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Abstract

We introduce a robust framework for learning and fusing of orientation appearance models

based on both texture and depth information for rigid object tracking. Our framework fuses

data obtained from a standard visual camera and dense depth maps obtained by low-cost

consumer depths cameras such as the Kinect. To combine these two completely different

modalities, we propose to use features that do not depend on the data representation: angles.

More specifically, our framework combines image gradient orientations as extracted from

intensity images with the directions of surface normals computed from dense depth fields.

We propose to capture the correlations between the obtained orientation appearance mod-

els using a fusion approach motivated by the original Active Appearance Models (AAM).

To incorporate these features in a learning framework, we use a robust kernel based on

the Euler representation of angles which does not require off-line training, thus it can be

computationally efficient implemented online. The robustness of learning from orientation

appearance models is presented theoretically and experimentally in this work. This kernel

enables us to cope with gross measurement errors, missing data as well as typical problems

such as illumination changes and occlusions. By combining the proposed models with a

particle filter, the proposed framework was used for performing 2D plus 3D rigid object

tracking, achieving robust performance in very difficult tracking scenarios including ex-

treme pose variations.

Key words: Rigid object tracking, Fusion of orientation appearance models, Subspace

learning, Online learning, Face analysis, RGB-D.

1 Introduction

Depth or range cameras have been developed for several years and are available

to researchers as well as on the market for certain applications for about a decade.

With the development of 3D capturing equipment, it has become faster and eas-

ier to obtain 3D shape and 2D texture information to represent a real 3D objects

in a scene. Thus, in computer vision where large amounts of collected data of-

ten result from changes in very few degrees of freedom, the assumption that in-

put data points are actually samples from a low-dimensional manifold embedded

in a high-dimensional space is not unreasonable. For this reason subspace learn-

ing techniques were widely used for fusing the two modalities, while all subspace

learning techniques are suitable for this purpose. These techniques have provided

valuable tools for understanding and capturing the intrinsic non-linear structure

of visual data encountered in many important machine vision problems. At the

same time, there has been a substantially increasing interest in related applications

such as appearance-based object recognition and rigid object tracking. A funda-

mental problem of the majority of subspace learning techniques (both linear and

non-linear) for appearance-based object representation is that they are not robust.
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In this paper, we are extending existed subspace techniques in a robust framework

for learning and fusing of orientation appearance models based on both texture and

depth information.

Outliers are common not only because of illumination changes, occlusions or cast

shadows but also because the depth measurements provided by an depth camera

could be very noisy and the obtained depth maps usually contain “holes” or miss-

ing parts. It should be mentioned here that there are several cases that should be

considered as ”partial occlusions”, i.e. in case of extreme facial expressions when a

face is tracked, or when an hand/object covers partially the tracked object by touch-

ing it or not. Figure 1 depicts a few examples for all those common cases by using

Kinect, in both texture and depth information. In contrary to the texture informa-

tion, there are cases of partially object occlusions where there are not significant

differences in the depth information when a hand/object touches an object, as the

raw Kinect depth data is of low resolution with high noise levels. Furthermore, as

it is shown in Figure 1, there are many cases when the estimation of the nose tip

in the 3D space is very possible to fail, such as cases of extreme facial expressions

or when a hand covers partially the object by touching it. This is a problem for

all methods for both 3D tracking/pose estimation and 3D face recognition such as

[1,2] that are based on an accurate nose tip estimation. In [2], the use of random re-

gression forests for real time head pose estimation from high quality range scans, is

introduced. Note that subspace learning for visual tracking requires robustness, ef-

ficiency and online adaptation. This combined problem has been vary rarely studied

in literature. For example, in [3], the subspace is efficiently learned online using in-

cremental ℓ22 norm PCA [4]. Nevertheless, the ℓ22 norm enjoys optimality properties

only when image noise is independent and identically distributed (i.i.d.) Gaussian;

for data corrupted by outliers, the estimated subspace can be arbitrarily skewed. On

the other hand, robust reformulations of PCA [5–7] typically cannot be extended

for efficient online learning.

3D shape information can be used to produce algorithms which are able to handle

many challenges such as inaccurate face alignment, pose variations, measurement

noise, missing data, facial expressions and partial occlusion. Many different ap-

proaches were proposed for dealing with the aforementioned problems [8,9,1,10–

12]. Early approaches, such as [1], use specific face regions that are not affected by

the presence of facial deformations caused by facial expressions, such as the nose

and the area around it. Subspace learning algorithms for 3D mesh normals, such as

Principal Component Analysis (PCA), employ low-dimensional representation of

surfaces [13–16]. In its simplest form, PCA on surface normals has been applied

on the concatenation of normal coordinates [14]. One attempt to exploit the special

structure of normals (i.e., that lie on a sphere) was conducted in [15].

The question of how to fuse intensity with depth has been rarely addressed in

tracking literature. In particular, although there are attempts to use both modali-

ties [17,18], no particular fusion strategies have been proposed. The majority of the
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Fig. 1. Common examples of partial occluded faces, in both cropped texture and depth in-

formation by using Kinect. First row: a hand is touching the face. In contrary to the texture

information, there are cases of partially object occlusions where there are not significant

differences in the depth information when a hand/object touches the tracked object, as

the raw Kinect depth data is of low resolution with high noise levels, Second row: depth

information only for the face regions that are depicted in the first row, as well as their trian-

gulated meshes without any mesh filtering, Third row: a hand, which is far from the face,

is covering a face part. In this case, there are missing face parts inside the parallelepiped

containing the face, Fourth row: in general an object is covering a face part, and Fifth row:

cases where the nose tip estimation in the 3D space is not performing well, thus making a

3D tracking/pose estimation procedure, which is based on this estimation, to fail.
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studies regarding fusion of intensity and depth can be found in face recognition lit-

erature, where two main lines of research can be identified, i.e. decision and feature

level fusion [14,19]. Decision level fusion mainly concerns combination of scores

produced from the two different modalities using off-the-shelf classifiers [20–24].

Similarly, feature level fusion is usually performed by extracting and concatenat-

ing features that are extracted from the two modalities [25], such as the magnitude

of multiscale Gabor filter responses (such features are relatively computationaly

expensive to be computed in an on-line tracking scenario) or concatenating fea-

tures that have been produced by applying a subspace analysis (such as Principal

C-omponent Analysis (PCA), Independent Component Analysis (ICA) or Nonneg-

ative Matrix Factorization (NMF) [14,19]) on simple intensity and depth features

[14,19] (which features are rarely in the same unit or correspond to similar mea-

surements).

1.1 Visual tracking

Visual tracking aims to accurately estimate the location and possibly the orienta-

tion in 3D space of one or more objects of interests in video. Most existing methods

are capable of tracking objects in well-controlled environments. However, tracking

in unconstrained environments is still an unsolved problem. The definition of “un-

constrained” varies with the application. For example, in unconstrained real-word

face analysis, the term refers to robustness against appearance changes caused by

illumination changes, occlusions, non-rigid deformations, abrupt head movements,

and pose variations. For example, in surveillance from a static camera, the aim is

to roughly locate and maintain the position of humans usually in crowded environ-

ments. For this purpose, tracking-by-detection with data association (see for exam-

ple [26] and the references therein) has been quite a successful approach for coping

with similar appearances and complicated interactions which often result in identity

switches. However the usefulness of such methods for problems such as face track-

ing in human computer interaction where accuracy is as significant as robustness

is yet to be fully appraised. Popular examples include subspace-based techniques

[27,28], gradient descent [29], mixture models [30,31], discriminative models for

regression and classification [32–35], and combinations of the above [3,36–40]. In

[28], a method of interpreting images using an Active Appearance Model (AAM)

was used. An AAM contains a statistical model of the shape and grey-level appear-

ance of an object of interest which can generalise to almost any valid example. In

[3], a tracking method that incrementally learns a low-dimensional subspace rep-

resentation, efficiently adapting online to changes in the appearance of the target,

was presented. The model update, based on incremental algorithms for principal

component analysis, includes two important features: a method for correctly up-

dating the sample mean, and a forgetting factor to ensure less modelling power

is expended fitting older observations. Slight inaccuracies in a tracker can lead to

incorrectly labelled training examples, which degrades a classifier and can cause
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further drift. In [34], it is showed that using Multiple Instance Learning (MIL) in-

stead of traditional supervised learning avoids these problems, and can lead to a

more robust tracker with fewer parameter tweaks. In [35], a method called Online

Multi-Class LPBoost (OMCLP) which is directly applicable to multi-class prob-

lems, is presented. This algorithm tries to maximize the multi-class soft-margin of

the samples. In order to solve the LP problem in online settings, an efficient variant

of online convex programming, which is based on primal-dual gradient descent-

ascent update strategies, is performed. In [36], a kernel method for performing a

non-linear form of half-quadratic PCA (HQ-PCA) is developed to deal with non-

linearly distributed data. In [26], the problem of automatically detecting and track-

ing a variable number of persons in complex scenes using a monocular, potentially

moving, uncalibrated camera, is investigated. Previous methods for face tracking

based on 3D information require an off-line training process for creating object-

specific models [41,18,42,43], do not explicitly deal with outliers [42], do not cope

with fast head movements [17], or require the face to be detected at each frame[2].

In [17], the problem of 3D deformable face tracking with such commodity depth

cameras, was studied. A regularized maximum likelihood deformable model fitting

(DMF) algorithm is developed, with special emphasis on handling the noisy input

depth data.

We are interested in investigating how to incorporate 3D information provided by

commercial depth cameras such as the Kinect within subspace-based methods for

online appearance-based rigid face tracking. This combination appears to be very

beneficial because on one hand subspace methods have been remarkably successful

for maintaining a compact representation of the target object [27,37,28,40] which

in many cases can be efficiently implemented online [4,39,3,36], on the other hand

they appear to be susceptible to large pose variations. The main reason for this

is that, in most cases, object motion is described by very simple parametric mo-

tion models such as similarity or affine warps while pose variation is incorporated

into the object appearance. Clearly, it is very difficult to learn and maintain an up-

dated model for both pose and appearance. 1 By using 3D information and a more

accurate 3D motion model as proposed in this paper, pose and appearance are de-

coupled, and therefore learning and maintaining an updated model for appearance

only is feasible by using efficient online subspace learning schemes [4]. Finally,

once this subspace is learned, robust tracking can be performed by a “recognition-

by-minimizing-the-reconstruction-error” approach, which has been very recently

shown to be extremely discriminative [44].

In this work, an approach for learning and fusing appearance models computed

from these different modalities for robust rigid object tracking, is proposed. The

main problem now is how the appearance subspace can be efficiently and robustly

1 One of the ways to work around this problem is to generate a dense set of object instances

in different poses just before the tracking is about to start; this obviously turns out to be a

very tedious process.
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learned and updated when data is corrupted by outliers. To achieve this task, we

propose:

(1) to use features that do not depend on the data representation: angles. More

specifically, our method learns orientation appearance models from image

gradient orientations as extracted from intensity images and the directions of

surface normals computed from dense depth fields provided by the Kinect.

(2) to incorporate these features in a robust learning framework, by using the re-

cently proposed robust Kernel PCA method based on the Euler representation

of angles [45,46]. The employed kernel enables us to cope with gross measure-

ment errors, missing data as well as other typical problems in visual tracking

such as illumination changes and occlusions. As it was shown also in [45], the

kernel can be also efficiently implemented online.

(3) to capture the correlations between the learned orientation appearance models

using a fusion approach motivated by the original Active Appearance Model

of [28].

Thus, the proposed learning and fusing framework is robust, exact, computationally

efficient and does not require off-line training. By combining the proposed models

with a particle filter, the proposed tracking framework achieved robust and accu-

rate performance in videos with non-uniform illumination, cast shadows, occlu-

sions and most importantly large pose variations. Furthermore, during the tracking

procedure the proposed framework, based on the 3D shape information, can esti-

mate the 3D object pose something very important for numerous applications. To

the best of our knowledge, this is the first time that subspace methods are employed

successfully to cope with such cumbersome conditions.

2 Object Representations Of Appearance Models

2.1 Object representations

The shape of the object S is represented by a 3D triangulated mesh of n points

sk = [x y z]T ∈ ℜ3, i.e. S = [s1| · · · |sn] ∈ ℜ3×n. Along with its shape, the object

is represented by an intensity image I(u), where u = [u v]T denotes pixel locations
defined within a 2D texture-map. In this texture map, there is a 2D triangulated

mesh each point of which is associated with a vertex of the 3D shape.
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2.2 Advantages And Disadvantages Of The Object Representation

Most equipment based on active stereo vision is robust enough to illumination vari-

ations, thus the obtained 3D shape represents the actual information irrespective of

lighting. Moreover, complete transformations between different 3D images can be

computed in the 3D space, removing efficiently the transformation out of the image

plane, which is very difficult in the 2D pixel domain [47]. In general, both texture

and depth information have advantages and disadvantages. For example, in con-

trary to the texture information, the depth information is more robust to illumina-

tion changes (Figure 2). The depth sensor in Kinect captures video data in 3D under

any ambient light conditions. In contrary to the depth information the texture infor-

mation is more robust when an object is moving far from the camera (Figure 3). In

this case, a 3D mesh denoising filtering could make the problem more difficult by

producing 3D shape object representation close to planar shape representation. In

contrary to the texture information, the depth information can also help to segment

the 3D objects in a scene (Figure 4), while in contrary to the depth information it

is not possible for the texture information to introduce missing object parts (Figure

5), which is a big problem for subspace learning methods. Thus, it is more powerful

if those two different kind of information are combined in a unified framework. In

addition, this combination appears to be very beneficial because subspace methods

have been remarkably successful for maintaining a compact representation of an

object.

2.3 Appearance models

Assume that we are given a data population ofm shapes and textures Si and Ii, i =
1, . . . , m. A compact way to jointly represent this data is to use the approach pro-

posed in the original AAM of [28]: Principal Component Analysis (PCA) is used

twice to obtain one subspace for the shapes and one for the textures. The resulted

models {Si,USp} and {Ii,UIc} can be used to represent the i − th shape and

texture, respectively, as

Ŝi = Si +USp, p = UT
S (Si − Si) and Îi = Ii +UIc, c = UT

I (Ii −Ti).

(1)

For each data sample, the embedding of its shape and texture are computed, ap-

propriately weighted and then concatenated in a single vector. Next, a third PCA is

applied to the concatenated vectors so that possible correlations between the shape

and the texture are captured. There are two problems related to the above approach.

First, it seems unnatural to combine the two subspaces because shape and texture

are measured in different units although a heuristic to work around the problem is

proposed in [28]. Second, it is assumed that data samples are outlier-free which jus-
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Fig. 2. In contrary to the texture information, the depth information is more robust to illu-

mination changes.

tifies the use of standard ℓ22-norm PCA. While this assumption is absolutely valid

when building an AAM offline, it seems to be completely inappropriate for online

learning when no control over the training data exists at all. To alleviate both prob-

lems, we propose to learn and fuse orientation appearance models. The key features

of our method are summarized in the next sections.

3 Orientation Features

3.1 Image Gradient Orientations

Given the texture I of an object, we covert it to grayscale image and we apply a

Gaussian filtering for image de-noising and afterwards we extract image gradient

orientation from

Φg(u) = arctan
Gy(u)

Gx(u)
, (2)

9
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Fig. 3. In contrary to the depth information the texture information is more robust when an

object is moving far from the camera. This is more obvious in the right most column where

the profiles of the triangulated 3D faces are depicted.

where Gx = Hx ⋆ I,Gy = Hy ⋆ I andHx,Hy are the differentiation filters along

the horizontal and vertical image axis respectively (Figure 6). Possible choices for

Hx, Hy include central difference estimators and discrete approximations to the

first derivative of the Gaussian.

3.2 Azimuth Angle of Surface Normals

Given the depth image information of an object, we apply a Gaussian filtering for

image de-noising and afterwards the triangulated 3D mesh information is created.

Afterwards, we calculate the azimuth angle of surface normals (Figure 6). Mathe-

matically, given a continuous surface z = f(x) defined on a lattice or a real space
x = (x, y), normals n(x) are defined as

n(x) =
1√

1 + ∂f
∂x

2
+ ∂f

∂y

2

(
−∂f

∂x
,−∂f

∂y
, 1

)T

. (3)
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Fig. 4. In contrary to the texture information, the depth information can help to segment the

3D objects in a scene.

Fig. 5. In contrary to the depth information, it is not possible for the texture information to

introduce missing object parts.

Normals n ∈ ℜ3 do not lie on a Euclidean space but on a spherical manifold

η ∈ S2, where S2 is the unit 2-sphere. On the unit sphere, the surface normal n(x)
at x has azimuth angle defined as

Φa(x) = arctan
ny(x)

nx(x)
= arctan

∂f
∂y
∂f
∂x

. (4)

11
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Fig. 6. Image gradient orientations and azimuth angle of surface normals of a face calcu-

lated from its texture and depth information, respectively.

Methods for computing the normals of surfaces can be found in [48]. In many

cases, surface reconstruction methods do not recover the actual surface but the nee-

dle map. Such methods include Shape from X (SfX) and Photometric Stereo (PS)

algorithms [49].

3.3 PCA of Orientation Appearance Models

The use of a complex PCA of image gradient orientations for performing 2D face

recognition robust to occlusions and illuminations was proposed in [50]. Inspired

by this work and based on our previous work presented in [51], we will show how

this concept can be applied also in the case of the azimuth angles of normals. We

call this PCA of azimuth angles of normals as Azimuth Angle Principal Component

Analysis (AAPCA). To our knowledge, this is the first time that this concept is

introduced.

Let us denote by φi the n−dimensional vector obtained by writing either Φa
i or

Φ
g
i (the orientation maps computed from shape Si or texture Ii information, cor-

respondingly) in lexicographic ordering. Vectors φi are difficult to use directly in

optimization problems for learning. For example, writing such a vector as a lin-

ear combination of a dictionary of angles seems to be meaningless. To use angular

data, we first map them onto the unit sphere by using the Euler representation of

complex numbers [45]

e(φi) =
1√
n
[cos(φi)

T + j sin(φi)
T ]T , (5)

where cos(φi) = [cos(φi(1)), . . . , cos(φi(n))]
T and sin(φi) = [sin(φi(1)), . . . ,

sin(φi(n))]
T . Note that similar features have been proposed in [52], but here we

avoid the normalization based on gradient magnitude suggested in [52] because

12
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it makes them more sensitive to outliers and removes the kernel properties as de-

scribed in [45]. Using ei ≡ e(φi), correlation can be measured using the real part
of the familiar inner product [53,45,54]

c(ei, ej),ℜ{eHi ej}

=
1

n

n∑

k=1

cos[∆φ(k)], (6)

where ∆φ , φi − φj . As it can be observed, the effect of using the Euler rep-

resentation is that correlation is measured by applying the cosine kernel to angle

differences. From (6), we observe that if Si ≃ Sj or Ii ≃ Ij , then ∀k ∆φ(k) ≃ 0,
and therefore c → 1.

Assume now that either ei or ej is partially corrupted by outliers. Let us denote by

Po the region of corruption. Then, as it was shown in [45] it holds

∑

k∈Po

cos[∆φ(k)] ≃ 0, (7)

which in turn shows that (unlike other image correlation measures such as corre-

lation of pixel intensities) outliers vanish and do not bias arbitrarily the value of

c. We refer the reader to [45] for a detailed justification of the above result for the

case of image gradient orientations.

The cosine-based dissimilaritymeasure between two vectors of anglesφi = [φi(1, 1)
. . . φi(M1,M2)]T and φj = [φj(1, 1) . . . φj(M1,M2)]T is:

d2(φi,φj) ,
∑

x {1− cos[φi(x)− φj(x)]} = 1
2

∣∣∣∣
∣∣∣∣ejφi − ejφj

∣∣∣∣
∣∣∣∣
2

, (8)

where ejφi = [ejφi
(1), . . . , ejφi

(p)]T where eja = cos a +
√
−1 sin a. We define

the mapping from [0, 2π)M1M2 to a subset of complex sphere zi(φi) = ejφi with

radius
√
M1M2. After transforming the data, PCA is applied on zi.

A kernel PCA based on the cosine of orientation differences for the robust estima-

tion of orientation subspaces is obtained by using the mapping of (6) and then by

applying linear complex PCA to the transformed data [45]. More specifically, we

look for a set of p < m orthonormal basesU = [u1| · · · |up] ∈ Cn×p by solving

Uo = argmaxU tr
[
UHEEHU

]

subject to (s.t.) UHU = I.
(9)

where E = [e1| · · · |em] ∈ Cn×m. The solution is given by the p eigenvectors

of EEH corresponding to the p largest eigenvalues. Finally, the p−dimensional

13
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embeddingC = [c1| · · · |cn] ∈ Cp×n of E are given by C = UHE.

We denote by Ea ∈ Cn×m and Eg ∈ Cn×m the Euler representation of these two

angular representations. Then, we denote the learned subspaces byUa ∈ Cn×pa and

Ug ∈ Cn×pg and the corresponding embeddings by Ca ∈ Cpa×m and Cg ∈ Cpg×m

respectively.

3.4 Demonstrating the Robust Properties of AAPCA

For simplicity, hereinafter, we assume that we have a set J = {J1, . . . ,JN} of 3D
(or 2.5D) of facial surfaces from a range camera sampled over a grid of resolution

M1 × M2. For the i-th facial surface, at each point of the grid x, we compute

the normal vector Gi = [ni(x)] ∈ PM1×M2 where P is the pure subset of ℜ3

of the vector that lies on the unit sphere. In PS and SfX algorithms the set G =
{G1, . . . ,GN} is computed directly.

Prior to describing our algorithm, we will briefly outline two popular PCA method-

ologies on surface normals that take into account the special structure of surface

normals (i.e., that lie in a unit sphere). The first one is based on Azimuthal Equidis-

tant Projection (AEP) [15] which was proposed and applied to surface normals

prior to the application of PCA. The second one is based on Principal Geodesic

Analysis (PGA) [13] for nonlinear statistical analysis, taking into consideration the

non-Euclidean actual manifold of objects’ surfaces.

• PCA using Azimuthal Equidistant Projection (AEP-PCA): In order to formulate
AEP we first need to define the mean elevation and azimuthal angle of G at each

spatial location x. In [15], the mean elevation and azimuthal angles at x were

defined as θ̃(x) = π
2
− arcsin(ñz(x)) and φ̃(x) = arctan ñy(x)

ñx(x)
, where ñ(x) =

(ñx(x), ñy(x), ñz(x)) is the mean representation of the normal at x. For spherical
data, such as surface normals, the intrinsic mean is in many cases represented by

the spherical median [55]. For computation ease, in [15], instead of the spherical

median, the average surface normal at x ń(x) = 1
K

∑K
i=1 ni(x), ñ = ń(x)

||ń(x)||
was

used.

In order to build the AEP, the tangent plane to the unit-sphere at the location

corresponding to the mean-surface normal is computed. A local coordinate sys-

tem is then established on this tangent plane. The origin is the point of contact

between the tangent plane and the unit sphere. The x-axis is aligned parallel to

the local circle of latitude on the unit-sphere. The AEP maps the normal ni(x) at
x to the new vector vi(x) = (vix(x), v

i
y(x)) (for more details on how to compute

the AEP the interested reader may refer to [15]).

After applying the AEP transform to all the samples of G, the matrix U =
[u1 . . .uN ]where ui = [vix([1, 1]) . . . v

i
x([M1,M2]) v

i
y([1, 1]) . . . v

i
y([M1,M2])]

T ∈
ℜM1M2 is formed. Finally, the method [15] proceeds by computing the eigenvec-
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tors of the covariance matrix ΣAOP = 1
N
UUT . These eigenvectors P are used

in order to represent facial shape and used as a prior for SfX algorithms. In order

to project a novel sample to the subspace ofP, we first transform the test normal

field G and ñ(x) into u and then project using b = PTu.

• Principal Geodesic Analysis (PGA): PGA is another statistical analysis method

suitable for data that do not naturally lie in a Euclidean space. In standard PCA,

the lower-dimensional subspaces form a linear subspace in which the data lies.

In PGA, this notion is replaced by a geodesic submanifold. In other words, while

each principal axis in PCA is a straight line, in PGA each principal axis is a

geodesic curve. In the spherical case this corresponds to a circle. PGA utilizes

the so-called log and exponential transforms in order to map the normals, that

originally lie in a unit sphere, to a space where computing linear variations from

the eigenanalysis of a covariance matrix could be meaningful.

In order to formulate PGA first we need to define the exponential and log

maps on the sphere and a mean representation of the normals at x. Let ν ∈ TnS2

be a vector on the tangent plane to S2 at η ∈ S2 and ν 6= 0. The exponential
map of ν, denoted by Expη(ν), is the point on S2 along the geodesic in the

direction of ν at distance ||ν|| from η. The log map is the inverse transform

of the exponential map, that is Logη(Expη(ν)) = ν. The geodesic distance

between two points η1 ∈ S2 and η2 ∈ S2 can be expressed in terms of the log

map, i.e. d(η1,η2) = ||Logη
1

(η2)||.
Instead of computing the mean of spherical directional data in [13,16], PGA

finds the intrinsic mean, or the so-called spherical median µ = [µ(x)] using the
Exp and Log mappings. The point µ cannot be found analytically and a gradient

descent procedure was used. For details on the computation of the intrinsic mean

and the spherical median, the interested reader may refer to [13].

Having computed the spherical medianµ it was shown that principal geodesics

can be approximated by applying linear PCA on the vectors uµ = [νµ(1, 1)T

. . .νµ(M1,M2)
T ]T ∈ ℜ2M1M2 where νµ(x) = Logµ(x)(ni(x)) ∈ ℜ2. After the

transformation of the training set G into the matrix U = [u1
µ . . .uN

µ] and then

we compute the principal components of ΣPGA = 1
N
UUT . A normal field of a

novel sampleG is transformed using Logµ into uµ and then projected into the

subspace b = PTuµ.

In order to demonstrate the robustness of the proposed AAPCA we have conducted

a series of experiments using artificially generated data. More specifically, we used

21 images of one of the subjects of the FRGC v2 database [56]. The database con-

tains 3D face scans acquired using a Minolta 910 laser scanner that produces range

images with a resolution of 640× 480 in pixels. Along with this set of images, we
created a second one containing artificially occluded images. In particular, 20% of

the images ware artificially occluded by a 3D cloth patch placed at random spatial

locations (the cloth patch has been taken from one of the images of the FRGC v2

database).
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For both the original and the corrupted set, we applied standard ℓ22 PCA on the depth

images, PGA and AEP-PCA on the normals, and the proposed AAPCA. Then,

we reconstructed the depth, the normals and the azimuth angles using the first 4
principal components of the employed ℓ22 PCA, AEP-PCA, PGE, and AAPCA,

respectively. Fig. 7 illustrates the quality of reconstruction for one example. The

first row of Fig. 7 shows the original images of (from left to right) depth, the first

two components of the normals and the azimuth angle. The second row of Fig.

7 shows (from left to right) the corresponding occluded images (by the piece of

cloth). The third row of Fig. 7 shows the reconstruction of the images in the first

row using the 4 principal components of the non-corrupted subspaces. That is, the

first image in the third row shows the reconstruction of the non-occluded depth

image (the first image in the first row) using the 4 principal components of ℓ22 PCA.

Similarly, the second and third images of the third row show the reconstruction of

the first two components of the normals (the second and third images in the first

row) using PGA (we show only the PGA result due to space limitation, similar

results obtained from AEP-PCA). Finally, the fourth image of the third row shows

the reconstruction of azimuth angle using AAPCA. In a similar spirit, the last row of

Fig. 7 shows the reconstruction of the occluded set (second row) from the subspaces

learned from the corrupted set. For this case, as we may see the reconstruction

results, except for the case of the proposed AAPCA, suffer from artifacts.

This result is well justified by looking at the first 4 principal components of each

method obtained for both the original and the occluded scenarios. For the latter

case, ideally, a robust method would produce eigenvectors that match as closely as

possible the ones obtained from the former (original) case. As Fig. 8 shows, this is

not the case however for ℓ22 PCA using depth and PGA. More specifically, in this

figure, the first and third row shows the subspace generated by the original images

while the second and fourth row shows the subspace generated by the occluded data

set. We may observe that in both methods, occlusions result in corrupted subspace.

Figure 8 shows also the results of the proposed AAPCA. From the sixth row, it

is evident that the principal subspace appears to be artifact-free and therefore dis-

occlusion is possible.

We also evaluated the robust performance of AAPCA quantitatively and compared

it with that of PCA on depth values, AEP, and PGA. Because these methods operate

on different domains, we used a performance measure which does not depend on

the specific domain. More specifically, for each of these methods, we computed a

measure of total similarity between the principal subspace for the noise-free case

Unoise-free and the principal subspace for the noisy caseUnoisy as follows:

Q =
k∑

i=1

k∑

j=1

cosαij, (10)

where αij is the angle between each of the k eigenvectors defining the principal

components of Unoise-free and each one of Unoisy [57]. The value Q lies between
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Fig. 7. Quality of reconstruction for ℓ22 PCA, PGA, and AAPCA. First row: the original

images of from left to right) depth, the first two components of the normals and the azimuth

angle. Second row: (from left to right) the corresponding occluded images (by the piece

of cloth). Third row: the reconstruction of the images in the first row using the 4 principal

components of the non-corrupted subspaces. The first image in the third row shows the

reconstruction of the non-occluded depth image (the first image in the first row) using the

4 principal components of ℓ22 PCA. Similarly, the second and third images of the third

row show the reconstruction of the first two components of the normals (the second and

third images in the first row) using PGA . Finally, the fourth image of the third row shows

the reconstruction of azimuth angle using AAPCA. Fourth row: the reconstruction of the

occluded set (second row) from the subspaces learned from the corrupted set. For this case,

as we may see the reconstruction results, except for the case of the proposed AAPCA, suffer

from artifacts.

k (coincident spaces) and 0 (orthogonal spaces) [57]. The mean Q values over 20

repetitions of the experiment (random placement of the occlusion) and for all tested

methods are depicted in Fig. 9. The mean values of Q shows that the proposed

AAPCA is far more robust that all the other tested methods.
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Fig. 8. The 4 principal components of ℓ22 norm PCA on depth, First row: Original data,

Second row: Corrupted data. The 4 principal components of PGA, Third row: Original

data, Fourth row: Corrupted data. The 4 principal components of the proposed AAPCA,

Fifth row: Original data, Sixth row: Corrupted data.

4 Fusion of Orientation Appearance Models

As it was defined in Subsection 3.3, Ea ∈ Cn×m, Eg ∈ Cn×m, Ua ∈ Cn×pa,

Ug ∈ Cn×pg , Ca ∈ Cpa×m and Cg ∈ Cpg×m are the Euler representations, the
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Fig. 9. The Q values obtained for all methods as a function of the number of principal

components.

learned subspaces and the corresponding embeddings of two angular representa-

tions. Because Ua and Ug are learned from data (angles) measured in the same

units (radians), we can capture further correlations between shapes and textures by

concatenating

C = [(Ca)H (Cg)H ]H , ∈ C
(pa+pg)×m (11)

and then apply a further linear complex PCA on C to obtain a set of pf basesV =
[v1| · · · |vpf ] ∈ C(pa+pg)×pf . Then, these bases can used to compute pf -dimensional

embeddings B = VHC ∈ Cpf×m controlling the appearance of both orientation

models. To better illustrate this fusing process, let us consider how the orientations

of a test shape Sy and texture Iy denoted by y = [(eay)
H (egy)

H ]H are reconstructed

by the subspace. Let us first writeV = [(Va)H (Vg)H ]H . Then, the reconstruction
is given by

ỹ ≈



UaVa

UgVg


by, (12)

where

by = VHcy = VH



cay

cgy


 = VH



(Ua)Heay

(Ug)Hegy


 . (13)

Thus, the coefficients by used for the reconstruction in (4), are computed from the

fused subspace V and are common for both orientation appearance models as can

be easily seen from (13). Finally, note that, in contrast to [28], no feature weighting

is used in the proposed scheme.
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4.1 Online Learning

A key feature of the proposed subspace learning algorithm of orientation appear-

ance models is that it can implemented online which means that it can continually

update the learned orientation appearance models using newly processed data. It is

evident that the batch version of PCA is not suitable for this purpose because, each

time, it requires to process all data (up to the current one) in order to generate an

updated subspace. For this purpose, prior work [3] efficiently updates the subspace

using the incremental ℓ22 norm PCA proposed in [4]. The kernel-based extension to

[4] has been proposed in [36], however the method is inexact because it requires

the calculation of pre-images and, for the same reason, it is significantly slower.

Fortunately, because the kernel PCA described above is direct, i.e. it employs the

explicit mapping of (5), an exact and efficient solution is feasible. The proposed

algorithm is summarized as follows [45].

Let us assume that, givenm shapes {S1, . . . ,Sm} or textures {I1, . . . , Im}, we have
already computed the principal subspace Um and Σm = Λ1/2

m . Then, given l new

data samples our target is to obtainUm+l andΣm+l corresponding to {I1, . . . , Im+l}
or {S1, . . . ,Sm+l} efficiently. The steps of the proposed incremental learning algo-
rithm are summarized in Algorithm 1.

Algorithm 1. Online learning of orientation appearance model

Inputs: The principal subspaceUm andΣm = Λ1/2
m , a set of new orientation maps

{Φm+1, . . . ,Φm+l} and the number p of principal components.
Step 1.Using (5) compute the matrix of the transformed dataEm = [em+1| . . . |em+l].
Step 2. Compute Ẽ = orth(E−QQHE) and

R =



Σm QHE

0 ẼH(E−QQHE)


 (where orth performs orthogonalization).

Step 3. ComputeR
svd
= ŨΣm+lỸ

H (where Σm+l are new singular values).

Step 4. Compute the new principal subspaceUm+l = [Um Ẽ]Ũ.

In case of long sequence videos, in the online learning of the subspaces procedure a

forgetting factor is used. In numerous vision applications it can be desirable to pay

more attention on recently-acquired images, which are more representative regard-

ing the current conditions (i.e. illumination changes, non-rigid deformations etc.),

and less on earlier observations. For example, when tracking a target with a chang-

ing appearing, it is likely that recent observations will be more indicative of its ap-

pearance than would more distant ones. Thus, down-weighting the contribution of

earlier observations plays an important role in online learning. As time progresses

the observation history can become very large, to the point of overwhelming the

relative contribution of each block of new data, rendering the learner “blind” to

changes in the observation stream. One way to moderate the balance between old

and new observations is to incorporate a forgetting factor in the incremental eigen-
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basis update [3].

5 Online Learning OfView-Based OrientationModels For RigidObject Track-

ing

The proposed subspace learning technique for learning from orientation appearance

models were used to perform 3D rigid object tracking. We combine the proposed

fused orientation appearance models with a 3D motion model and standard parti-

cle filter methods for rigid object tracking [3]. The texture and depth information

needed for feature extraction were provided by Kinect. By using 3D object infor-

mation and an accurate 3D motion model, pose and appearance are decoupled, and

therefore learning and maintaining an updated model for appearance only is feasi-

ble by using efficient online robust subspace learning schemes [4]. For the fusion

of the orientation appearance models, the incremental ℓ22 norm PCA proposed in

[4] were used. When pre-learned multiple view-based subspaces are not used, for a

reasonably small number of frames, all eigenspaces were generated using the batch

mode of the kernel PCA of [45] and standard ℓ22-norm PCA for the fusion step.

When pre-learned multiple view-based subspaces are used, a batch version of PCA

it was used offline for the creation of the view-based subspaces, while since these

subspaces are initially object-independent, then after a certain number of online

updates during the tracking procedure, they will become object-specific. When the

algorithm switches to the online mode, then for each newly tracked frame, algo-

rithm 1 is used to update each one of the orientation appearance eigenspaces, Ug

and Ua. The embedding of the new sample is also calculated which is then used

to update the eigenspace V using the method in [4]. The motion model as well as

the procedure for creation of pre-learned multiple view-based subspaces that were

used in our tracking procedure, will be described later on.

5.1 Motion Model

The provided 3D shape information enables us to use 3D motion models. With

respect to the origin, given a set of 3D parameters the shape is first warped, SW , by

SW = TRS, R = RφRθRϕ, (14)

where T is the translation matrix and Rφ,Rθ,Rϕ are rotation matrices around the

three main axes. In other words, poses of rigid body are represented as a 6 dimen-

sional vector ε = [Tx Ty Tz Ωφ Ωθ Ωϕ], consisting of the translation parameters and
the three rotation angles for each one of the three main axes. The warped shape SW

is then used for extracting surface normals and the corresponding azimuth angles.

Finally, SW is projected, ΓSW, using a scale orthographic projection Γ to obtain
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the mapped 2D points u. Overall, given a set of motion parameters, each vertex

sk = [x y z]T of the object’s shape S is projected to a 2D vertex. Finally, in the

usual way, the texture is generated from the piecewise affine warp defined by the

original 2D triangulated mesh and the one obtained after the projection. Then, this

texture is used to calculate the image gradient orientations.

When a 3Dmotionmodel is used, then during the tracking procedure the 3D pose of

an object can be estimated in each frame. The 3D pose of the object can be well esti-

mated if and only if the tracking procedure performs well. Thus, a good object pose

estimation is an indication of a good tracking procedure. Among the others, in our

experiments we show that our approach can handle real data presenting large 3D

object pose changes, partial occlusions, and facial expressions without calculation

or a-priori knowledge of the camera calibration parameters. Later on we evaluate

our system on a publicly available database on which we achieve state-of-the-art

performance.

5.2 Multiple View-Based SubSpace Learning

Beside the fact that we have a 3D motion model and 2.5D object information it is

very difficult to build the entire 3D object structure. In other words, it is very diffi-

cult to create a unique subspace of the entire 3D object based on partial views with

missing parts of it. However, a view-based approach has several advantages for

both texture and depth information. For example, the relative pose of constituent

range observations can easily represent varying levels of detail on an object and

can directly captures non-lambertian appearance on the surface of an object [58].

In addition, the view-based eigenspaces presented in [59] have also shown that

separate eigenspaces perform better than using a combined eigenspace of the pose-

varying images. This approach highly depends on the number of views chosen to

sample the viewing sphere and of the accuracy of the alignment of the views. In

general, the majority of systems presented in the past have shown that separating

the shape information from the texture information yields additional performance

enhancements. Based on the above conclusions, multi-view orientation appearance

2D models that describe shape ant texture variations in certain poses, were con-

structed in this work. For example, in case of tracking of a human face, we can

initially generate prior person-independent view-based subspaces under a fixed

lighting condition. More specifically, the subspaces for the adjacent views were

produced based on 200 different aligned faces. In Figure 10 an example of both

texture and depth face pose information for one person is depicted. The adjacent

views were separated by 15o for both pitch and yaw rotations, ignoring the roll

rotation since there is not significant changes in this case. The purpose was these

discrete subspaces to cover rotations in the range of [-60o 60o ], for both pitch and
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Fig. 10. An example of both texture and depth face pose information for one person that

used for the offline creation of the multiple view-based subspaces for a face tracking pro-

cedure.

yaw rotations. For each view i, we define its set of parameters, Ei, as

Ei = {Ug
i ,U

a
i ,Vi, εi}, (15)

where εi is the pose,U
g
i ,U

a
i andVi are the subspaces for orientation of gradients,

of 3D mesh normals and of their fusion (see Section 4), respectively, for this view.

For each one of the 81 discrete face poses, i, the set of parameters Ei was created.

The dimensions of the subspaces for all poses were the same, while the image reso-

lution was 60× 60 pixels. As an alternative option, the morphable model presented
in [60] was used for creation of the multiple view-based subspaces, by producing

24200 facial aligned images for the same 81 discrete poses that correspond to 200

different persons.

5.3 Tracking with Orientation Appearance Models

During the tracking initialization stage, the user has to define ε at the beginning, i.e.

the center position of the object to be tracked in the 3D space, the parallelepiped

than contains the 2.5D information of the tracked object based on its center, as well

as its orientation. In Figure 11 the main steps of the rigid object tracking procedure,

are depicted.

In general, a particle filter calculates the posterior distribution of a system’s states

based on a transition model and an observation model. In our tracking framework,
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Fig. 11. The main steps of the rigid object tracking procedure.

the transition model is described as a Gaussian Mixture Model around an approxi-

mation of the state posterior distribution of the previous time step:

p(M i
t ,M

1:P
t−1) =

P∑

i=1

wi
t−1N (Mt;M

i
t−1,Ξ) (16)
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whereM i
t is the 3Dmotion defined by particle i at time t,M1:P

t−1 is the set of P trans-

formations of the previous time step, the weights of which are denoted byw1:P
t−1, and

Ξ is a diagonal covariance matrix. In the first phase, P particles are drawn. In the

second phase, the observation model is applied to estimate the weighting for the

next iteration (the weights are normalized to ensure
∑P

i=1w
i
t = 1). Furthermore,

the most probable sample is selected as the state M best
t at time t. Thus, the esti-

mation of the posterior distribution is an incremental process and utilizes a hidden

Markov model which only relies on the previous time step.

Finally, our observation model computes the probability of a sample being gen-

erated by the learned orientation appearance model. More specifically, we fol-

low a “recognition-by-minimizing-the-reconstruction-error” approach, which has

been very recently shown to be extremely discriminative for the application of face

recognition in [44], and model this probability as

p(yi
t|Mi

t) ∝ e
||yi

t
−ỹ

i
t
||2
f

σ , (17)

where ỹi
t is given by (13).

In case multiple view-based subspaces were used, during the tracking procedure

only these pre-learned subspaces that correspond to the four closest face poses,

based on pitch and yaw angles, were used in each particle in order to estimate

the position and the orientation of the tracked object, while this cross matching

enhances the stability and accuracy of the tracking procedure.

6 Experimental Results

Evaluating and comparing different tracking approaches is a rather tedious task. A

fair comparison requires not only a faithful reproduction of the original implemen-

tation but also tweaking of the related parameters and training on similar data. In

this work, we chose to evaluate the proposed algorithm and compare it with (a)

similar subspace-based techniques and (b) the state-of-the-art method of [2]. For

the purposes of (a), we used the following variants of the proposed scheme:

(1) 3D motion model + image gradient orientations only. We call this tracker

3D+IGO.

(2) 3D motion model + azimuth angles only. We coin this tracker 3D+AA.

(3) 3D motion model + fusion of image gradient orientations with azimuth an-

gles. This is basically the tracker proposed in this work. We call this tracker

3D+IGO+AA.

(4) 2D motion model + image gradient orientations only. We call this tracker

2D+IGO.
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We additionally used 3D motion model + fusion of pixel intensities with depth. We

coin this tracker 3D+I+D. This tracker is particularly included for performing com-

parison with standard ℓ22-norm PCA methods. A simplified version of this tracker

which uses 2D motion and pixel intensities only has been proposed in [3].

To compare all above variants of subspace-based tracking techniques, we used 3

representative videos. The first video contains face expressions. The second video

contains extreme face pose variations of two subjects while illumination variations

appear only for the second subject. The third video contains face occlusions with

extreme pose variations. All parameters related to the generation of particles re-

mained constant for all methods and videos. In this way, we attempted to isolate

only the motion model and the appearance model used, so that concrete conclu-

sions can be drawn. Finally, we evaluated all trackers using a 2D bounding box

surrounding the face region. This is the standard approach used in 2D tracking; we

followed a similar approach because of its ease to generate ground truth data and

in order to be able to compare with trackers using 2D motion models. We measure

tracking accuracy from S = 1 − #{D∩G}
#{D∪G}

, where D and G denote the detected and

manually annotated bounding boxes and respectively, and #{} is the number of

pixels in the set (the smallest S is the more overlap we have). Table 2 shows the

mean values of S for all trackers and videos respectively. Figures 12, 13 and 14

plot S for all methods and videos as a function of the frame number. Figures 15,16

and 17 illustrates the performance of the proposed tracker for some cumbersome

tracking conditions. Finally, Figure 18 depicts examples of the proposed method

tracking and face pose estimation performance on specific frames derived by the

second video.

By exploiting the 3D motion model, the proposed framework was used to estimate,

during the tracking procedure, the center and the rotation angles of the tracked ob-

ject in the 3D space. In order to assess the performance of our algorithm, we used

the Biwi Kinect Head Pose Database [61,62]. The dataset contains over 15K im-

ages of 20 people (6 females and 14 males - 4 people were recorded twice) recorded

while sitting about 1 meter away from the sensor. For each frame, a depth image,

the corresponding texture image (both 640x480 pixels), and the annotation is pro-

vided. The head pose range covers about ±75 degrees yaw and ±60 degrees pitch.
The subjects were asked to rotate their heads trying to span all possible ranges of

angles their head is capable of. Ground truth is provided in the form of the 3D lo-

cation of the head and its rotation. In this database, the texture data are not aligned

with the depth data, while in many videos the problem of the frame dropping ex-

ists. Because of that, we were able to test our method only on 10 videos in which

the misalignment difference of texture and depth in pixels was almost constant and

the number of the dropped frames was quite small. The best configuration of our

method (3D+IGO+AA) was compared to the state-of-the art method presented in

[2] which is based on discriminative random regression forests: ensembles of ran-

dom trees trained by splitting each node so as to simultaneously reduce the entropy

of the class labels distribution and the variance of the head position and orientation.
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The results are given in Table 1, where mean and standard deviations of the angular

errors are shown together. The last column shows the percentage of images where

the angular error was below 10 degrees. Since the head pose estimation is a hard

procedure, for these experiments more than one subspace were created based on

the tracked object. More specifically, based on the tracked object one subspace was

created for discrete face poses, i.e. for every 15o of yaw or/and roll rotations.

Table 1

Experimental results for the Biwi Kinect Head Pose Database. Mean and standard devia-

tions of the angular errors are shown together. The last column shows the percentage of

images where the angular error was below 10 degrees.

Methods Yaw error Pitch error Roll error Direction estimation

accuracy

Method in [2] 11±12.1o 9.9±10.8o 9.1±10.1o 81.0%

3D+IGO+AA 9.2±13.0o 9.0±11.1o 8.0±10.3o 89.9%

From our results, we verify some of our speculations in the introduction section.

More specifically, from our results below it is evident that:

(1) 3D motion models + subspace learning outperforms 2D motion models + sub-

space learning, especially for the case of large pose variations. This proves our

argument that decoupling pose from appearance greatly benefits appearance-

based tracking.

(2) 3D motion models + subspace learning works particularly well when only

learning is performed in a robust manner. This is illustrated by the perfor-

mance of the proposed combinations: 3D+IGO, 3D+AA, 3D+IGO+AA.

(3) The proposed fusion scheme 3D+IGO+AA performs the best among all subspace-

based methods and outperforms even the state-of-the-art method [2]. This jus-

tifies the motivation behind the proposed scheme.

Furthermore, the time consuming procedure in the proposed framework is affected

by the creation of the particles. However, its implementation in CUDATM is a real

time procedure. Therefore, the proposed method can be used as a real time tracking

procedure.

3D+IGO 3D+AA 3D+IGO+AA 3D+I+D 2D+IGO

Video 1 0.1822 0.2645 0.1598 0.8644 0.9221

Video 2 0.1827 0.1572 0.1127 0.2760 0.3912

Video 3 0.2884 0.4254 0.2531 0.9081 0.9001

Table 2

Mean S values for all trackers and videos. The proposed tracker is coined 3D+IGO+AA.
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Fig. 12. S value vs the number of frames for the first video. First Row: First image:

3D+I+D. Second image: 3D+AA. Second row: First image: 3D+IGO. Second image:

3D+IGO+AA.

7 Conclusion

We proposed a learning and fusing framework for multimodal visual tracking that

is robust, exact, computationally efficient and does not require off-line training.

Our method learns orientation appearance models from image gradient orienta-

tions and the directions of surface normals. These features are incorporated in a

robust learning framework, by using a robust Kernel PCA method based on the

Euler representation of angles which enables an efficient online implementation.

Finally, our method captures the correlations between the learned orientation ap-

pearance models using a fusion approach motivated by the original AAM. By com-

bining the proposed models with a particle filter, the proposed tracking framework

achieved robust and accurate performance in videos with non-uniform illumination,

cast shadows, significant pose variation and occlusions. To the best of our knowl-

edge, this is the first time that subspace methods are employed successfully to cope

with such cumbersome conditions.
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Fig. 13. S value vs the number of frames for the second video. First Row: First im-

age: 3D+I+D. Second image: 3D+AA. Second row: First image: 3D+IGO. Second image:

3D+IGO+AA.
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The results are given in Table 1, where mean and standard deviations of the angular

errors are shown together. The last column shows the percentage of images where

the angular error was below 10 degrees. Since the head pose estimation is a hard

procedure, for these experiments more than one subspace were created based on

the tracked object. More specifically, based on the tracked object one subspace was

created for discrete face poses, i.e. for every 15o of yaw or/and roll rotations.

Table 1

Experimental results for the Biwi Kinect Head Pose Database. Mean and standard devia-

tions of the angular errors are shown together. The last column shows the percentage of

images where the angular error was below 10 degrees.
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(3) The proposed fusion scheme 3D+IGO+AA performs the best among all subspace-

based methods and outperforms even the state-of-the-art method [2]. This jus-

tifies the motivation behind the proposed scheme.

Furthermore, the time consuming procedure in the proposed framework is affected

by the creation of the particles. However, its implementation in CUDATM is a real

time procedure. Therefore, the proposed method can be used as a real time tracking

procedure.

3D+IGO 3D+AA 3D+IGO+AA 3D+I+D 2D+IGO

Video 1 0.1822 0.2645 0.1598 0.8644 0.9221

Video 2 0.1827 0.1572 0.1127 0.2760 0.3912

Video 3 0.2884 0.4254 0.2531 0.9081 0.9001

Table 2

Mean S values for all trackers and videos. The proposed tracker is coined 3D+IGO+AA.
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Fig. 17. Tracking examples for the third video. First row: 3D+I+D. Second row: 3D+IGO.

Third row: 3D+AA. Fourth row: 3D+IGO+AA.
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1 Research Highlights

• A robust framework for learning and fusing of orientation ap-

pearance models based on both texture and depth information
for rigid object tracking.

• Combination of image gradient orientations as extracted from
intensity images with the directions of surface normals com-
puted from dense depth fields.

• Use of a robust kernel based on the Euler representation of
angles which does not require off-line training, thus it can be

computationally efficient implemented online.
• Performing 2D plus 3D rigid object tracking, achieving robust

performance in very difficult tracking scenarios
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