTS database, where a better per-
formance than NMF, Eigenfaces and Fisherfaces has been
achieved.

1. INTRODUCTION

Face recognition/verification has attracted the attention of
researchers for more than two decades and is among the
most popular research areas in the field of computer vision
and pattern recognition.

The most popular among the techniques used for frontal
face recognition/verification are the subspace methods. The
subspace algorithms consider the entire image as a feature
vector and their aim is to find projections (bases) that op-
timize some criterion defined over the feature vectors that
correspond to different classes. Then the original high di-
mensional image space is projected into a low dimensional
one. The classification is usually performed according to a
simple distance measure in the final multidimensional space.

Various criteria have been employed in order to find the
basis of the low dimensional spaces. Some of them have
been defined in order to find projections that they best ex-
press the population (e.g. Principal Component Analysis
(PCA) [1], NMF [2], Local Non-negative Matrix Factor-
ization (LNMF) [3]) without using the information of how
the data are separated to different classes. Another class
of criteria is the one that deals directly with discrimination
between classes (e.g. LDA [4]).

A subspace method that aims at finding a face repre-
sentation by using basis images without using class infor-
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mation is NMF [2]. The NMF algorithm, like PCA, repre-
sents a face as a linear combination of basis. The difference
with PCA is that it does not allow negative elements in both
the basis vectors and the weights of the linear combination.
This constraint results to radically different basis than PCA.
On the one hand the basis of PCA are eigenfaces, some of
which resemble distorted versions of the entire face. On
the other hand the basis of NMF are localized features that
correspond better to the intuitive notions of face parts [2].
An extension of NMF that gives even more localized basis
by imposing additional locality constraints is the so-called
LNMF [3].

In this paper, we develop a technique for exploiting dis-
criminant information in NMF. This technique uses the NMF
basis images in order to discover a low dimensional space
and search for discriminant projections in this space. This
is similar to Fisherfaces [4, 5], where an initial PCA based
dimensionality reduction step is used, before applying LDA
in this new space for finding discriminant projections. Of
course the motivations of Fisherfaces and the proposed NMF
plus LDA are different. In Fisherfaces, first PCA is used in
order to satisfy the invertibility of the within scatter ma-
trix and afterwards LDA is used in this new space. In the
proposed NMF plus LDA method LDA is used along with
NMF in order to investigate whether there is any discrim-
inant information in part-based decompositions, like NMF.
The proposed method has been tested for frontal face veri-
fication using the XM2VTS database.

2. FRONTAL FACE VERIFICATION AND
SUBSPACE TECHNIQUES

In this Section, we will briefly outline the problem of frontal
face verification and the framework under which a subspace
method can be used in order to solve this problem.

Let U be a facial image database. Each facial image
x ∈ U is supposed to belong to one of the K facial (person)
classes {U1,U2, . . . ,UK} with U =

⋃K

i=1 Ui. For a face
verification system that uses the database U , a genuine (or
client) claim is performed when a person t provides its facial
image x, claims that x ∈ Ur and t = r. When a person t

provides its facial image x and claims that x ∈ Ur, with t 6=
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r, an impostor claim occurs. The scope of a face verification
system is to handle properly these claims by accepting the
genuine claims and rejecting the impostor ones.

Let the facial image database U be comprised by L fa-
cial images xj ∈ ℜF

+, where ℜ+ = [0,+∞) and let the
cardinality of each facial class Ur to be Nr. A linear sub-
space transformation of the original F -dimensional space
onto a M -dimensional subspace (usually M ≪ F ) is a ma-
trix W ∈ ℜM×F estimated using the database U . The new
feature vector x́ ∈ ℜM is given by:

x́ = Wx. (1)

The rows of the matrix W contain the basis of the lower
dimension feature space.

After the projection given by (1), a distance metric is
chosen in order to measure the similarity of a test facial im-
age to a certain class. This similarity measure can be the L1

norm, the L2 norm, the normalized correlation or the Ma-
halanobis distance [6]. In case of face verification, the algo-
rithm should also learn a threshold on the similarity measure
in order to accept or reject a client/impostor claim.

3. THE NMF ALGORITHM

In order to apply NMF, the matrix X ∈ ℜF×L
+ = [xi,j ]

should be constructed, where xi,j is the i-th element of the
j-th image. In other words the j-th column of X is the uj

facial image. NMF aims to find two matrices Z ∈ ℜF×M
+ =

[zi,k] and H ∈ ℜM×L
+ = [hk,j ] such that,

X ≈ ZH. (2)

The facial image uj after the NMF decomposition can be
written as uj ≈ Zhj , where hj is the j-th column of H.
Thus, the lines of the matrix Z can be considered as basis
images and the vector hj as the corresponding weight vec-
tor. The hj vectors can also be considered as the projected
vectors of a lower dimensional feature space.

The NMF imposes non-negative constraints in both the
elements of zi,k and of hk,j . Thus, only non-subtractive
combinations are allowed. This is believed to correspond
better to the intuitive notion of combining facial parts in
order to create a complete face.

One of the algorithms initially proposed for finding the
matrices Z and H used the following metric:

DN (X||ZH) =
∑

i,j

(xi,j ln(
xi,j∑

l zi,lhl,j

)+
∑

k

zi,khk,j−xi,j)

(3)
as the measure of the cost for factoring X into ZH [7].

The NMF factorization is the outcome of optimization :

min
Z,H

DN (X||ZH) subject to (4)

zi,k ≥ 0, hk,j ≥ 0,
∑

i

zi,j = 1, ∀j

By using an auxiliary function and the Expectation Maxi-
mization algorithm [7], the following update rules for hk,j

and zi,k guarantee a non increasing behavior of (3). The
update rule for the t-th iteration for hk,j is given by:

h
(t)
k,j = h

(t−1)
k,j

∑
i z

(t−1)
i,k

xi,j∑
l
z
(t−1)
i,l

h
(t−1)
l,j∑

i z
(t−1)
i,k

(5)

whereas for the zi,k the update rule is given by:

z
(t)
i,k = z

(t−1)
i,k

∑
j h

(t)
k,j

xi,j∑
l
z
(t−1)
i,l

h
(t)
l,j∑

j h
(t)
k,j

. (6)

Since xj ≈ Zhj , a natural way to compute the projec-
tion of xj to a lower dimensional feature space using NMF
is x́j = Z

†
xj . The pseudo-inverse Z

† can be calculated us-
ing singular value decomposition methods [8, 9]. In order
to proceed to the dimensionality reduction, it has been also
claimed that Z

T can be used as an alternative [10], due to
the fact that the calculation of Z† may suffer from numerical
instability.

In any case, we can not use the coefficient matrix of H

computed directly from (5) (which gives us its values in the
training phase), since we do not have any expression for
calculating this representation for the test images.

4. NMF PLUS LDA

The previously presented method, NMF, does not use the
information about how the various facial images are sepa-
rated into different facial classes. The most straightforward
way in order to exploit discriminant information in NMF
is to try to discover discriminant projections for the facial
image vectors after the projection to the basis image matrix
Z

†. Let the matrix X that contains all the facial images of
the database U , be organized as follows. The j-th column
of the database X is the ρ-th image of the r-th class. Thus,
j =

∑r−1
i=1 Ni + ρ.

The vector hj that correspond to the jth column of the
matrix H, is the coefficient vector for the ρth facial image of
the rth class and will be denoted as η(r)

ρ = [η
(r)
ρ,1 . . . η

(r)
ρ,M ]T .

The mean vector of the vectors η(r)
ρ for the class r is de-

noted as µ(r) = [µ
(r)
1 . . . µ

(r)
M ]T and the mean of all classes

as µ = [µ1 . . . µM ]T . Then, the within scatter for the coef-
ficient vectors hj is defined as:

Sw =

K∑

r=1

Nr∑

ρ=1

(η(r)
ρ − µ(r))(η(r)

ρ − µ(r))T (7)

whereas the between scatter matrix is defined as:

Sb =

K∑

r=1

Nr(µ
(r) − µ)(µ(r) − µ)T . (8)
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The matrix Sw defines the scatter of sample vector coef-
ficients around their class mean. The dispersion of samples
that belong to the same class around their corresponding
mean should be as small as possible. A convenient met-
ric for the dispersion of the samples is the trace of Sw. The
matrix, Sb denotes the between-class scatter matrix and de-
fines the scatter of the mean vectors of all classes around
the global mean µ. Each class formed by the samples that
belong to the same class must be as far as possible from
the other classes. Therefore, the trace of Sb should be as
large as possible. By taking into consideration the previ-
ous remarks, the well known Fisher discriminant criterion
is constructed as:

J(Ψ) =
tr[ΨT

SbΨ]

tr[ΨT SwΨ]
(9)

where tr[R] is the trace of the matrix R. The maximization
of J yields a set of discriminant projections that is given
by the columns of the matrix Ψ́ = [ψ́1 . . . ψ́K−1]. If Sw

is invertible then the projection matrix Ψ́ is given by the
generalized eigenvectors of S

−1
w Sb.

There is not upper limit for how many basis someone
can construct using NMF decomposition in (6) and unless
we create a limited number of basis by NMF the matrix Sw

is singular. That is, there always exist vectors φi that satisfy
φT

i Swφi = 0. These vectors turn out to be very effective if
they satisfy φT

i Sbφi > 0 at the same time [11, 12]-[14]. In
that case the Fisher discriminant criterion degenerates into
the following between-class scatter criterion:

Jb(Φ) = tr[ΦT
SbΦ] (Φ = [. . .φi . . .], ||φi|| = 1). (10)

We will use the main results of [14] in order to extract
discriminant features using an arbitrary number of NMF ba-
sis. The discriminant features are then extracted by the min-
imization of the criterions (9) and (10). The discriminant
projections that are derived by the (9) will be called regular
discriminant projections (or regular NMFfaces) while the
ones created by (10) will be called irregular discriminant
projections (or irregular NMFfaces).

Let the total scatter matrix of the feature vectors hj be
defined as:

St = Sw + Sb (11)

it is easy to prove that the matrix St is a compact and self-
adjoint operator in ℜM [14]. Thus, its eigenvector system
forms an orthonormal basis for ℜM [14].

Let O and O⊥ be the two complementary spaces spanned
by the orthonormal eigenvectors that correspond to no-zero
and to zero eigenvalues of St, respectively. It is easy to
prove, using the theory developed in [14], that O⊥ does not
contain any discriminant information in respect to the cri-
terion (9) and (10). The isomorphic mapping in order to
move from the feature space of the vectors hj to O is the

matrix Π whose columns are the orthonormal eigenvectors
of St that correspond to its non-zero eigenvalues. In order
to find the non-zero eigenvectors of St efficiently, we can
use algorithms like [15].

Let Św and Śb be the within scatter and the between
scatter matrices in the space O. These matrices are given
by Św = Π

T
SwΠ and by Śb = Π

T
SbΠ . In the space

O the matrix Św is still singular. Let Ξ1 and Ξ2 be the
orthonormal eigenvectors that correspond to non-zero and
to zero eigenvectors of the matrix Św, respectively.

In the space spanned by the vectors contained in Ξ1

the discriminant projections are given by the columns of
the matrix Θ1 that are the eigenvectors of S̃

−1
w S̃b, where

S̃w = Ξ
T
1 ŚwΞ1 and S̃b = Ξ

T
1 ŚbΞ1. In the space that is

spanned by the columns of Ξ2 it can be easily proven that
Ŝb = Ξ

T
2 ŚbΞ2 is not singular [14]. Thus, the discriminant

projections in this space are given by the matrix Θ2 that has
as columns the orthonormal eigenvectors of Ŝb.

The linear transform that extracts the regular discrimi-
nant features using NMF is:

Φ́1 = Θ
T
1 Ξ

T
1 Π

T
Z

†, (12)

whereas, the linear transform that extracts the irregular dis-
criminant features using NMF is:

Φ́2 = Θ
T
2 Ξ

T
2 Π

T
Z

† (13)

where Z is the decomposition of NMF given by (6). The to-
tal number of discriminant projections derived by this pro-
cedure is 2(K − 1).

5. EXPERIMENTAL RESULTS

The experiments were conducted in the XM2VTS database
using the protocol described in [16]. The images were aligned
semi-automatically according to the eyes position of each
facial image using the eye coordinates. The facial images
were down-scaled to 64 × 64 resolution. Histogram equal-
ization was used for normalizing the facial images.

5.1. Training Procedure

The XM2VTS database provides two experiment setups namely,
Configuration I and Configuration II [16]. Each configura-
tion is divided in three different sets the training set, the
evaluation set and the test set. The training set is used to
create client and impostor models for each person. The eval-
uation is used to learn the thresholds.

The training set of the Configuration I contains 200 per-
sons with 3 images per person. The evaluation set con-
tains 3 images per client for genuine claims and 25 eval-
uation impostors with 8 images per impostor. Thus, eval-
uation set gives a total of 3 × 200 = 600 client claims
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(a) (b)

(c) (d)

Fig. 1. A set of 25 basis images for (a) NMF
(b) EigenFaces, (c) FisherFaces (d) the proposed NMF-
Faces (regular).

and 25 × 8 × 200 = 40.000 impostor claims. The test
set has 2 images per client and 70 impostors with 8 images
per impostor and gives 2 × 200 = 400 client claims and
70 × 8 × 200 = 112.000 impostor claims. The maximum
number of Eigenfaces [15] given by the training set is 599.
The number of classes is 200 and, thus, the number of Fish-
erfaces [4] is 199. For NMF plus LDA, 1000 basis images
have been created initially using NMF and after the regular
and irregular discriminant information has been found ac-
cording to (12) and (13) that gives a total of 398 projections
(199 regular NMFfaces and 199 irregular NMFfaces).

By a visual inspection of the images of Figure 1, it can
be seen that Eigenfaces, Fisherfaces and regular NMFfaces
(it also holds for the irregular) resemble degraded versions
of faces.

5.2. Experimental Results in Configuration I

The facial images have been then projected using these ba-
sis into a low dimensional feature space and the normalized
correlation was used in order to define the similarity mea-
sure between two faces as:

D(xr,xt) =
x́

T
r x́t

||x́r|||x́t||
(14)

where xr and xt are the reference and the test facial image,
respectively while x́r and x́t are their projections to one of
the subspace.

In case of NMF plus LDA two different discriminant
projection are found by (12) and (13). Thus, two different

similarity values are created by Dg(xr,xt) = (Ψ1xr)(Ψ1xt)
T

||Ψ1xr|||Ψ1xt||

and by Du(xr,xt) = (Ψ2xr)(Ψ2xt)
T

||Ψ2xr|||Ψ2xt||
for the regular and

the irregular discriminant information, respectively. In [14]
it has been proposed to use a simple fusion technique by
weighting the irregular score with some empirical coeffi-
cient. Instead of using the empirical parameter we used
the evaluation set of the Configuration I in order to learn
a discriminant weighting vector w using also LDA. The fi-
nal similarity measure between the facial image vectors xr

and xt is given by:

Dt(xr,xr) = w
T [Dg(xr,xt) Du(xr,xt)]

T . (15)

The similarity measures for each person, calculated in
both evaluation and training set form the distance vector
d(r). The elements of the vector d(r) are sorted in de-
scending order and are used for the person specific thresh-
olds on the distance measure. Let TQ(r) denote the Q-th or-
der statistic of the vector of distances, d(r). The threshold
of the person r is chosen to be equal to TQ(r). Let x

1
r , x

2
r

and x
3
r be the 3 instances of the person r in the training set.

A claim of a person (with a facial image xt) to the identity
r is considered valid if maxj{D(xj

r,xt)} < TQ(r). Obvi-
ously when varying Q, different pairs of False Acceptance
Rate (FAR) and False Rejection Rate (FRR) can be created
and that way a ROC curve is produced and the Equal Error
Rate (EER) can be measured [16, 17].

The performance of the methods that project to face
basis like Eigenfaces, Fisherfaces and NMFfaces (regular
and irregular) for various feature dimensions is illustrated
in Figure 2. The best EER achieved was 0.8% when 80
regular and 80 irregular projections have been kept. The
best EER for Fisherfaces has been 1.6% and for Eigenfaces
4.3%. The best EER achieved for NMF was more than 8%,
thus, a separate curve showing the performance of NMF for
various feature dimensions was not included in Figure 2.

6. CONCLUSIONS

We proposed a supervised feature extraction technique in
order to improve the classification performance of NMF.
The discriminant technique gives basis images that are holis-
tic and is comprised of two different phases, namely NMF
and LDA thus producing the so-called NMFfaces. The new
subspace technique has been applied to frontal face verifi-
cation, where, it was verified that the proposed NMFfaces
outperform the well-known Fisherfaces and Eigenfaces.
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Fig. 2. EER for Configuration I plotted versus feature di-
mensionality for Eigenfaces, FisherFaces and the proposed
NMFfaces (regular, irregular and fusion).
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