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We present a multi-view face detector based on Cascade Deformable Part Models (CDPM). Over the last decade,
there have been several attempts to extend thewell-established Viola&Jones face detector algorithm to solve the
problem of multi-view face detection. Recently a tree structure model for multi-view face detection was pro-
posed. This method is primarily designed for facial landmark detection and consequently a face detection is pro-
vided. However, the effort to model inner facial structures by using a detailed facial landmark labelling resulted
on a complex and suboptimal system for face detection. Instead, we adopt CDPMs, where themodels are learned
from partially labelled images using Latent Support Vector Machines (LSVM). Furthermore, LSVM is enhanced
with data-mining and bootstrapping procedures to enrich models during the training. Furthermore, a post-
optimization procedure is derived to improve the performance. This semi-supervised methodology allows us
to buildmodels based onweakly labelled datawhile incrementally learning latent positive and negative samples.
Our results show that the proposed model can deal with highly expressive and partially occluded faces while
outperforming the state-of-the-art face detectors by a large margin on challenging benchmarks such as the
Face Detection Data Set and Benchmark (FDDB) [1] and the Annotated Facial Landmarks in the Wild (AFLW)
[2] databases. In addition, we validate the accuracy of our models under large head pose variation and facial oc-
clusions in theHead Pose ImageDatabase (HPID) [3] and Caltech Occluded Faces in theWild (COFW)datasets [4],
respectively. We also outline the suitability of our models to support facial landmark detection algorithms.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Face detection is invariably the first step in any automatic face anal-
ysis system. With the rapid increase of computational power and mod-
ern digital signal processing, face detection is a handy and a customary
feature present in many human sensing applications. Still, the key as-
pect of performance is not only the ability to detect the face quickly,
but also reliability and precision. It is indeed common that further pro-
cesses are initialised upon the face detection output, including face
alignment, facemodelling, face relighting, face recognition, face authen-
tication, headpose estimation, facial expression recognition, gender/age
recognition, and many more [5].

For the past decade, face detection has relied on the influential
Viola&Jones (VJ) algorithm [6]. Near-frontal face detection suddenly
became feasible as the VJ algorithm provides real-time performance
for head pose variation up to 30° of yaw and 15° of pitch rotations.
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Driven by the imminent necessities of technological progress, face
analysis recently abandoned the typical controlled scenarios of the
lab-produced databases to tackle real world challenges. That is to say,
face detection must evolve from restricted settings where near-frontal
faces, clean backgrounds, perfect illumination and occlusion-free faces
are acquired. This is why the latest challenges in face analysis arise
from unconstrained imagery collected over the internet, widely known
as the “in-the-wild” databases [2,1].

The VJ algorithmwas early exhibited as largely insufficient to handle
the head pose rotations in databases like theMulti-Pie database [7] and
the plethora of in-the-wild databases that followed. It is within this con-
text that Multi-View Face Detection (MVFD) rapidly raised in practical
importance.

A first attempt to extend the VJ algorithm toMVFDwas proposed by
Viola and Jones [8]. They proposed a two-stage MVFD, where the face
pose is initially estimated, followed by face detection according to
pose-wise models. Other subsequent works proposed different modifi-
cations to theVJ detector. Themost relevant proposals include theuse of
different cascade architectures, variants of Boosting and modified Haar
features.

For example, [9] proposed the use of a pyramid of classifiers to deal
with MVFD, where lower levels of the pyramid would be increasingly
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specific to a head pose. FloatBoost was used instead of AdaBoost to
avoid the greedy search, and an extension of Haar features was used.
Similarly, [10] used Real AdaBoost to train pose-wise experts, while a
nested-structured cascade was proposed to replace the cascade archi-
tecture of VJ algorithm. Alternatively, [11] proposed a tree-shaped
organization of the cascaded search in combination with a variant of
Boosting, called Vector Boosting, which allowed classes to share
features. This variant aimed at alleviating the impact of class overlap
when training pose-wise experts for MVFD. However, most of these
works were strictly incremental over the VJ algorithm, and offered no
breakthrough.

Papers that are more recent have proposed the substitution of Haar-
like features. For example, [12,13] attained a large performance im-
provement by using SURF features, which are equally computable by
means of the integral image. Face detection is still attained through a
cascade of SURFweak classifiers, trainedwith billions of samples within
one hour. This work resulted on the best performance to date over the
FDDB benchmark database [1]. Alternatively, [14] proposed the use of
Local Gradient Patterns to build a feature pyramid while maintaining
the cascadedAdaBoost as the learning algorithm. The large performance
gain of these methods suggests that the representation power of Haar-
like features is a bottleneck of the classical VJ framework. However,
these articles do not specifically tackle MVFD.

Newworks have emerged applying the vast advances on generic ob-
ject detection to the specific problem of face detection. For example,
[15] proposed to apply methods based on local scale-invariant key-
point features to solve the problems of pose-invariant face detection.
A similar idea was followed in [16], where SIFT features are detected
within the images and then used to score similarity between two im-
ages as the number of positive key-points matching. Thiswork reported
results on the FDDB database [1] but did not outperform the results re-
ported in [17], where a Gaussian Process Regression scheme was ap-
plied to adapt the VJ pre-trained model to the “in-the-wild” domain.
Very similar approach was used in [18], where authors trained a Gauss-
ian Mixture Model to also adapt the VJ model to the “in-the-wild”.

Recently, a major breakthrough for MVFD was obtained when Zhu
and Ramanan [19] proposed to apply another object detection frame-
work, the Deformable Parts Model (DPM), for joint face detection,
pose estimation and facial landmark detection. Specifically, they pro-
posed a model formed by 68 part filters per pose, each one correspond-
ing to a facial landmark. Their spatial relations aremodelled using a Tree
Structure Model (hereafter we will refer to this method as TSM). The
absence of loops in the shape model means that minimization can be
attained through dynamic programming. Finally, the model was com-
posed of 13 head pose-wise experts, corresponding to the poses present
on theMulti-Pie database. This approach showed a much better perfor-
mance than VJ-like methodologies for MVFD. Essentially, a finer face
representation,modelling inner facial structures, Histogramof Oriented
Gradients (HOG) features [20] and view-dependent models, lead this
method to a better discrimination power.

However, the way inner facial structures are modelled appears opti-
mal for facial landmark detection while being suboptimal when only
face detection is intended. Firstly, it requires an exhaustive facial land-
mark labelling, which hugely reduces the amount of training data that
can be used. Secondly, the large amount of experts and parts makes
the algorithm too slow for face detection in practical applications. The
resolution required is higher as the part filters rely on local statistics
for a successful detection. Finally, the TSMmodel lacks a holistic face fil-
ter that could speed-up the face detection at lower resolutions and im-
prove its robustness to partial occlusions. We argue that the baseline
framework of DPMs as defined in [21] is more suitable for MVFD than
the TSM, which is actually derived from [21].

Recent contributions to the literature extended the TSM framework
[19], to propose structural models for body and face detection [22–24].
These models pursue a double objective, detection of faces, facial parts
and/or facial landmarks. Such an ontological dual function also requires
more complete facial annotations beyond simple face bounding boxes.
Moreover, the method proposed in [22] makes use of contextual infor-
mation by combining the results of an upper body detector to improve
the face detection performance. This increases the complexity of the an-
notated data required to train such model.

The star-structured model of the original DPM has shown excellent
detection performance on difficult benchmarks such as the PASCAL
datasets [25]. When using star models, facial appearances are modelled
using multi-scale DPMs. Further performance improvement is attained
by combining Latent Support Vector Machines (LSVM) and data-
mining procedures. Finally, a Cascade Deformable Part Model (CDPM)
[26] can speed up over 20 times the DPM's detectionwithout sacrificing
detection accuracy.

In this paper, we present an empirical analysis of CDPMs to address
the reliability problem of MVFD. First, we describe a data-mining pro-
cess to incrementally learn DPMs from partially labelled data using
the LSVM algorithm. Second, we derive a post-optimization procedure
for the CDPMs training that improves significantly its performance. As
a result, we obtain a face detector that outperforms the state-of-the-
art face detectors on three challenging “in-the-wild” datasets such as
the Face Detection Database (FDDB) [1], the Annotated Facial Land-
marks in the Wild [2], and the Caltech Occluded Faces in the Wild
(COFW) [4]. Additionally, detailed experimental results on the Head
Pose Image Database [3] are discussed. We also provide analyses re-
garding average face detection times and the accuracy of our MVFD
for the initialization of facial landmark detection.

2. Multi-view face detection

One of the most efficient and remarkable frameworks in object
detection has been presented by Felzenszwalb et al. [21]. This method
proposes to build pictorial structures composed by a set of dual resolu-
tion image filters, which are a global object model and a set of parts
representing object sub-structures, arranged according to a deformable
spatial configuration. Here, we describe an empirical analysis of this
DPM to address the problem of efficient MVFD.

First, we present the DPM and detail the face detection hypothesis.
Second, we explain the process of discriminatively learning a DPM
from weakly labelled data using the LSVM algorithm [21]. At this
point, we introduce two post-processing procedures, data-mining and
bootstrapping, which allow us to refine training sets while increasing
the robustness of themodel. Finally, we describe cascaded search strat-
egy, where early stages in the cascade use a basic DPM face detector to
rapidly scan the image while speeding up face detection without any
performance loss.

2.1. Deformable part models

Following the original DPM's framework [21], let us define a DPM
with n parts as β = {F0, P1, …, Pn, b}, where F0 is a coarse-scale global
Root-Filter, Pi is a Part-Filter model for the ith part and b is a bias term.
Partfilters are defined as Pi={Fi, vi,wi}, where Fi is afine-scale partfilter
at twice the resolution of the root filter. The spatial distribution of part
filters is defined relative to the root filter by both vi and wi, the anchor
and deformation penalty, respectively.

DPM filters are matrices designed to weight the sub-windows of a
pyramidal representation of an image. We employ a variant of the
HOG features introduced by Dalal and Triggs [20] to represent the facial
appearance. These features have shown to be robust for object detection
under challenging conditions such as image noise, scale variation and
occlusions [25].

Given both a DPM and a HOG feature pyramid of a testing image x,
a binary convolution function, Φ(x, β), scans the responses of the
model β onto the testing image. The score of a filter with respect to
a sub-window of a HOG pyramid is the dot product of the weight vec-
tor and the features comprising the sub-window. Thus, the scoring
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function combines the appearance fitness and a penalization of spatial
deformation as follows:

Sβ xð Þ ¼ Φ x; F0ð Þ þ
Xn
i¼1

max
δi∈Δ

Φ x; Pi; δið Þ−wi δið Þ ð1Þ

whereΦ(x, F0) is the root filter response, δi gives the displacement of
part filters relative to its anchor and the root's position. In this model,
each part is expected to keep a specific relative position respect to
the root filter, called the anchor point. The part can move away
from its anchor point, but it incurs in a penalization, wi(δi), when
doing so. This penalization might however be outweighed by the im-
proved matching of the part filter. Thus, Φ(x, Pi, δi) − wi(δi) scores
the responses of the part filters under the displacement from the an-
chor point, δi, and the deformation cost associated with the displace-
ment, wi. We model the deformation as a symmetric two-
dimensional Gaussian mask superimposed on the target sub-
window, with mean location being the anchor point.

A face detection model is implemented as a mixture of DPMs, in
which each DPM's component is designed to respond only to a subset
of the possible appearances and deformations. In our case each subset
corresponds to a distinct range of head poses. Fig. 1 shows a DPM exam-
ple that comprises four mixture components representing near-frontal
and profile faces, left and right (only the right view components
are displayed). Each mixture component has a root filter (Fig. 1.(a))
and six independent part filters, (Fig. 1.(b)), this is known as 4 ∗
(Roots + 6Parts) DPM. Fig. 1(top) shows a face detection example of
(a) Root-Filters

Fig. 1. Face detections obtained with a four components model. Each component is defined by
components of a 4-Roots DPM cover faces on near frontal and profile head poses (only the righ
this DPM, where the red bounding boxes correspond to the maximum
combined scored, Eq. (1), and blue boxes display the best configuration
of the model part filters.

Observe that this DPMs are trained with weakly labelled data, i.e.
only the face bounding box is known in opposition to previous works
[19,24,23,22]. Consequently, the part filters composing a view-based
mixture detector do not correspond to any face part or facial landmark.

2.1.1. DPM training
Training a robust face detector for the “in-the-wild” images requires

a large amount of data from a variety of databases. Ideally, we want to
learn from both lab-designed and “in-the-wild” databases, but the
main challenge is the lack of consensus in the annotations. Therefore,
we deal with this issue by adopting a multi-instance learning formula-
tion, Latent Support Vector Machines (LSVM). This consists of training
an initial face model using a partially labelled dataset, with homoge-
neous bounding box annotations. Afterwards, new latent variables are
collected in order to extent the primary training set.

Now, let us define a classifier that scores an example image x with
the following function:

Sβ xð Þ ¼ max
z∈Z zð Þ

β �Φ x; zð Þ ð2Þ

where Z(x) defines a set of possible latent variables for an example x,
scored using the DPM β and the scoring function in Eq. (1). In our
case, these latent variables are obtained by evaluating all DPM view-
(b) Part-Filters

(a) root filters (red-boxes) and high resolution (b) part filters (blue-boxes). These view
t view components are displayed).
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based components on the hypothesis x. The detection with maximum
score is kept and a binary label is assigned to x upon a minimum detec-
tion score threshold. In a similar fashion to training an SVM, we use the
LSVMalgorithm [21] to train a DPM for face detectionwhile obtainingβ.
To this end, a face DPM is discriminatively trained with labelled exam-
ples by minimizing the following loss function via a coordinate descent
algorithm:

LD βð Þ ¼ βk k2
2

þ c
Xk
i¼1

max 0; 1−yi � Sβ xið Þ� � ð3Þ

here, D ¼ fðx1; y1Þ;…; ðxn; ynÞÞg is the training set and yi ∈ {−1, 1} are
the binary class labels. max(0, 1 − yi ⋅ Sβ(xi)) is the standard hinge
loss and c is a regularization term.

In general, training an LSVM requires optimizing a non-convex func-
tion. Still, there are two strategies to ease the LSVM optimization as
proven by Felzenszwalb et al. [21]. First, the training of LSVM is made
convex by specifying the latent information for the positive training ex-
amples, while the negative training examples remain fixed. Second,
Sβ(x) is made linear in β by collecting only one latent variable for each
positive example, |Z(x)| = 1. Bear in mind that at this point we are train-
ing linear SVM as a special case of LSVM, using latent variables. Conse-
quently, we obtain the perfect scenario to use of-the-shelf optimization
algorithms and large training datasets.

2.1.1.1. Root and part filters. DPM combines mixture models able to deal
with facial appearance variation due to head pose and facial expres-
sions. Hence, root filters allow discriminating faces from the back-
ground while deformable part filters can adapt to expressive faces and
head pose variations.

Usually face images are labelled with bounding boxes, which enable
training of rigid face detectionmodels. Amore complete labellingmight
be used such as the facial landmarks used by Zhu and Ramanan [19].
However, such level of detail combined with the definition of fine
inner facial structuresmake the TSMa suboptimal face detector. Instead,
we first train a DPM that contains a mixture of view-based root filters
learned from labelled data. Subsequently, the mixture of root filters is
used to acquire latent examples that serve as training set for new root
and part filters. The initial structure of the part filters is obtained by ap-
plying Gaussian Mixture Models (GMM). Next, the gradient descent
process of LSVM allows finding the best possible location of the parts
relative to the root filter such that the detection score is a maximum
of Eq. (1).

Afterwards, finding the optimal DPM requires to alternate between
the acquisition of latent examples and retraining LSVM until the best
performance measure is achieved on a validation set.

To train a face detectorwith high performance, LSVM relies upon the
precision of the root filters to extend the training set with new detected
faces. This allows incrementally learning root and part filters as latent
variables. Felzenszwalb et al. applied this data mining strategy over
the positive training samples to learn non-deformable objects. However,
face detection presents additional challenges due to a large diversity of
headposes and facial expressions. To dealwith this appearance variations
and high deformability of faces, we propose to split the positive training
set, Dp, into easy and hard positives, Dep and Dhp, correspondingly.1 Like-
wise, the negative training set, Dn, is extended with a set of hard nega-
tives, Zhn, which are positively scored detections collected from outside
the annotated face bounding boxes.

Initially, a mixture of coarse root filters is discriminatively trained
using easy positives and negative examples, Dep and Dn, respectively.
Note that this step of the LSVM is reduced to the simple case of training
a binary SVM for view-based mixture component. Once all root filters
are obtained, the scoring function, Sβ(x), is globally normalized
1 The initial split could be based on a priori knowledge of the training data, e.g. images
taken under controlled illumination and clean backgrounds are easier to learn.
according to all easy positive examples. This is in order to enable com-
parisons of detections from different components.

To incrementally learn DPMs based on latent variables, the root fil-
ters obtained from the easy positives are used to score the training set
Dep. Thus, the corresponding set of latent positives, Zep , is obtained.
Then, LSVM is applied again to discriminatively train a new mixture of
root filters based on the latent easy positives and negative examples,
Zep and Dn, respectively. Here, LSVM seeks to minimize the objective
function LZep ðF0Þ in Eq. (3).

Asmentioned above, eachmixture component consists of a root filter
and a set of partfilters,which are designed to copewith both face appear-
ance and facial deformation, correspondingly. Therefore, part filters are
trained while keeping the previously learned root filters. In fact, root fil-
ters are used to score both easy and hard positive examples to produce
a complete set of latent positives, Zp ¼ fZep∪Zhpg. Subsequently, LSVM
is applied to discriminatively learn part filters using Zp and Dn.

Differently than learning root filters, the learning of part filters is a
constrained optimization process as follows:

LZp ;Dn βð Þ ¼ min
jjβjj2
2

þ c
Xk
i¼1

max 0; 1−yi � Sβ zið Þ� �( )
s:t:
Sβ zð Þ ¼ max

z∈Zp zð Þ
β �Φ zð Þf g:

ð4Þ

Furthermore, the HOG features of latent part locations, zp∈Zp , are
computed at twice the resolution of the root filters. Thereby, part filters
are built using higher resolution features computed over highly scored
latent positive examples. This combination of dual feature resolution
and latent variables enables root filters to capture coarse resolution
edges such as the face's boundary while part filters capture details
such as eyes, nose and mouth.

2.1.2. Data-mining and bootstrapping
Face detectors are normally trained with a large number of negative

examples. For a feasible discriminative training, themost commonprac-
tice is to use all positive data and hard negative instances. Yet, to avoid
computational overloads, bootstrapping methods propose to train a
model with an initial subset of negative examples, and then collect ad-
ditional negative examples that are incorrectly classified by the initial
model. Then, an iterative process is established repeating the extraction
of hard negatives and re-training the model until optimal stopping
criteria are met.

Motivated by the data-mining procedure described in [21] and the
necessity to exploit large number of face images, here we combine
both data-mining and bootstrapping. We define a margin-sensitive
clustering procedure to extend both negative and positive examples
into easy and hard latent instances. Given the training set of positive
and negative labelled data,D ¼ fDp∪Dng, we define easy and hard ex-
amples relative to a face DPM, β, as follows:

Zhp βð Þ ¼ x; yð Þ ∈Dp
��yþi � Sβ xð Þb1� �

;Hard−Positives
Zep βð Þ ¼ x; yð Þ ∈Dp

��yþi � Sβ xð Þ N1� �
; Easy−Positives

Zhn βð Þ ¼ x; yð Þ ∈Dp
��y−i � Sβ xð Þb1� �

;Hard−Negatives:
ð5Þ

It can be seen thatZhp andZhn are positive and negative latent exam-
ples incorrectly classified by β, that is, data within the SVM margin. In-
stead, Zep are correctly classified examples, so they fall outside the
margins with a high detection score. Let xp ∈Dp and zp ∈Zp be two
bounding boxes of a positive annotation and the corresponding detec-
tion, respectively. As determined in the PASCAL VOC [25], we measure
the Overlapping percentage as follows:

Overlapping ¼ area xp ∩ zp
� �

area xp ∪ zp
� � : ð6Þ
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An initial model β0 is trained with LSVM using only annotated easy
positives and negatives, Dep and Dn , respectively. Subsequently, as de-
tailed in Section 2.1.1, LSVM is used iteratively alternating between
caching a set of “good” training samples and updating the cache. For
the LSVM training problem, we determine as latent positive example,
zp, a detection window such that the Overlapping with xp is greater
than 50%. However, an Overlapping of 70% determines whether the zp
instance belongs to either Zhp or Zep. This allows to apply data-mining
in the positive examples at slow learning rate but with highly scored
new latent examples.

Likewithpositive examples, there is a set of hardnegatives,Zhn, which
are highly scoreddetections collected fromDp. Thus, a detectedwindow is
considered as hard negative if the Overlapping with the annotation xp is
lower than 50% but with a high detection score, e.g. Sβ(x) ≥ 0.

Accordingly, a bootstrapping stage is performed by updating the
cache with latent hard negative examples, Zhn . This post-processing
procedure is intended to maximize the correlation between the preci-
sion–recall and the score function of the face detector. In addition,
both data-mining and bootstrapping procedures contribute to refine
the SVMmargins while reducing highly scored detections around accu-
rate face detections.

This whole data-mining/bootstrapping procedure is repeated upon
convergence to the optimal precision–recall computed over a validation
set.
Table 1
Composition of the training datasets containing 35, 738 positive
examples.

Database # Examples

AFLW [2] 10096
Cohn–Kanade [27] 3130
DaFeX [28] 996
FGnet [29] 1962
MMI [30] 1150
Mind Reading [31] 6552
MultiPIE [7] 7952
Head Pose Database [3] 3900
2.2. Cascade deformable part models

Felzenszwalb et al. also provide a Star-Cascade (SC) algorithm [26] in
order to speed-up the DPM detection without a loss in accuracy. Con-
trary to the TSM [19], a DPMwith start model structure already outper-
forms the TSM at the first stage of the cascaded classification. The
mixture of root filters of the DPM are more efficient proxies than the
small facial part-like features of the TSM, resulting in a much larger re-
duction of the computational cost.

To circumvent the bottle-neck of DPMs, a Cascade DPM (CDPM) is
trained to find likely object locations that are later validated by the
DPM. Although this procedure is not specific to the star model, the
CDPM consists of a tailored root filter capable of scanning the image at
low resolution whereas part filters are used at high resolution over
the locations provided by CDPM's root filter.

In our model, we tailor the root filter model and the corresponding
parts to be hierarchically applied, resulting in n + 2 stages, where n is
the number of part filters. The SC algorithm learns a global threshold,
τ, which is used to score the most likely locations with the CDPM's
root filter, Sc(F0) ≥ τ. This score is accumulated throughout the stages
of a cascade. If Sc(F0) with the first i parts is lower than a threshold τi,
the root location is not evaluated for the rest of the cascade. This is
known as hypothesis-pruning. SC will also skip locations if the deforma-
tion wi is above a threshold τi′. Finally, the SC algorithm will use the
CDPM for hypothesis-pruning at early stages as a proxy to highlight
faces from the background. Once a candidate location is found, we com-
pute the actual filter convolution of the underlying image features with
the face DPM including both roots and part filters. This additional stage
in the cascade allows to suppress all but the best detections in a faster
manner.

Further speed-up can be attained by using PCA-HOG features to en-
code the appearance of root and part filters of the CDPM. This allows
obtaining simplified cascademodels with no noticeable loss of informa-
tion as demonstrated in [26]. That is, the CDPM's filters are projected
onto a fix number of eigenvectors achieving a faster face detection
while reducingmemory requirements. Here, our face CDPMs are trained
with filters of 5-PCA-HOG features learned using the corresponding
DPM and latent positive examples.

Lower dimensional features may improve the precision as conse-
quence of applying PCA, but at the expense of recall loss. Therefore,
we propose to lessen this effect with a post-optimization procedure,
which improves the CDPM's performance, i.e. precision–recall. We use
both labelled and latent (easy and hard) positive examples to build an
eigenspace of HOG features. Next, we follow the same steps as in [26]
to compute the 5-PCA-HOG features corresponding to the CDPM's root
filters.

3. Training details

Here, we detail the training procedure followed by both VJ-MVFD
and our DPM-MVFD. We used 35, 738 publicly available face images,
see Table 1. Images from video sequences were clustered into different
views (head poses) using the 3D head pose estimation given by the
tracking system in [32]. The training set only contained faces with
pitch and roll angles within the range of ±20°.

3.1. MVFD with Viola and Jones

As baseline, we trained a VJ-MVFD because the work in [8] is not
publicly available. The training has been carried out using the OpenCV
library [33], using a Gentle AdaBoost classifier, the upright Haar-like
features and a tree-based cascade structure for an efficient search [34].
We trained a 6-Views MVFD for near-frontal, [0°, 30°], half-profile,
(30°, 60°], and full profile, (60°, 90°] faces. The training set of 35, 738
face images from Table 1 was extended to 100, 000 positive examples
by flipping the images and applying random distortions. Our training
of the VJ-MVFD took approximately four weeks per pose. Bear in mind
that this haar-cascade training has several parameters suitable for
õoptimization such as number of stages, type of haar-features, mini-
mum hit rate and maximum false alarm rate. However, the major im-
provement in performance comes from the appropriate combination
of pose-specific components.

To detect a face, the VJ-MVFD runs all pose-specific detectors in
parallel. Next, detections are merged by first using a disjoint-set data
structure function [33] to cluster the detected rectangles according to
their size and location. Then, clusters with a small number of rectangles
are eliminated. Finally, a non-maximum suppression function is used to
merge the remaining detections. The detections are scored as the max-
imum response of the Haar-like features among the view-specific
detectors.

3.2. MVFD with CDPM

We trained four different CDPM face detectors to assess the per-
formance depending on the number of root and parts filters. A 4 ∗
(Roots + 6Parts) CDPM was trained using images for near-frontal,
[0°, ± 30°], and profile, (±30°, ± 90°], faces. Face images were
flipped, which allows building symmetric view-based models but
asymmetric filters, as both left and right views are trained indepen-
dently. A second model was trained with 8 ∗ (Roots+6Parts) follow-
ing the annotation structure provided with the Multi-Pie database
[7]. For this model, we clustered the images according to the views,
(±0°, ± 30°], (±30°, ± 45°], (±45°, ± 60°] and (±60°, ± 90°].
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The same views were used to train a 8 ∗ (Roots + 20Parts) CDPM.
Lastly, we trained a 13 ∗ (Roots + 6Parts) by splitting the head rota-
tion of [−90°, + 90°] on every 15°, so that is 13 views were obtained.

Using the 35, 738 face images (labelled with bounding boxes) as
listed in Table 1, we first learned the root filters of a DPM using the
LSVMalgorithmas explained in Section 2.1. To avoid scatter rootmodels
and benefit from less noisy annotations, we initially train them with
easy positives, Dep . AFLW images were used as latent hard positives,
Zhp . Hence, we disregarded the provided annotations, and latent
bounding boxes were extracted instead by applying the data-mining
process explained in Section 2.1.2.

We adopt the PASCAL VOC precision–recall protocol for object de-
tection [25]. A hypothesis is considered as a correct detection if the an-
notation and the estimation are at least 50% overlapped, Eq. (6).

3.2.1. DPM design
The root filters of our DPM models were designed using HOG fea-

tures extracted from 10 × 8 pixels cells to match the head aspect ratio
of the 75% of the annotated faces. Instead, part-filters are designed
with HOG features extracted from square pixel cells of size 6 × 6. Our
DPM models were trained using 32-dimensional HOG features, which
were originally proposed by Felzenwalb et al. [21]. Subsequently, 50%
of the annotated data are used to train an eigenspace of root-filters of
these HOG features. Next, the first 5 eigenvectors of the trained
eigenspace are taken as basis to represent the main structure of our
CDPM.

3.2.2. Data-mining in action
To train our DPMmodels with weak labelled and using data-mining

and bootstrapping, we found out that the best strategy was alternating
these two process in 2 × 1 stages. As explained in Section 2.1.2, we
threshold the latent detections on our training set to distinguish easy
positivesZep, hard positivesZhp and hard negativesZhn. This alternating
procedure is described as follows:

1. Data-mining easy—positives
1.1. Obtain latent detections using previous model.
1.2. Select easy positives using overlapping threshold, Eq. (6).
AFLW

Fig. 2. Precision–Recall curves of four face detection CDPMs tested on the AFLW and the FDDB d
addition, the Average Precision (AP) is reported besides the curves.
1.3. Train DPM using LSVM and Zep while keeping support vectors
from previous model.

2. Data-mining hard—positives

2.1. Obtain latent detections using previous model.
2.2. Select hard positives using overlapping threshold, Eq. (6).
2.3. Train DPM using LSVM and Zhp while keeping support vectors

from previous model.

3. Bootstrapping hard—negatives

3.1. Obtain latent detections using previous model.
3.2. Select hard negatives using overlapping threshold, Eq. (6).
3.3. Train DPM using LSVM using all above data Zep + Zhp + Zhn to

obtain a new set of support vectors, which generalize for the ex-
tended dataset.

The above steps (1) and (2) adopt similar strategies as on-line learn-
ing methods by adding new support vectors to previous models. This
allows increasing the generalization strength of the model based
on positive training samples. Finally, a fresh model is trained in step
(3) after obtaining all the latent training samples from positives and
negatives.

The training of each view-based DPM component is initialized with
at least 400 to 500 positive annotated samples, which ensures an AP
grater than 90% for the first root filters. Then, a first round of the
above (1) to (3) steps is conducted for each view-based component
while using data corresponding to that view only. However, to achieve
highly discriminative view-based components, posterior rounds are ad-
vanced using all remaining data, where the view component with
highest scored detection will retain that latent sample for further re-
training.

To obtain a robust mixture of DPMs, we repeat this alternating data-
mining and bootstrapping steps at least five times. This has been deter-
mined by using a separate validation sample to assess the convergence
of the improvement in AP. Additional statistics also ensure that more
than 95% of our positive samples have been used while reducing the
false positives rate.
FDDB

atasets. Eachmodel is named according to the number of Roots and Parts composing it. In



Discrete Continuous

Fig. 3. ROC curves for differentmethods tested on the FDDB.We report the face detection performance of “Our CDPM” according to the scheme proposed, showing discrete and continuous
ROC curves, respectively. The TPR is reported for FP= 200 along with each method. Our CDPM outperforms for a margin of 2% the best result of the state-of-the-art (left). Our CDPM is
outperformed in the continues ROC (right) by a method that is boosted by the simultaneous face detection and face alignment [24].

Fig. 4. Performance on the AFLW. We report the discrete ROC curves corresponding to
“Our CDPM”, our implementation of the VJ-MVFD and the TSM face detector [19]. They
are compared according to the TPR with at most FP= 200.
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3.2.3. Training times
The full training process of a DPMwith four view-based components

and six filters can take about a week. The process is slow because in-
volves running face detection on 35,000 images, three times for each
of the rounds described in Section 3.2.2. This calculation is done assum-
ing the availability of a pool of 20workers@ 3.60GHz, 16GB of RAMand
Linux 64 bits. The training cost can increase upon the number of root
and part filters,where the latter drive the highest computation overload
as they require a HOG pyramid at double resolution of the root filters
features. However, we believe that both training and running cost can
be drastically reduced by optimizing the HOG computation and the
use of GPU power.

4. Experimental results

In this section, we describe the experimental results obtained with
our face detector. We start comparing different CDPMs by varying the
number of mixture components and part filters. Next, we discuss the
performance of our best model on two “in-the-wild” databases, FDDB
and AFLW. Subsequently, we validate the performance of our CDPM-
MVFD according to head pose variation in the HPID database. We also
include a face detection test under different levels of occlusion. This
test is performed in an “in-the-wild” dataset that has been recently re-
leased, the COFWdatabase. Finally, we present howourMVFDperforms
when used to initialize a facial landmarking algorithm.

4.1. DPM trade-off

In order to find the optimal combination of components and part
filters, we have conducted some preliminary experiments. Fig. 2 dis-
plays the face detection results using four different CDPMs. To compare
the performance of different face detectors, we compute the average
precision as established by the PASCAL VOC [25].

It can be seen how the 4 ∗ (Roots + 6Parts) CDPM face detector is
outperforming the remaining models with an Average Precision
(AP) of 91.02% on the AFLW database [2]. The four models performed
comparably when tested on the FDDB database [1]. As can be seen,
the precision drops with either higher number of roots or parts.
This indicates that a higher number of views leads to suboptimal
face detectors such as the 13 ∗ (Roots + 6Parts) model. This is prob-
ably because higher number of pose-wise components require larger
amounts of training data. However, the 8 ∗ (Roots + 20Parts) model
achieves more precise detections but at lower recall. Consequently,
finding an appropriate trade-off between the number of roots and



Table 2
Average detection time and the corresponding average precision on images of the FDDB
database.

Face detector Average time (s) Average precision (%)

4Roots + 6Parts 0.463 90.83
8Roots + 6Parts 0.755 87.41
8Roots + 20Parts 2.391 82.71
13Roots + 6Parts 4.367 76.96
VJ-MVFD 0.520 73.44
TSM 26.063 49.52
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parts is required and this should be constrained by the amount of
available training data.

4.2. Experiments on FDDB

The FDDBdatabase [1] is the latest benchmark dataset for face detec-
tion in real world scenarios. It contains 2845 images and 5171 faces
acquired under unconstrained conditions. This dataset is released
with a standard performance evaluation scheme proposed by Jain
et al. [1]. Bear in mind that faces are annotated with ellipses instead
of rectangular bounding boxes. This is atypical since most object de-
tection methods, including DPMs, learn and estimate rectangular
bounding boxes. Thus, it is an extra challenge to achieve the right
overlapping with the annotated ellipse according to Eq. (6).

In Fig. 3, we report the MVFD performance of “Our CDPM” on the
FDDB using the 4 ∗ (Roots+ 6Parts) CDPM. The performance of our im-
plementation of VJ-MVFD is also reported in both discrete and continu-
ous ROC curves. We compare the different methods according to the
maximum True Positive Rate (TPR) for a number of False Positives
Fig. 5.Multi-view face detection with CDPM. These examples were obtained with the 4 ∗ (Roots
termine the best location for the root filters whereas blue boxes are used for the part filters de
(FP) as high as 200. In addition, we include the MVFD performance of
the TSM method [19] at a small number of false positives such as 200,
together with the top five face detectors reported on the FDDB [35].
The result of the VJ-OpenCV implementation [33] for frontal faces is
also included, see Fig. 3.

It can be seen from Fig. 3, in the discrete ROC curve, that our CDPM
achieves the highest performance on the FDDB discrete ROC. Our
CDPM achieved a TPR greater than all methods at any rate of false
+6Parts) CDPM on images from the FDDB and AFLW databases. Red bounding boxes de-
tections.



Fig. 6.MVFD with CDPM on HPID. We tested the performance of our 4 ∗ (Roots + 6Parts) CDPM on images from the HPID databases. These images are annotated with pan and tilt head
rotations of ±90°, ±75°, ±60° and ±45°.
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positives. However, our CDPM achieves the second best performance in
the continuous ROC curve. Our CDPM is only outperformed by the
method of Chen et al. [24], which is boosted in the continues protocol
by the simultaneous face detection and face alignment. At this point,
our CDPM improves the TSM for more than 60% and VJ-MVFD for
more than 45%. Our CDPM also outperforms the results obtained by Li
et al. using SURF features [12,13]. To date, the best performances report-
ed on the FDDB are the face detectors by Chen et al. [24] and Yen et al.
[36], but our CDPMalso outperforms thesemethods in the discrete scor-
ing protocol by more than 2% and 5%, respectively. However, our CDPM
is outperformed by these two methods when using the protocol of the
continuous ROC curves.

In order to deal with the aforementioned challenge of overlapping
rectangular bounding boxes with the ellipse annotations by the FDDB,
the latest methods reported to this face benchmark used the same
type of annotations [36–38]. This explicitly makes their models more
Fig. 7. Precision–Recall curves for the 4 ∗ (Roots+6Parts) CDPM-MVFD tested on theHPIDdatab
ROC curves are also shown for the same head poses. The average precision is reported in the le
knowledge, this is the first validation of a MVFD method on annotated head pose datasets.
efficient under the continuous ROC protocol because the features re-
sponse maps help to optimize the face detectors for in plane rotations.
Consequently, these face detectors give higher score to hypothesis
faces with better alignment to the ellipse annotations. This was also im-
plicitly learnt in the Joint Cascade FaceDetection andAlignmentmethod
[24]. Thereby, these three methods [36–38] outperform our CDPM in
the continuous ROC protocol while our CDPM outperforms them in
the discrete ROC protocol, see Fig. 3. This means, they have better align-
ment to the ellipse annotations but no higher face detection rate.

Observe that our CDPM of 4 ∗ (Roots + 6Parts) can recall up to
92.96% of the faces in the FDDB. By contrast, the TSM [19] method can
at most recall 59.16% of the faces while getting the lowest TPR. Further-
more, we could confirm that our implementation of the VJ-MVFD can
just perform as well as the VJ-OpenCV, which uses only a frontal classi-
fier without filtering neighbouring detections. Unfortunately, the VJ-
MVFD needed about two months of training and tuning parameters,
ase. Precision curves are displayed according to eight discrete pan head rotations. Likewise,
ft graph, whereas the TPR is reported for at most FP= 200, right graph. To the best of our
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yet the results are very poor. This means that Haar-like features are not
robust for detecting profile and partially occluded faces such those often
included in the “in-the-wild” databases.

4.3. Experiments on AFLW

The AFLW database contains 24, 686 faces in 21, 328 images, with
manually annotated facial landmarks. Like the FDDB database, the
AFLW offers challenging faces in the wild but with a larger variety of
backgrounds and resolutions. The database is released in three folders,
such that testing images are taken from thefirst two folders and training
images from the third folder. The testing set contains 14, 675 images
and 17, 166 annotated faces.

In this experiment, we compare the face detection results of “Our
CDPM”with the VJ-MVFD and the TSM face detector. Our CDPM is com-
posed by 4 roots and 6 parts, which have been learned by collecting la-
tent hard positives from the AFLW training images among other data.
Like in the previous section, we measure performance according to
the discrete ROC curves at the maximum TPR with at most FP = 200
Fig. 8.MVFD on the COFWdatabase. The face detection performance of our 4 ∗ (Roots+6Parts)
the-wild” images labelled with facial landmarks and their corresponding occlusion label.
(see Fig. 4). Again, our CDPM outperforms both VJ-MVFD and TSM
face detectors with margins of 57% and 15%, respectively. Furthermore,
our MVFD can recall up to 95.08% of the faces on the AFLW, while the
VJ-MVFD and TSM can recall 65.12% and 78.01%, respectively.

The AFLW database contains faces with larger head pose varia-
tions and higher resolution than the FDDB. Therefore, the VJ-MVFD
fails on profile faces whereas the TSM can deal with pose variation,
but only with high resolution images. In contrast to the AFLW, the
major challenges of the FDDB database are the low resolution and
occluded faces. Consequently, the TSM performed better on the
AFLW while VJ-MVFD performed better on the FDDB. In addition,
both AFLW and FDDB differ regarding on the type of face annota-
tions. While the FDDB is annotated with ellipses covering most of
the facial skin, the AFLW is annotated with bounding boxes enclosing
the facial landmarks (eyebrows, lips, nose and chin). We trained our
CDPMs to achieve high TPR as well as high precision–recall, which
was also shown in Fig. 2. See Fig. 5 for a some qualitative results of
face detection examples obtained with the best of our MVFD models,
the 4 ∗ (Roots+ 6Parts) CDPMs.
CDPMwasmeasured according to different levels of occlusion. This database consist of “in-
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4.3.1. Face detection speed
Although we are not aiming at real-time performing face detection,

we have obtained a MVFD that is comparable in speed to the VJ-
MVFD. We tested our four CDPM face detectors, our implementation
of the VJ-MVFD and the TSM in the 2845 FDDB images, which have an
average resolution of 377 × 399 pixels. It is common to assess face
detection speed in QVGA (320 × 240 pixels) images, but we rather
prefer to avoid scaling the images in order to keep correspondence
with the performance measurements. These experiments were run on
a PC with Intel Xeon CPU E5-1620 @ 3.60 GHz, 16 GB of RAM, running
Linux 64 bits. Caveat, Our CDPMs and the TSM have a bottle-neck con-
volution operation between a HOGs pyramid and the model. However,
we use a convolution function provided by Felzenszwalb et al. [21],
which makes both methods faster in Linux.

As can be seen from Table 2, the average detection time by our 4 ∗
(Roots + 6Parts) CDPM is comparable to the attained by VJ-MVFD.
This face detection comparison is done in Matlab and we understand
that VJ-MVFD is faster in C++ OpenCV. Though our CDPMs can also
run in C++ using the OpenCV implementation for DPMs, both DPMs
or CDPMs are faster in Matlab.

The average detection time is also affected by increasing the number
of roots/parts in a CDPM. This also confirms that the TSM is not an effi-
cient model when only face detection is sought, as it uses 13 mixture
components and 68 part filters per component.
4.4. Experiments on HPID

To the best of our knowledge, there is no state-of-the-art face detec-
tor that has been rigorously validated w.r.t. the head pose variations.
The TSM face detector [19] reported the performance of the model at
face detection, head pose estimation and facial landmark detection,
but separately.

Although both FDDB and AFLW face databases cover a wide spec-
trum of head rotations (in-plane and out-of-plane), it is difficult to re-
port our face detection performance according to a specific range of
head poses. AFLW was already segmented for training into subsets of
discrete head poses, but the testing samples of this dataset have not
been segmented as such. Note that the training process only requires
Fig. 9. CDPM-MVFDperformance on theCOFWdatabase. Both Precision–Recall andROC curves a
whether our CDPM performs better upon the level of occlusion given that the imagery varies i
a weakly labelled dataset, thereby, accuracy in head pose segmentation
is not required to initialize the training of the first root filters.

Consequently, to evaluate face detection performance on a dataset
with annotated head poses, we validate the performance of our 4 ∗
(Roots + 6Parts) CDPM on the Head Pose Image Database (HPID) [3].
This database contains 2790 monocular face images of 15 people
photographed under pan and tilt rotations of ±90° with angle varia-
tions of±15°. For this study, we use all images except the oneswith an-
notated tilt angles beyond±30° and pan-tilt angles below±15°, which
correspond to the trivial case of near frontal faces. Fig. 6 shows proto-
typical examples of faces in the HPID.

Fig. 7 presents a collection of eight precision–recall curves corre-
sponding to pan head rotations. As can be seen from Fig. 6, these images
are not particularly challenging due to the uniform background. Instead,
the complexity arises by extreme head poses, and such challenge is cer-
tainly reflected in a slight precision decay of our CDPM at head poses of
±90°. Still, the precision remains around 90% for head poses of ±75°.
Fig. 7 also shows the corresponding ROC curves for the same subsets
of images, which confirms the high recall of our CDPM.

Note that our CDPM reports a different performance for symmetric
head poses, which is expected given that our models are trained via
LSVM combined with data-mining and bootstrapping (Section 2.1.2).

4.5. Experiments on COFW

Themost common and challenging test in object detection is the re-
liability of the method to detect partially visible objects. Felzenszwalb
et al. [21] proved the robustness of DPMs to detect partially occluded
objects. However, the robustness to occlusions ofmulti-view face detec-
tors has not been validated yet.

Burgos et al. [4] proposed a facial landmark detector with outstand-
ing performance even when some of the facial features are not visible.
To prove their concept, they annotated a collection of face images “in-
the-wild”, the COFW database. COFW contains 1852 images annotated
with 68 facial landmarks and binary labels indicating whether a land-
mark is occluded. Authors made clear that their face alignment results
are reproducible by simulating the output of a face detector. This allows
them to overcome the issue of low precision and recall of available face
detection methods.
re disseminated according to thepercentage of face occlusion. It is not possible to conclude
n resolution indistinctly.



Fig. 12. Facial landmark initialization accuracy on the 300-W database. The component-
wise mean shape and the ground truth are compared by measuring the shape RMS
error as the fraction of interocular distance.

Fig. 10. TPR vs. FPPI in the COFW database. Both our CDPM and Zhu et al. [19] reach the
maximum TPR with at most 1 FPPI, whereas our VJ-MVFD achieves the peak with more
than 2 FPPI. Thus, our CDPM achieves a TPR of 97% at 1 FPPI.
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In this experiment, we tested our 4 ∗ (Roots + 6Parts) CDPM in the
COFW images (see an example gallery in Fig. 8). This shows that our
CDPMcan recall faces in thewild evenwhen they render different levels
of facial occlusion.

Specifically, it is possible to measure the face detection performance
in this database by categorizing the results according to certain levels of
occlusion. Fig. 9 shows the precision–recall curve corresponding to our
CDPMwithout filtering any level of facial occlusion, “ALL CDPM”. Subse-
quently, we report the precision–recall and the average precision for
levels of occlusion such as b30%, N30%, b50% and N50%. Furthermore,
we also present results for the TSM and our implementation of the VJ-
MVFD in the COFW database. Observe that our CDPM outperforms by
a large margin any of these state-of-the-art face detectors. Fig. 9 also
shows the ROC curves of both our CDPM, TSM and VJ-MVFD. This con-
firms the outstanding results of our CDPMunder different levels of facial
occlusions.

Note that increasing the occlusion levels does not result in a de-
creased performance of our CDPM. This is because the scoring function
of the face detector varies according to occlusion but also upon other
factors such as image resolution, facial expressions, head pose, etc.
These challenging image conditions can be found within any subset of
the COFW database.

For a better appreciation of the robustness of our CDPMunder occlu-
sions, we also report the the true positive rate as function of the False
Positives Per Image (FPPI) as commonly done in the PASCAL VOC [25],
Fig. 11. Means shapes relative to the compo
see Fig. 10. Its can be seen in this figure that our CDPM achieves a top
TPR of 97% with at most 1 FPPI. Instead, Zhu et al. [19] only achieves a
TPR of 77% at the same 1 FPPI, whereas our VJ-MVFD reaches a TPR of
80% at 3 FPPI.

4.6. CPDM-MVFD and face alignment

A recent challenge on facial landmark detection [39]managed to ob-
tain the contribution of six participants. The 300-W challenge presented
a collection of facial images in images in thewild,which contains similar
issues to the ones we already tested against with the AFLW, FDDB and
COFW databases. Using a semi-automatic methodology [40], the 300-
W images were annotated with 68 facial landmarks related to eye-
brows, eyes, nose, mouth and edge contours.

Facial landmark detectors are typically initialized based on the face
detection output. To this end, a mean shape is fitted to the detected
face bounding box. The mean shape model is usually learned by com-
puting the mean of facial landmarks normalized by the bounding box
given by the face detector. Thereby, the face detector output is the key
to initialize the search of facial landmark locations.

Authors in [40] used a generic model of the TSM for face detection,
which was retrained with images of faces in the wild. Thus, 300-W
database was released with a face bounding box and facial landmarks
annotations. Although this face detector was used to annotate images
nents of the 4 ∗ (Roots + 6Parts) CDPM.



Fig. 13. Suitability of our CDPM for facial landmark detection.Mean shapes relative to the components of our 4 ∗ (Roots+6Parts) CDPM are fitted onto the detected bounding box accord-
ingly. A component-wise initialization seems leading to faster and more accurate results, given that all face alignment methods are sensitive to initialization.

2 Available at http://mlcvdb.ogu.edu.tr/facedetection.html.
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in thewild, it was notmade available and there is no public reference to
it. Furthermore, it is computationally demanding.

In this experiment, we outline the applicability of our MVFD to
support the initialization of facial landmark detectors. To this end, we
used the 300-W [39] dataset. First, all images were analysed by our 4 ∗
(Roots + 6Parts) CDPM in order to detect the faces. Second, the CDPM
detections were cross-referenced with the annotations in order to re-
tain only the annotated faces in the 300-W database. Third, we split
the 300-W images into four subsets corresponding to the CDPM face
model components (root filter). Thus, the component with the highest
detection score determines the subset. Finally, four mean shape models
were learned from each subset of detections. The 68 facial landmarks
are first centred w.r.t the estimated bounding box and then normalized
by the width and the height of the same detection.

Fig. 11 shows the four mean shapes relative to the components of
the 4 ∗ (Roots + 6Parts) CDPM. As noted before, given that our MVFD
is trained with latent examples, the four model components are not
symmetric. Hence, the mean shapes are not symmetric either.

To test the suitability of our face detector for facial landmark detec-
tion, we adapt one of the four means shapes in Fig. 11 upon the CDPM
component that produces the highest detection score. Subsequently,
we compare the adapted mean shape and the ground truth by measur-
ing the shape RMS error as the fraction of interocular distance, see
Fig. 12.

In Fig. 12, we compare the facial landmark detection accuracy be-
tween a single mean shape model trained with VJ-MVFD and four
mean shape models trained with our CDPM. It is understandable that
none of the models will be comparable to the results reported in [39].
However, we aim to prove that our CDPM seems leading to a more ac-
curate facial landmark detection. In one hand, a single mean shape of
VJ-MVFD trained with face images exhibiting large head poses will
lead to a sparse initialization model, i.e. large variance. Instead, the
same sparse data will be segmented into four mean shapes when
using our CDPM. Caveat, the robustness of each mean shape depends
on the amount of available annotated data, which is an issue in the
case of large head poses. On the other hand, our CDPMwill ease the ini-
tialization for facial landmark detection on faces deploying a large head
pose. This is still a limitation of any of the existing facial landmark detec-
tion methods.

Fig. 13 shows a gallery of examples of the CDPMmean shapes fitted
to the detected bounding box. Given the proximity of the mean shapes
to both face's centre and head pose, a faster facial landmark detection
will be expected. This is assuming that the facial landmark detector
has learned features from faces exhibiting large head poses. Otherwise,
the best solution at large head poses will be close to the corresponding
mean shape.

4.7. Experiments on ESOGU

The authors in [23] presented a face and facial landmark detection
model, which also adopts the framework of structured models and
DPMs to deal with this dual detection function. Root detectors of LBP-
HOGs are used in cascade to perform face detection. Subsequently, a
star model is hand crafted, which includes the face detection root filter
and partfilters dedicated to detecting eyes andmouth. Such approach is
appealing when a richer face description is required, but it requires an
more detailed annotated database. Furthermore, due to the similarity
to the TSM models [19], this work may be also sensitive to low resolu-
tion images.

Consequently, the authors introduced a new “in-the-wild” image da-
tabase collected from the web, ESOGU.2 This database is split into two
subsets of 285 and 382 images with a total of 2042 face bounding
boxes annotated. One important characteristic of this dataset is the

http://mlcvdb.ogu.edu.tr/facedetection.html


Fig. 14. Precision–Recall curves for the 4 ∗ (Roots+6Parts) CDPM-MVFD tested on the ESOGUdatabase. Threemodels are reported for the two set of ESOGU images, 285 and 382 (Ext). The
average precision is reported in the left graph, whereas the right graph shows the TPR as function of the FPPI. Our CDPM outperforms the other models in both ESOGU image sets.

3 This will be available once this manuscript is accepted for publication, however it will
be provided to reviewers as supporting material.
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inclusion of small-sized, lower resolution faces within the images. It is
thus an important benchmark to highlight how a face detection-
specific model yields a dramatic performance boost respect to equiva-
lent models for combined face detection and landmarking.

We measured the face detection performance using our 4 ∗
(Roots + 6Parts) CDPM, our VJ-MVFD and Zhu et al. [19] models.
Fig. 14 shows the face detection results of these three models for the
two ESOGU image sets. In terms of average precision (AP), our CDPM
achieves 91.14% in the original ESOGU (285 images) and 87.73% in the
ESOGU extension (referred as “Ext” an containing 382 images). Hence,
our CDPM clearly outperforms the method proposed in [23], which re-
ported an AP of 83.76% in ESOGU extended dataset.

5. Conclusions

We have presented a Multi-View Face Detector (MVFD) algorithm
that is robust and accurate for “in-the-wild” scenarios. We adopted
the object detection framework of Felzenszwalb et al. [26] to learn
MVFD-DPM as well as the cascade version of it, CDPM-MVFD. We
trained our models with weakly labelled data via Latent Support Vector
Machines (LSVM). Hence, we showed the feasibility of learning models
from a reduced number of labelled data. In order to increase the robust-
ness of our MVFD, we combined LSVM with bootstrapping and data
mining procedures. This post-processing procedures facilitate the incre-
mental learning of models by progressively extending both positive and
negative training sets.

We experimentally showed the performance of different variants of
our CDPM depending on factors as the number of mixture components
and part filters. This benchmark showed that models learned from a
more detailed labelling or more granular part filters lead to lower
precision.

We presented lengthy empirical performance analysis for face
detection on a range of unconstrained and challenging databases. We
compared our face detector against state-of-the-art methods. We
showed that our CDPM model outperforms other state-of-the-art
methods for face detection in in-the-wild scenarios by a large margin.

Furthermore, we also compared our CDPM-MVFD against the latest
state-of-the-art face detectors tested on FDDB [1] benchmark dataset.
In this context, our face detector also significantly outperforms these
state-of-the-art methods by a large margin. Additionally, we compare
against state-of-the-art methods such as the TSM by Zhu et al. [19]
and our implementation of a VJ-MVFD [41] on the AFLW.

We also presented a specific per-head-pose face detection perfor-
mance. To this end,we used theHPID [3] database, achieving an average
precision over 95% for headposes up to±60°,whereas headposes up to
±90° can be detected with an average precision of 75%.

We showed that the cascade search of our face detection models is
much faster than that reported by Zhu et al. [19], and of comparable
speed to that of VJ-MVFD, achieving close to real-time performance.

Since face detection is often followed by facial landmark detection,
we showed how our face detector can support a facial landmark detec-
tion process. By simply fitting a mean shape model relative to the face
detection bounding box, our CDPM shows promising results in the
300-W database. We compare the accuracy of a single mean shape
trained with the VJ-MVFD against four component-wise mean shapes
trained with our CDPM. According to the standard MRS error, our face
detector achieved higher accuracy than VJ-MVFD. This result indicates
that a view-based facial landmark detector using a CDPM-MVFD will
have better chances of outstanding results.

Lastly, we provide Matlab code for reproducing our experiments. It
can be found at http://ibug.doc.ic.ac.uk/resources.3
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