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Abstract. Positive definite kernels, such as Gaussian Radial Basis
Functions (GRBF), have been widely used in computer vision for design-
ing feature extraction and classification algorithms. In many cases non-
positive definite (npd) kernels and non metric similarity/dissimilarity
measures naturally arise (e.g., Hausdorff distance, Kullback Leibler Di-
vergences and Compact Support (CS) Kernels). Hence, there is a prac-
tical and theoretical need to properly handle npd kernels within feature
extraction and classification frameworks. Recently, classifiers such as
Support Vector Machines (SVMs) with npd kernels, Indefinite Kernel
Fisher Discriminant Analysis (IKFDA) and Indefinite Kernel Quadratic
Analysis (IKQA) were proposed. In this paper we propose feature ex-
traction methods using indefinite kernels. In particular, first we propose
an Indefinite Kernel Principal Component Analysis (IKPCA). Then, we
properly define optimization problems that find discriminant projections
with indefinite kernels and propose a Complete Indefinite Kernel Fisher
Discriminant Analysis (CIKFDA) that solves the proposed problems.
We show the power of the proposed frameworks in a fully automatic face
recognition scenario.
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1 Introduction

In many computer vision applications we encounter the following problem. Given
a high dimensional visual representation of objects we wish to find a condensed
representation that captures their underlying, possibly non-linear, structure. The
aforementioned problem is usually tackled by the application of linear and non-
linear dimensionality reduction techniques, also referred to as subspace learning
techniques. Research on subspace learning mainly revolves around two main
interrelated directions, that is (a) subspace learning using kernels [1–4, 7–9] and
(b) manifold learning [10, 11].
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Linear dimensionality reduction is usually performed by finding a set of pro-
jections bases while low-dimensional feature extraction is performed by apply-
ing these learned bases onto a vector representation of the data. Kernel-based
subspace learning methods mainly extend their linear counterparts using (con-
ditionally) positive definite (pd) functions as kernels [1–4, 7–9]. A pd kernel
is interpreted as an inner product in a Hilbert space [12]. Kernel-based sub-
space learning algorithms perform an implicit mapping of the input data into
a high-dimensional Hilbert space (also referred to as feature space) and use
the reproducing properties of pd kernels to express the projections as a linear
combination of the data in the feature space. Dimensionality reduction is then
performed by projecting the data in the feature space using the learned bases.
All computations are efficiently performed via the inner product of the feature
space (the so-called kernel trick).

Notable kernel-based methods include the Kernel Principal Component Anal-
ysis (KPCA) [1] and Kernel Fisher Discriminant Analysis (KDA) [2, 7–9]. KDA
finds a set of projection bases by maximizing the trace of between-class scatter
matrix while minimizing the trace within-class scatter matrix of low-dimensional
space. The solution of the KDA optimization problem has resulted in a wealth
of research works dealing with the problem of how the range and the useful null
space of the within-class scatter matrix can be used for discovering projection
bases. The most popular methods discard discriminative information, either in
one space or the other [3, 7–9]. A complete framework which extracts features
from both spaces was proposed in [2].

The above noted kernel subspace-learning techniques are applicable only in the
case of pd kernels. This imposes limitations to their applicability, since many non-
pd (npd) kernels arise as similarity measures. For example, in [13–15] the authors
tried to incorporate invariance or robustness into the measure. Another family
of useful npd kernels are the compact support (cs) kernels [16]. Popular non-
Euclidean (nonmetric) similarities/dissimilarities, such as Hausdorff distances
[17] and Kullback-Leibler divergence between probability distributions, can be
used to define npd kernels [18, 19]. Hence, there is both practical and theoretical
need to properly handle all these measures and npd kernels in order to extract
discriminant features using an KDA framework with npd kernels. One way to
deal with this is to approximate the npd kernel with a positive definite (pd) one
and use this kernel instead [6].

The need to properly handle npd kernels, instead of approximating them with
pd ones, has initiated a number of studies on the proper design of classification
algorithms [20]. In particular in [21] a geometrical interpretation of learning a
large margin classifier with indefinite kernels has been discussed. In [21] clas-
sification frameworks based on two-class Kernel Fisher Discriminant Analysis
(KFDA) and in [18] Kernel Quadratic Discriminant (KQD) analysis with in-
definite kernels were proposed. In this paper we study feature extraction with
npd (or simple indefinite) kernels. We first formulate Indefinite Kernel Principal
Component Analysis (IKPCA) in Krein spaces. A Krein space is a vector space K
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equipped with an indefinite inner product1. The npd kernel is interpreted as the
indefinite inner product of the Krein space. Furthermore, we define optimization
problems for extracting discriminant projections in Krein spaces. In particular,
we formulate a Complete Indefinite Kernel Discriminant Analysis (CIKDA) in
Krein spaces.

We would like to highlight that in [5, 18, 21] only classifiers based on quadratic
discriminant functions and two class classifier based on IKFDA in Krein spaces
were proposed. Our paper takes a different direction. That is, we propose sub-
space learning algorithms in Krein Spaces for feature extraction and object rep-
resentation. To the best of our knowledge this is the first time that discriminant
feature extraction is performed in Krein spaces. Summarizing the contributions
of this paper are: (a) an Indefinite Kernel Principal Component Analysis in
Krein Spaces2 (b) a Complete Indefinite Kernel Fisher Discriminant Analysis
(ICKFDA) in Krein spaces. We furthermore propose npd kernels that contrary
to [18] achieve state-of-the-art performance in fully automatic face recognition.

2 Krein Spaces

Krein spaces are important as they provide feature-space representations of dis-
similarities and provide us with insights on the geometry of classifiers defined
with non-positive kernels [18, 21].

An abstract space K is a Krein space over reals � if there exists an (indefinite)
inner product 〈., .〉K : K ×K → � with the following properties [22]:

〈x,y〉K = 〈y,x〉K
〈c1x+ c2z,y〉K = c1〈x,y〉K + c2〈z,y〉K (1)

for all x,y, z ∈ K and c1, c2 ∈ �. K is composed of two vector spaces, such that
K = K+ ⊕K−. K+ and K− describe two Hilbert spaces over �. We denote their
corresponding positive definite inner products as 〈., .〉K+ and 〈., .〉K− , respec-
tively. The decomposition of K into two such subspaces defines two orthogonal
projections: P+ onto K+ and P− onto K−, known as fundamental projections
of K. Using these projections, x ∈ K can be represented as x = P+x + P−x.
The identity matrix in K is given by IK = P+ +P−.

Let us denote by x+ ∈ K+ and x− ∈ K−, the projections onto the subspaces
P+x and P−x, respectively. Then, 〈x+,y−〉K = 0 for all x,y ∈ K. Moreover,
〈x+,y+〉K > 0 and 〈x−,y−〉K < 0 for any non-zero vectors x and y in K.
Therefore, K+ is a positive subspace, while K− is a negative subspace. The
inner product of K is defined as the difference of 〈., .〉K+ and 〈., .〉K− , i.e. for all
x,y ∈ K:

〈x,y〉K = 〈x+,y+〉K+ − 〈x−,y−〉K− (2)

1 For more information regarding Krein spaces the interested reader can refer to [22].
2 Although, methods similar to the proposed IKPCA were implied in previous works
[18, 19] and in Chapter 6 of the PhD thesis [35] a complete formulation of IKPCA
in Krein spaces has not been proposed before.
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A Krein space K has an associated Hilbert space |K| which can be found via the
linear operator J = P+−P−, called the fundamental symmetry. This symmetry
satisfies J = J−1 = JT and describes the basic properties of a Krein space. Its
connection to the original Krein space can be written in terms of a “conjugate”
by using (2) and J, as

x∗y � 〈x,y〉K = xTJy = 〈Jx,y〉|K|. (3)

That is, K can be turned into its associated Hilbert space |K| by using the positive
definite inner product of the associated Hilbert space,〈., .〉|K|, as 〈x,y〉|K| =
〈x,Jy〉K.

In the following we are particularly interested in finite dimensional Krein
spaces where K+ is isomorphic to �p and K− is isomorphic to �q. Such a Krein
space describes a pseudo-Euclidean space and is characterized by its so-called
signature, (p, q) ∈ N

2, which indicates the dimensionality, p and q, of the positive
and negative subspaces, respectively [18]. The fundamental symmetry is

J =

[
Ip 0
0 −Iq

]
(4)

where Iz is the identity matrix in �z×z and 0 implies zero padding.
A non-positive definite (npd) kernel k defines an implicit mapping ψ : �d → K

into a (in)finite dimensional Krein space. Analogously to Hilbert space,
our kernel is equivalent to the dot-product in feature space, i.e. k(xi,xj) =
〈ψ(xi), ψ(xj)〉K. The squared distance in feature space is given by

l2(xi,xj) = (ψ(xi)− ψ(xj))
∗(ψ(xi)− ψ(xj))

= k(xi,xi)− 2k(xi,xj) + k(xj ,xj). (5)

Also a non-negative dissimilarity measure l2(xi,xj) that satisfies the following
properties (1) l2(xi,xi) = 0, (2) l2(xi,xj) > 0, ∀ xi 	= xj and (3) l2(xi,xj) =
l2(xj ,xi) and does not satisfy the triangular inequality can define an npf kernel.

3 KPCA in Krein Spaces

Let X = [x1 · · · xN ] ∈ �d×N be a set of given samples and Xψ =
[ψ(x1) · · · ψ(xN )] be their implicit mapping. Motivated by KPCA and pseudo-
Euclidean embedding [18, 23], we formulate KPCA with Krein spaces.

Let us define the mean mK, and the centralized matrix X̃ψ as

mK = 1
NXψ1N X̃ψ = XψL (6)

where L � IN − 1
N 1N1TN and 1N is an N -dimensional vector containing only

ones [18]. We then define the total scatter matrix in K as

SK
t � 1

N

∑N
i=1(ψ(xi)−mK)(ψ(xi)−mK)∗ = 1

N X̃ψX̃
∗
ψ = 1

N X̃ψX̃
T
ψJ = S|K|J

(7)
where S|K| is the total scatter matrix in the associated Hilbert space |K|.
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In a similar way to that of KPCA in Hilbert space, we generalize KPCA
in Krein space as follows. We wish to compute a set of projections Uo =
[u1 · · · ,uN ] with ui ∈ K such that3

Uo = argmaxU tr
(
U∗SK

t U
)
s.t.U∗U = J. (8)

We write the set of projections as a linear combination of samples as U = X̃ψQ,
and (8) becomes:

Qo = argmaxQ tr
(
QT X̃T

ψJX̃ψX̃
T
ψJX̃ψQ

)
= argmaxQ tr

(
QT K̃K̃Q

) s.t. QT X̃T
ψJX̃ψQ = QTKQ = J

(9)
where K̃ = X̃∗

ψX̃ψ is the centralized kernel matrix. The eigendecomposition of

K̃ then yields the solution of the above

K̃ = VΛVT = V|Λ| 12J|Λ| 12VT (10)

where Λ is a diagonal matrix whose main diagonal consists of p positive and q
negative eigenvalues (p+q ≤ N) in the following order: first, positive eigenvalues
with decreasing values, then negative ones with decreasing absolute values and
finally zero values. Matrix |Λ| is the diagonal matrix containing the absolute
values of the eigenvalues. The fundamental symmetry, matrix J, is defined as
in (4), and (p, q) is the pseudo-Euclidian space’s signature. Consequently, we

obtain the optimal solution of (9) from Qo = Vp+q|Λp+q|− 1
2 and the optimal

projection matrix from Uo = X̃ψVp+q|Λp+q|− 1
2 , where Λp+q contains the non-

zero eigenvalues and Vp+q denotes the corresponding eigenvectors.
Let y ∈ C

d be a new sample, and ý = ψ(y) ∈ K denotes its mapping. Then,
the part of ý which belongs to the positive subspace �p is given by:

ý+ = |Λp|− 1
2VT

pM
TX∗

ψψ(y)

= |Λp|− 1
2VT

pM
T

⎡
⎣ 〈ψ(x1), ψ(y)〉K

· · ·
〈ψ(xN ), ψ(y)〉K

⎤
⎦ = |Λp|− 1

2VT
pM

T

⎡
⎣ k(x1,y)

· · ·
k(xN ,y)

⎤
⎦ (11)

where Λp contains only the positive eigenvalues, and Vp denotes the correspond-
ing eigenvectors. Similarly, we can compute the features ý− ∈ �q using

ý− = |Λq|− 1
2VT

q M
TX∗

ψψ(y) (12)

where Λq and Vq corresponds to the negative eigenvalues. Furthermore, we can
verify that the inner product of x́, ý ∈ K is equal to the kernel value as follows

〈x́, ý〉K = x́∗ý = x́TJý = ψ(x)∗X̃ψV|Λ|− 1
2J|Λ|− 1

2VT X̃∗
ψψ(y)

= ψ(x)T JU∗UJψ(y) = ψ(x)TJψ(y) = 〈ψ(x), ψ(y)〉K = k(x,y).
(13)

3 Although pseudo-euclidean embedding has been proposed [19] the actual formulation
of KPCA in Krein Spaces has not been previously proposed.
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In order to establish a dimensionality reduction strategy, we can start by ex-
panding the objective function of the optimization problem (8) as

tr (U∗SKU) = tr
(
QT K̃K̃Q

)
= tr

(
|Λ|− 1

2VTVΛVTVΛVTV|Λ|− 1
2

)
= tr (|Λ|) = ∑N

i=1 |λi|.
(14)

As it can be observed, the actual functional to be minimized is based on the ab-
solute eigenvalues, |λi|. Hence, the dimensionality reduction may be performed
by removing the eigenvectors that correspond to the smallest in terms of mag-
nitude eigenvalues. The signature of the reduced Krein space is then given by
(p1, q1) with p1 ≤ p and q1 ≤ q.

4 Discriminant Learning in Krein Spaces

Kernel Discriminant Analysis (KDA) in Hilbert spaces with positive definite (pd)
kernels aims at finding discriminant projection bases by exploiting class-label
information in the feature space. In the following we will formulate discriminant
subspace learning algorithms by defining optimization problems based on the
traces of the projected within and between class scatter matrices. We assume
that our training set consists of C classes C1, · · · , CC . Nc denotes the cardinality
of set Cc. We define the between-class, within-class and total scatter matrices
SK
b , S

K
w and SK

t in K as

SK
b �

C∑
c=1

Nc(m
K
c −mK)(mK

c −mK)∗ (15)

SK
w �

K∑
c=1

∑
xi∈Cc

(ψ(xi)−mK
c )(ψ(xi)−mK

c )
∗ (16)

where mK
c = 1

Nc

∑
xi∈Cc

ψ(xi) is the mean vector of each class.
In Hilbert spaces with pd kernels the main optimization problem for finding

the discriminant projection is

– the one that maximizes the trace of the projected between class scatter
matrix subject to having a projected orthogonal within-class scatter matrix
[2, 9, 24]

– maximizes the trace of the projected between class scatter matrix subject to
the useful null-space of within-class scatter matrix [2, 3, 25].

Using the theory developed in the previous Section, we formulate the optimiza-
tion problems that find the discriminant projections with npf kernels in Krein
spaces. That is, we aim at finding a set of projections U1 = [u1

1| · · · |u1
p] with

every column uj1 ∈ K
U1 = maxU tr

[
U∗SK

b U
]
s.t U∗SK

wU = I, (17)

and U2 = [u2
1| · · · |u2

p] with every column u1
j ∈ K



494 S. Zafeiriou

U2 = maxU tr
[
U∗SK

b U
]
s.t U∗SK

wU = 0. (18)

The equivalent optimization problem (17) in Hilbert spaces was solved in
[2, 9, 24], while approaches to solve optimization problem (18) were proposed in
[2, 3, 25]. The Complete Kernel Fisher Discriminant (CKF) framework [2] solves
the equivalent optimization problems (17) and (18) simultaneously by projecting
the within-class scatter matrix onto the non-null space of total scatter matrix.
The CKFD framework is not applicable in our case, since the developed theoret-
ical framework in [2] can be only applied for the case of pd kernels. To alleviate
this problem, in the following section, we propose the Complete Fisher Dis-
criminant with Indefinite Kernels (CFDIK) in Krein spaces. To the best of our
knowledge this is the first time discriminant subspace algorithms are proposed
in Krein spaces with npd kernels.

5 Solving the Optimization Problems

In the following we will show how optimization problems (17) and (18) can be
solved. Let us first define the block Mc � 1

Nc
1Nc1

T
Nc

and the block diagonal
matrix M as:

M � diag[M1,M2, . . . ,MC ]. (19)

The useful properties of M are: (1) M is idempotent, i.e. Mn = M with n 	= 0,
(2) I−M is idempotent, (3) M has C eigenvectors corresponding to C non-zero
eigenvalues, (4) I−M has N −C eigenvectors corresponding to N −C non-zero
eigenvalues (5) for a full ranked symmetric matrix A ∈ �N×N matrices AMA
and A(I − M)A4 have C and N − C N eigenvectors corresponding to C and
N − C non-zero (positive) eigenvalues, respectively.

Using M and the fact that SK
w = SK

t − SK
b , S

K
w we write

SK
b = X̃ψMX̃∗

ψ, S
K
w = X̃ψ(I−M)X̃∗

ψ (20)

5.1 Solving the Optimization Problem (17)

In this section, we present how to diagonalize the within-class scatter matrix SK
w

in the Krein feature space. Before proceeding we need the following Theorem I.

Theorem I: Define matrices A and B such that A = ΦΦ∗ and B = Φ∗Φ.
Let UB be the eigenvectors corresponding to the non-zero eigenvalues ΛB of B.
Then, UA = ΦUB|ΛB |−1 diagonalizes ΦΦ∗,
The proof is omitted due to lack of space.

Using the fact that I−M is idempotent, SH
w can be written as

SK
w = X̃ψ(I−M)(X̃ψ)

∗ =
(
X̃ψ(I−M)

)(
X̃ψ(I−M)

)∗
. (21)

4 ∀ symmetric real matrices A matrices AMA = (MA)TMA and A(I − M)A =
((I−M)A)T (I−M)A are positive semi definite by construction.
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By Theorem I, in order to diagonalize SK
w we need to apply eigen-analysis to Kw

Kw =
(
X̃ψ(I−M)

)∗ (
X̃ψ(I−M)

)
= (I−M)K̃(I−M). (22)

Since, K̃ is npd so is Kw hence it admits an eigendecomposition as

Kw = Qw|Λw| 12J|Λw| 12QT
n . (23)

Now we seek an optimal solution that can be written as a linear combination of
matrix X̃ψ(I−M)Qw|Λw|−1 which diagonalizes SK

w , i.e.

U = X̃ψ(I−M)Qw|Λw|−1A. (24)

where A ∈ �(N−C)×C . Using U the objective matrix U∗SK
b U is reformulated as

U∗SK
b U = AT |Λw|−1QT

w(I−M)X̃∗
ψX̃ψMX̃∗

ψX̃ψ(I−M)Qw|Λw|−1A

= AT |Λw|−1QT
w(I−M)K̃MK̃(I−M)Qw|Λw|−1A

= AT
(
MK̃(I−M)Qw|Λw|−1

)T (
MK̃(I−M)Qw|Λw|−1

)
A

(25)

Kb = |Λw|−1QT
w(I − M)K̃MK̃(I − M)Qw|Λw|−1 is positive semi-definite by

definition. Then, optimization problem (17) is reformulated as

Ao = maxA tr
[
ATKbA

]
s.t ATA = I, (26)

which is solved by the choosing Ao to contain as columns the C− 1 eigenvectors
of Kb that correspond to non-zero eigenvalues.

5.2 Solving Optimization Problem (18)

We cannot solve the optimization problem (18) by writing the solution Ul as a
linear combination of X̃ψ(I − M)Ql where Ql is the complementary subspace

of Qw (i.e., the eigenvectors of (I−M)K̃(I−M) that correspond to null eigen-
values). Such a solution should be written as Ul = X̃ψ(I − M)QlA. We have

U∗
lUl = ATQl

T (I−M)(X̃ψ)
∗X̃ψ(I−M)QlA = 0, (27)

which further gives Ul = 0.
To findUl, we writeUl = X̃ψΞlA, Ξl ∈ �N×C , A ∈ �C×(C−1). Additionally,

Ul satisfies

Ul
∗SK

wUl = ATΞTl K̃(I−M)K̃ΞlA = 0. (28)

From the properties of matrices I − M, K̃, (K̃T = K̃) has N − C non-zero
eigenvalues. The constraint (28) can be satisfied by choosing Ξl from performing
eigenanalysis of K̃(I −M)K̃ and keeping the C eigenvectors which correspond
to the zero eigenvalues.
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Using Ul, U
∗
l S

K
b Ul is reformulated as

U∗
l S

K
b Ul = ATΞTl X̃

∗
ψX̃ψMX̃∗

ψX̃ψΞlA = ATΞTl K̃MK̃ΞlA

= AT
(
MK̃Ξl

)T (
MK̃Ξl

)
A

(29)

Kb,2 = ΞTl K̃MK̃Ξl is positive semi-definite by construction. Using the above
equation optimization problem (18) is reformulated as

Ao = maxA tr
[
ATKb,2A

]
, s.t ATA = I, (30)

which is solved by the eigenanalysis of Kb and keeping the C − 1 eigenvectors
that correspond to the C − 1 non-zero eigenvalues. Finally we prove that the
projections Uw and Ul derived from the optimization problems (17) and (18)
are orthogonal (U∗

lUw = 0) (the proof is omitted due to lack of space).

6 Comparison with the Methods in [18],[21],[26],[27]

The literature regarding learning with indefinite kernels mainly revolves around
the design of classifiers [18, 21, 27]. In particular in [21] an geometrical inter-
pretation of learning a large margin classifier with indefinite kernels has been
given. The most closely related works are the classification frameworks proposed
in [18] and [21] for two class problems.

In this problem we have two classes C1 and C2. We define matrices SK
b and SK

w

as in (15) and in (16), respectively, for the two class problem. Then, the methods
in [18, 21] find a vector w ∈ K and a scalar b such that

wo = argmax
w

w∗SK
b w

w∗SK
ww

. (31)

In order to solve the above optimization problem w was written as a linear com-
bination of the training samples as w =

∑n
i=1 aiψ(xi) = Xψa then optimization

problem (31) can be written as

ao = argmax
a

aTKMKa

aTK(I−M)Ka
, (32)

since matrices N = KMK and C = K(I −M)K are positive semi-definite by
construction, the solution is given by keeping the eigenvector that corresponds
to the largest eigenvalues of C−1N. The matrix C is not invertible since it con-
tains only one eigenvector that corresponds to non-zero eigenvalues. In [18, 21] a
standard heuristic approach was applied, i.e. a was found by performing eigen-
analysis to (C+βI)−1N where β is a small positive constant arbitrarily chosen.
Unfortunately, this is not the solution to the optimization problem (31). Since,
for two-class data both optimization problems (31) and (17) we can readily find
the optimal w that optimizes both (31) by applying the methodology proposed
in Section 5.
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7 Experimental Results

We tested the proposed IKPCA and CKFDA approaches in the face recognition
problem. The first indefinite kernel we used is the CS kernel used in [16] (also
widely referred to as a mollifier)

k(x,y) = exp
(

1
||x−y||2−γ

)
H(α− ||x− y||2) (33)

where H(r) is the usual heaviside function. The CS kernels are of great im-
portance in robust statistics since they are less influenced by outliers. In our
experiments we used as distance ||x − y||2 the weighted distance ||x − y||2W =
(x − y)TW(x − y) proposed in [28] where W is sum of the power spectrum of
the filters used and x and y are the vectorized Fourier responses of the images.
As filters we used a Gabor filter bank of 8 orientations and 5 scales.

The second class of indefinite kernels we used are defined as the minimum of
the correlation surface of image registration algorithms [29]

k(Ii, Ij) = min(min cor(Ii, Ij),min cor(Ij , Ii)) (34)

where cor(Ii, Ij) is the correlation surface between two images Ii and Ij of the
matching algorithm [29]. We chose this particular kernel in order to illustrate
the applicability of the proposed feature extraction methods in fully automatic
face recognition schemes.

All the reported results were acquired using C−1 features produced from the
optimization problem (17) and C − 1 features from the optimization problem
(18). For the IKPCA algorithm the reported results were acquired using N − 1
features produced by the algorithm presented in Section 3. The classifier used was
a simple nearest neighbor classifier using as distance the normalized correlation
or the projected features.

7.1 Face Recognition Experiments in Yale B Database

The extended Yale B database [30] contains 16128 images of 38 subjects under
9 poses and 64 illumination conditions. We used a subset that consists of 64
near frontal images for each subject. For training, we randomly selected a subset
with 5, 10 and 20 images per subject. The training set was also further split into
training and validation to find the optimal parameters of the kernels used (i.e.,
γ and α). For testing, we used the remaining images. Finally, we performed 20
different random realizations of the training/test sets.

For comparison reasons we used the the pd Gaussian RBF (GRBF) kernel
using the same distances ||x − y||2W as k(x,y) = exp

(− 1
σ2 ||x− y||2W

)
. Using

the GRBF kernel the IKPCA and the proposed CIKDFA framework collapse to
the KPCA and CKFDA [2] frameworks, respectively. Table I summarizes the
obtained results. As we can see the proposed IKPCA and CIKFDA with the
proposed npd kernel outperforms all other algorithms.



498 S. Zafeiriou

Table 1. Average recognition rates and standard deviations on the Extended YALE
B database

5—10—20 Proposed Kernel (33) GRBF

IKPCA 80.5(1.12) 93.5(0.89) 96.6(0.25) 78.8(1.02) 90.8(0.83) 93.4(0.75)

CIKFDA (17) 77.2(1.12) 93.1(0.82) 97.8 (0.25) 76.8(1.67) 90.4(1.01) 95.9(0.88)

CIKFDA (18) 74.6(1.8) 92.7(0.76) 97.1 (0.3) 75.4(1.63) 89.1(1.21) 95.0(0.73)

Face Recognition Experiments in a Subset of FERET. In order to sim-
ulate results acquired using a fully automatic system, we used directly the faces
returned from a face detector (both training and testing)5. The kernel in (34)
was used for matching the faces provided by the face detector. To the best of our
knowledge there are very few works reporting results in such a difficult setting
with the most recent one the work published in [31].

In this experiment, we attempted to combine the experimental setting sug-
gested in [2, 4] with facial images obtained directly from the face detector. We
did so in order to show the power of the proposed CIKFDA when more than
one images are available for training. In particular, we randomly selected 600
facial images corresponding to 200 subjects, such that each subject has three
images (taken form FA, FB, DupI and DupII). We randomly chose two out of
three images for training and then used the third image for testing.

Table 2 summarizes the recognition rates. We also report recently proposed
state-of-the-art methods for face recognition [33] in manually aligned facial im-
ages (aligned according to the eye coordinates), for comparison reasons. We also
compared our method with LBPs using both manually aligned images and detec-
tor extracted images. We achieved a recognition rate of 95% which demonstrates
that the proposed scheme can be efficiently combined with fully automatic meth-
ods for face detection and matching. We also significantly outperform (by 7%)
state-of-the-art methods that used manually aligned data.

Table 2. Recognition rates in the subset of FERET. SRC represents the results ac-
quired using the method in [33] with manual alignment. LBP-d represents the results
of Local Binary Patterns using detector extracted images and LBP-m represents the
results with images after manual alignment.

Methods SRC [33] LBP-d LBP-m IKPCA CIKFDA (17) CIKFDA (17)

RR 87 35 89 90 95 93.5

7.2 Face Recognition with the XM2VTS Database

We carried out face verification experiments on the test set of Configuration I
of the XM2VTS database. The training set contained 200 subjects with three
images per subject which enabled us to apply our kernel combined with the

5 In particular we used the publicly available face detector implemented in OpenCV
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proposed discriminant analysis. The evaluation set contained three images per
client for genuine claims and 25 evaluation impostors with eight images per
impostor. The testing set contained two images per client and 70 impostors with
eight images per impostor. For additional details on the XM2VTS database and
the protocol used, the interested reader may refer to [34].

A face detector was also used to provide the faces. The applied kernel com-
bined with the proposed kernel discriminant analysis on the samples of the face
detector achieved a TER (Total Error Rate)6 equal to 1.92%. Table 3 summarizes
the best results of each competition in fully automatic facial image registration
scenarios, as well as, the performance of of some recent algorithms tested under
automatic alignment by using the eye coordinates. Our method, which is ap-
plied directly on the results of the detector, achieved a TER which is the best
reported for the XM2VTS database according to the best of our knowledge. The
results reported with the SRC method in [33] were achieved using manually
aligned data.

Table 3. Best Results in XM2VTS database under automatic image alignment

Methods Best of [36] Best of [37] Best of [38] [39] SRC [33] Proposed Approach

TER% 13.10 3.86 2.14 2.3 4 1.92

8 Conclusions

In this paper we presented a theoretical framework for discriminant feature ex-
traction in Krein spaces. In particular we proposed a Complete Indefinite Kernel
Fisher Discriminant Analysis (CIKFDA) which discovers discriminant projec-
tions both in the range and null spaces of the within-class-scatter matrix in the
Krein space. We demonstrated the superiority of the proposed approach in fully
automatic face recognition scenarios where state-of-the-art results were achieved
using the output images acquired from a face detector.
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