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Abstract Principal Component Analysis (PCA) is perhaps
the most prominent learning tool for dimensionality reduc-
tion in pattern recognition and computer vision. However,
the �2-norm employed by standard PCA is not robust to out-
liers. In this paper, we propose a kernel PCA method for
fast and robust PCA, which we call Euler-PCA (e-PCA).
In particular, our algorithm utilizes a robust dissimilarity
measure based on the Euler representation of complex num-
bers. We show that Euler-PCA retains PCA’s desirable prop-
erties while suppressing outliers. Moreover, we formulate
Euler-PCA in an incremental learning framework which al-
lows for efficient computation. In our experiments we apply
Euler-PCA to three different computer vision applications
for which our method performs comparably with other state-
of-the-art approaches.
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1 Introduction

In pattern recognition, Principal Component Analysis (PCA)
is perhaps the most classical tool for dimensionality reduc-
tion and feature extraction. It is widely utilized in a great va-
riety of disciplines, including agriculture, biology and eco-
nomics (Jolliffe 2002). Researchers in computer vision em-
ploy PCA for face recognition (Turk and Pentland 1991),
object tracking (Ross et al. 2008), background modeling (Li
2004) and many other applications (Jolliffe 2002). It has
been primarily used for efficient dimensionality reduction
such that most of the variance of the original high dimen-
sional data is preserved.

Given a population of n samples X = [x1 · · ·xn] ∈ R
p×n

in a p-dimensional vector space,1 standard PCA finds a set
of m ≤ p (usually, m � p) orthonormal basis functions B =
[b1 · · ·bm] ∈ R

p×m by minimizing the error function ϕ with
respect to B

B = arg min
B̌

ϕ(B̌) = arg min
B̌

∥
∥X − B̌B̌T X

∥
∥

2
F
, (1)

where ‖.‖F denotes the Frobenius norm. It can be shown
(Jolliffe 2002) that the solution is given by the eigenvectors
corresponding to the m largest eigenvalues obtained from
the eigendecomposition of the covariance matrix S = XXT

(or the Singular Value Decomposition (SVD) of X).
The �2-norm in (1) is optimal for the case of independent

and identically distributed (i.i.d.) Gaussian noise but not ro-
bust to outliers (de la Torre and Black 2003; He et al. 2011;

1Without loss of generality we assume zero mean.

http://dx.doi.org/10.1007/s11263-012-0558-z
mailto:sl609@imperial.ac.uk
mailto:s.zafeiriou@imperial.ac.uk
mailto:m.pantic@imperial.ac.uk
mailto:gtzimiropoulos@lincoln.ac.uk


Int J Comput Vis

Kwak 2008). Recent methods attempt to mitigate this sensi-
tivity by adopting different error functions (He et al. 2011;
Ding et al. 2006; Kwak 2008; Ke and Kanade 2003, 2005;
Candés et al. 2009; de la Torre and Black 2003) which, how-
ever, often result in loss of efficiency. A reformulation of
PCA in the context of M-Estimation is introduced in de la
Torre and Black (2003). In Candés et al. (2009), PCA is rep-
resented as an optimization problem which finds a low di-
mensional linear subspace and a sparse matrix which repre-
sents the outliers. Other approaches in the literature use vari-
ants of the �1-norm which are, in general, more robust than
the �2-norm (Ke and Kanade 2003, 2005; Ding et al. 2006;
Kwak 2008; Mei and Ling 2009). More specifically, in Ke
and Kanade (2003) and Ke and Kanade (2005) the optimiza-
tion problem is considered with the following error function

ϕ(B) = ∥
∥X − BBT X

∥
∥

1. (2)

The proposed �1-norm minimization is based on (i) the
weighted median algorithm and (ii) convex quadratic pro-
gramming, respectively. While this approach reduces the ef-
fect of outliers, the optimization of (2) is computationally
expensive. Moreover, both methods are not invariant to rota-
tions, which is an important property of learning algorithms
(Ding et al. 2006).

The rotationally invariant R1-PCA (Ding et al. 2006) is
also based on the �1-norm PCA

ϕ(B) =
n

∑

j=1

√
√
√
√

p
∑

c=1

(

xj (c) −
m

∑

l=1

bl(c)

p
∑

r=1

bl(r)xj (r)

)2

, (3)

where xj (c) is the cth element of xj . PCA-L1 (Kwak 2008)
estimates the optimum of (2) with a componentwise greedy
search for

B = arg max
B̌

∥
∥B̌T X

∥
∥

1. (4)

Both methods allow for faster convergence towards the so-
lution. Furthermore, both are rotational invariant. Most re-
cently, Half-Quadratic PCA (HQ-PCA) is introduced in He
et al. (2011). Here, the authors propose a rotational invari-
ant and robust PCA using the maximum correntropy crite-
rion (MCC) (Liu et al. 2007). Correntropy is closely related
to M-Estimators while the objective function is efficiently
optimized by the half-quadratic optimization technique. In
contrast to the proposed method, incremental implementa-
tions of the above methods are unknown and therefore they
are computationally expensive for large training sets and un-
suitable for online learning.

Some of the problems often associated with robustness
in PCA might be solved by more flexible modeling using
Kernel PCA (KPCA) and more specifically by de-noising in
feature spaces via the use of pre-images (Kwok and Tsang
2004; Mika et al. 1999; Honeine and Richard 2011). The
problem of sample de-noising in feature space is formulated

as follows. Let k(., .) be a positive definite function, the so-
called kernel, and an implicit mapping φ, associated with the
kernel, from the input space to a (possible) infinite dimen-
sional Hilbert space. KPCA learns a linear subspace B in
this high dimensional space. Then, a sample x is de-noised
by solving the following optimization problem (Mika et al.
1999)

x̃ = arg min
x̌

∥
∥φ(x̌) − BBT φ(x)

∥
∥

2
F
. (5)

Put in simple terms, the above optimization problem aims to
find a sample x̃ in input space such that its mapping in the
feature space φ(x̃) approximates the reconstruction in the
feature space BBT φ(x) optimally. In Mika et al. (1999), a
gradient descent methodology was proposed for solving op-
timization problem (5). Furthermore, fixed point algorithms
were proposed for the case of isotropic kernels (i.e. kernels
of the form k(xj ,xq) = f (‖xj − xq‖)). Nevertheless, popu-
lar kernels, such as Gaussian Radial Basis Function (GRBF),
do not posses robust properties by definition. To the best of
our knowledge, the only method to address robust subspace
estimation in feature spaces is the method in Nguyen and
de la Torre (2009).

In this paper, we propose a KPCA with a kernel which
has a direct connection to robust estimation as pointed out
in Fitch et al. (2005). Our method is based on a dissimilarity
measure which is originally introduced in Fitch et al. (2005)
in the context of robust correlation-based estimation of large
translational displacements. For this measure, pixel inten-
sities are first normalized and, then, mapped onto the unit
sphere using the Euler representation of complex numbers.
Then, the standard �2-norm is applied. Overall, this is equiv-
alent to applying a dissimilarity measure which is given by
the cosine of the pixel differences. Note, the mapping is ex-
plicit and thus the proposed kernel PCA is closely related to
standard PCA and retains all the favorable properties (e.g.
efficiency and rotational invariance). Furthermore, it offers
a very efficient approximation of pre-images without solv-
ing a separate optimization problem. Due to the existence of
an explicit mapping to feature space, without increasing the
dimensionality, it allows for an efficient incremental imple-
mentation. Incremental PCA is known to be more efficient
than batch PCA when applied to large training sets (Li 2004;
Ross et al. 2008). Furthermore, incremental PCA is more
suitable for online learning. Overall, the proposed Euler-
PCA (e-PCA) forms a fast, direct and robust alternative to
standard PCA. We evaluate the performance of our method
on several computer vision problems often found in prac-
tical Human Computer Interaction (HCI) systems (Oliver
et al. 2000; Wren et al. 1997): face reconstruction, tracking
and background modeling for change detection. Summariz-
ing the favorable properties of the proposed Euler-PCA are

– contrary to the state-of-the-art linear robust PCA and
KPCA approaches (Candés et al. 2009; He et al. 2011;
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Fig. 1 The cosine dissimilarity
measure with changing α. (The
distance is normalized for
illustration purposes)

Ding et al. 2006; Kwak 2008; Ke and Kanade 2003, 2005;
de la Torre and Black 2003; Chin et al. 2006) Euler-PCA
allows for an efficient incremental implementation

– contrary to KPCA approaches with standard kernels such
as GRBF we show that there exists an efficient way
for pre-image computation without solving optimization
problems.

In the experiments we show that the proposed Euler-PCA
not only possesses these favorable properties but also out-
performs the state-of-the-art.

Finally we note that compared to Tzimiropoulos (2012),
our proposed method neither relies on the statistics of the
gradient orientation differences nor restricts itself to the do-
main of gradient orientations in general. Our work is a learn-
ing method directly derived from the correlation method
of Fitch et al. (2005), while Tzimiropoulos (2012) can be
seen as the learning method derived from the analysis of the
orientation correlation function presented in Tzimiropoulos
(2010).

The rest of the paper is organized as follows. In Sect. 2 we
introduce the cosine-based dissimilarity measure that forms
the basis of the proposed Euler-PCA. In Sect. 3 we formulate
the proposed Euler-PCA and discuss some of its properties.
Experimental results are presented in Sect. 4. Finally, con-
clusions are drawn in Sect. 5. Video sequences of our results
are provided in the supplementary material.

2 Cosine-Based Dissimilarity

Let xj be the p-dimensional vector obtained by writing im-
age Ij in lexicographic ordering. Motivated by the recent
work in Fitch et al. (2005) on robust correlation-based trans-

lation estimation, we replace the �2-norm with the following
dissimilarity measure

d(xj ,xq) =
p

∑

c=1

{

1 − cos
(

απ
(

xj (c) − xq(c)
))}

, (6)

where the pixel values of the corresponding images Ij , Iq

are represented in the range [0,1] and α ∈ R
+. Figure 1

visualizes the dissimilarity function with changing values
for α. A small value for α results in a function which re-
sembles the �2-norm. With increasing α, the effect of large
distances possibly caused by outliers is reduced. In general,
α represents the frequency of the cosine and is optimized to
suppress the values caused by outliers.

As noted in Fitch et al. (2005), for pixel intensities in
the range [0,1], (6) is equivalent to Andrews’ M-Estimate.
In particular, the influence function of the kernel, i.e. the
derivative of the kernel, is equivalent to Andrews’ influence
function, which is given by

ψ(r) =
{

sin(πr) if − 1 ≤ r ≤ 1
0 otherwise.

(7)

The Fast Robust Correlation (FRC) scheme in Fitch et al.
(2005) utilizes (6) and, unlike �2-based correlation, is able
to estimate large translational displacements in real images
while achieving the same computational complexity.

Prior to formulating the proposed PCA, let us consider
a motivating example in which different dissimilarity mea-
sures are applied to the images shown in Fig. 2. As can be
seen in Table 1, the �2-norm associates a smaller distance
between the original image and an image from a different
subject. The distance between the original and the same
image with occlusion is larger. In contrast, the use of the
cosine-based measure2 results in a large distance between
the original image and the image of a different person.

2We set α = 1.9, as will be discussed later, in Sect. 4.
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Fig. 2 Example motivating the use of the cosine-based dissimilarity
measure. Shown from left to right are the original image, a second
image of the same subject, an occluded version of the original image
and an image of another subject

Table 1 Comparison of normalized dissimilarity measures

�2-Norm Cosine measure

Same subject 0.979 × 10−3 13.404 × 10−3

Occluded 1.96 × 10−3 33.576 × 10−3

Different subject 1.63 × 10−3 34.599 × 10−3

3 Euler-PCA (e-PCA)

3.1 Batch Version

In this section we first present Euler-PCA and introduce its
representation as both KPCA and linear PCA with special
features.

Euler-PCA is a KPCA which utilizes the robust dissim-
ilarity in (6). It is also based on the Euler representation of
complex numbers. More specifically, we map the intensity
values xj normalized in [0,1] onto the complex representa-
tion zj ∈ C

p , where

zj = 1√
2

⎡

⎢
⎣

eiαπxj (1)

...

eiαπxj (p)

⎤

⎥
⎦ = 1√

2
eiαπxj . (8)

The values zj can be thought of as the special features in
our version of PCA. To show the relationship between (8)
and (6), let us define θ j � απxj and then apply the �2-norm

‖zj − zq‖2
F = 1

2

∥
∥
(

cos(απxj ) + i sin(απxj )
)

− (

cos(απxq) + i sin(απxq)
)∥
∥

2
F

=
p

∑

c=1

{

1 − cos
(

θ j (c) − θq(c)
)}

= d(xj ,xq). (9)

This suggests that our KPCA can be defined by first ap-
plying the explicit mapping of (8) and then using standard
linear complex PCA. Because of (8), we coin this approach
as Euler-PCA. Notice that for α < 2, this mapping is one-
to-one. In this case, this gives rise to fast pre-image com-
putations via the ∠-operator, which returns the angle of a
complex number. More specifically, after reconstruction (or
de-noising) in the feature space has been performed, we can

Algorithm 1 ESTIMATING THE PRINCIPAL SUBSPACE

Input: A set of n images Ij , j = 1, . . . , n, of p pixels, the
number m of principal components and parameter α.

Output: The principal subspace B and eigenvalues Σ .
1: Represent Ij in the range [0,1] and obtain xj by writing

Ij in lexicographic ordering.
2: Compute zj using (8) and form the matrix of the trans-

formed data Z = [z1 · · · zn] ∈ C
p×n.

3: Compute the kernel matrix K = ZH Z ∈ C
n×n and find

the eigendecomposition of K = UΛUH .
4: Find the m-reduced set, Um ∈ C

n×m and Λm ∈ R
m×m.

5: Compute B = ZUmΛ
− 1

2
m ∈ C

p×m and Σ = Λ
1
2
m.

6: Reconstruct using Z̃ = BBH Z.
7: Fast pre-image computation: go back to the pixel do-

main using X̃ = ∠Z̃
απ

.

Algorithm 2 EMBEDDING OF NEW SAMPLES

Input: The principal subspace B and α of Algorithm 1, as
well as a new image I of p pixels.

Output: The embedding in subspace and pixel domain, z̃
and x̃ respectively.

1: Represent I in the range [0,1] and obtain x by writing
I in lexicographic ordering.

2: Find z using (8) and reconstruct as z̃ = BBH z.
3: Fast pre-image computation: go back to the pixel do-

main using x̃ = ∠z̃
απ

.

go back to the pixel domain using the ∠-operator. Finally,
high-dimensional data can be readily handled by using The-
orem 1 (a proof can be found in Appendix A).

Theorem 1 Define matrices A and B such that A = ΦΦH

and B = ΦH Φ , where .H computes the complex conjugate
transposition of a matrix. Let UA and UB be the eigen-
vectors corresponding to the non-zero eigenvalues ΛA and
ΛB of A and B, respectively. Then, ΛA = ΛB and UA =
ΦUBΛ

− 1
2

A .

The complete Euler-PCA is given in Algorithm 1 and Al-
gorithm 2.

Let us now discuss Euler-PCA’s interpretation as a KPCA
with a complex kernel in an explicitly defined complex
Hilbert space. Let k : R

p × R
p → C be a positive definite

function that defines a Reproducing Kernel Hilbert Space
(RKHS) H (the so-called feature space) through an im-
plicit (or as in our case explicit) mapping φ : R

p → H
such that k(xj ,xq) = 〈φ(xj ), φ(xq)〉 (Paulsen 2009). The
inner product is given by φ(xj )

H φ(xq), with the property
k(xj ,xq) = k(xq,xj ) (where .̄ is the complex conjugate op-
erator). Using the complex feature space interpretation the
kernel that corresponds to the mapping (8) can be written as
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k(xj ,xq) = 1

2

p
∑

c=1

cos
(

απ
(

xj (c) − xq(c)
))

− i
1

2

p
∑

c=1

sin
(

απ
(

xj (c) − xq(c)
))

. (10)

With the KPCA interpretation of the proposed method
the strategy for reconstruction in the input space becomes
less apparent. In the following section, we present the recon-
struction by means of pre-image computation (Kwok and
Tsang 2004; Mika et al. 1999) (a recent survey on pre-image
computation problems can be found in Honeine and Richard
(2011)). Then, we put our suggested approximation x̃ = ∠z̃

απ

of Algorithms 1 and 2 for going back to the pixel domain
(input space) in the context of pre-image computation and
we derive a closed form to the approximation error.

3.2 Pre-image Computation

The optimization problem (5) for the proposed kernel can be
reformulated as

x̃ = arg min
x̌

∥
∥φ(x̌) − BBH φ(x)

∥
∥

2
F

= arg min
x̌

{

k(x̌, x̌) + φ(x)H BBH BBH φ(x)

− φ(x̌)H BBH φ(x) − φ(x)H BBH φ(x̌)
}

= arg min
x̌

{−φ(x̌)H BBH φ(x) − φ(x)H BBH φ(x̌)
}

= arg max
x̌
Re

(

φ(x̌)H BBH φ(x)
)

, (11)

where Re(.) extracts the real part of a complex number
and Im(.) the corresponding imaginary. Note, in KPCA
the projection matrix is represented as a linear combination
B = XφB̃, where Xφ = [φ(x1) · · ·φ(xn)]. Then, by setting

t = B̃B̃H

⎡

⎢
⎣

k(x1,x)
...

k(xN,x)

⎤

⎥
⎦

the optimization problem (11) can be reformulated as

x̃ = arg max
x̌
Re

([

k(x̌,x1) . . . k(x̌,xn)
]

t
)

= arg max
x̌

{

Re
([

k(x̌,x1) . . . k(x̌,xn)
])

Re(t)

− Im
([

k(x̌,x1) . . . k(x̌,xn)
])

Im(t)
}

= arg max
x̌

n
∑

j=1

p
∑

c=1

{

cos
(

απ
(

x̌(c) − xj (c)
))

Re
(

t(j)
)

+ sin
(

απ
(

x̌(c) − xj (c)
))

Im
(

t(j)
)}

= arg max
x̌

f (x̌). (12)

The standard way to optimize (12) is by gradient ascent
(i.e. an update of the form x̌t = x̌t−1 +∇f (x̌t−1) (Mika et al.

1999)). Hence, we need to compute the partial derivatives
∂f

∂ x̌(c)
for all pixels as

∂f

∂ x̌(c)
= −απ

N
∑

j=1

Re
(

t(j)
)

sin
(

απ
(

x̌(c) − xj (c)
))

+ απ

N
∑

j=1

Im
(

t(j)
)

cos
(

απ
(

x̌(c) − xj (c)
))

. (13)

Using (13), ∇f can be concisely written as

∇f (x̌) = −[

Im(ž � z1) . . .Im(ž � zn)
]

⎡

⎢
⎣

Re(t(1))
...

Re(t(n))

⎤

⎥
⎦

+ [

Re(ž � z1) . . .Re(ž � zn)
]

⎡

⎢
⎣

Im(t(1))
...

Im(t(n))

⎤

⎥
⎦ , (14)

where � is the element-wise product between vectors, ž is
the transform φ(x̌) in (8) and .̄ computes the complex conju-
gate of a vector x. Unfortunately, the above procedure can be
quite computational expensive for large databases (the order
for recovering K pre-images is O(μpKn) where μ is the
number of steps until convergence).

In contrast, Algorithm 1 and 2 we have proposed a very
fast way for approximating pre-images by

x̃ = 1

πα
∠BBH z. (15)

In the context of pre-image computation the error of this
approximation can x̃ can be analytically computed by sub-
stituting (15) into (8) and the result into (5) (details can be
found in Appendix B)

∥
∥φ(x̌) − BBH φ(x)

∥
∥

2
F

=
∥
∥
∥
∥

1√
2
ei∠BBH z − BBH z

∥
∥
∥
∥

2

F

=
∥
∥
∥
∥

1√
2

1 − R
(

BBH z
)
∥
∥
∥
∥

2

F

, (16)

where R(b) = [√Re(b(c))2 + Im(b(c))2] is a vector con-
taining the magnitude of the elements in b and 1 is a vec-
tor of ones. Finally, due to the invertibility of the proposed
mapping (8) for 0 ≤ α < 2, in the case of B containing all
eigenvectors that correspond to non-zero eigenvalues, it can
easily be shown that the pre-image approximation using (15)
is optimal for the training set (i.e. (16) is equal to zero).

3.3 Incremental Learning

We base the update method for the incremental Euler-PCA
on standard incremental PCA (Ross et al. 2008; Levy and
Lindenbaum 2000), as Euler-PCA is formulated as linear
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Algorithm 3 INCREMENTAL SUBSPACE ESTIMATION

Input: The principal subspace Bt−1 ∈ C
p×m, the corre-

sponding eigenvalues Σ t−1 ∈ R
m×m, a set of new im-

ages {In+1, . . . , In+a}, the number m of principal com-
ponents and parameter α.

Output: The new subspace Bt and eigenvalues Σ t .
1: From set {In+1, . . . , In+a} compute the matrix of the

transformed data Zδ = [zn+1 · · · zn+a].
2: Compute Bδ = orth(Zδ −Bt−1BH

t−1Zδ) and form L =
[

Σ t−1 Bt−1
H Zδ

0 BH
δ Zδ

]

.

3: Compute L svd= B̂Σ̂V̂H and obtain the m-reduced set B̂m

and Σ̂m.
4: Compute Bt = [Bt−1 Bδ]B̂m and set Σ t = Σ̂m.

PCA in a non-linear subspace defined by an explicit map-
ping. We assume that the subspace Bt−1 of step t − 1 is
given by the SVD of Zt−1

Zt−1 ≈ Bt−1Σ t−1VH
t−1 = Zt−1UmΛ

− 1
2

m Λ
1
2
mUH

m , (17)

where UmΛmUH
m is the m-reduced eigenvalue decomposi-

tion of ZH
t−1Zt−1. For the update, we want to find the SVD

of the concatenated sample matrix, build from Zt−1, and the
new mapped samples Zδ ,

Zt = [Zt Zδ] ≈ [

Bt−1Σ t−1VH
t−1 Zδ

]

. (18)

We reformulate (18) as

Zt ≈ [Bt−1 Bδ]
[

Σ t−1 BH
t−1Zδ

0 BH
δ Z

][

VH
t−1 0
0 I

]

, (19)

where Bδ = orth(Zδ − BBH Zδ) contains the new compo-
nents, which are not included in the current subspace Bt−1.
Finally, the SVD of

L =
[

Σ t−1 BH
t−1Zδ

0 BH
δ Z

]

= B̂Σ̂V̂H (20)

is all that is required for the update. With the m-reduced
eigenspace B̂m and Σ̂m of L, we find Bt = [Bt−1 Bδ]B̂m

and Σ = Σ̂m. Algorithm 3 summarizes the main steps.
Note that existing methods for incremental KPCA in

which the mapping is in general unknown are computation-
ally expensive and inexact. For example in Chin and Suter
(2007), to ensure constant execution speed, a set of pre-
images are found to approximate the data matrix by solv-
ing an extra optimization problem similar to (5). The draw-
backs of this are twofold: (i) the reduced set representation
provides only an estimate to the exact solution and (ii) the
proposed optimization problem for finding the reduced set
inevitably increases the complexity of the algorithm. On the
other hand, since in our case, the mapping is explicit and
does not increase the dimensionality we can represent the
data matrix directly in feature space. This eliminates the

Fig. 3 Cropped example images from the AR Database (Martinez and
Benavente 1998)

need to introduce an additional optimization problem, mak-
ing the incremental version of Euler-PCA both fast and ex-
act.

4 Experiments

4.1 Image Reconstruction Under Noise

In this section we evaluate the robustness of Euler-PCA
(e-PCA) for the application on image de-noising based on
subspace-based image reconstruction. For comparison, we
select standard PCA, R1-PCA (Ding et al. 2006), PCA-L1
(Kwak 2008) and HQ-PCA (He et al. 2011), which repre-
sents the state-of-the-art, as well as, standard Kernel PCA
de-noising with a GRBF KPCA (denoted by G-KPCA) and
pre-image computation using (15) (denoted by e-PCA-GA).
The parameters of R1-PCA, PCA-L1 and HQ-PCA follow
(Ding et al. 2006; Kwak 2008; He et al. 2011) respectively.
We choose the convergence criterion for R1-PCA, PCA-L1
and HQ-PCA to be based on the norm difference between
two successive subspace estimations. The maximum differ-
ence is constrained not to exceed 10−8, unless a maximum
of 50 iterations is reached. For the optimization of G-KPCA
variance of the Gaussian kernel we tried two standard ap-
proaches, but for compactness we always report the best
results. In the first approach we set the variance equal to

1
n(n−1)

∑n
j,q ‖xj − xq‖2 where xj , xq are the training sam-

ples (Kwok and Tsang 2004). In the second method we ap-
plied a cross-validation strategy in the training set for se-
lecting the variance. For all methods that employ a gradi-
ent descent (or ascent) for pre-image computation the pre-
images were initialized with all pixel intensities equal to
0.5. Finally, the methods were considered to have converged
if ‖x̌t − x̌t−1‖F ≤ 0.01 for two successive iterations t and
t − 1.

Our data set consists of a subset of the popular AR
Database (Martinez and Benavente 1998). In particular, we
use a total of 100 images of size 101 × 91 of different sub-
jects as shown in Fig. 3.

Our evaluation is based on the reconstruction error and
the angular error (He et al. 2011; Kwak 2008; Gunawan et al.
2005; Krzanowski 1979). The reconstruction error has been
used in many evaluations of previous approaches (He et al.
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Fig. 4 Angular error (top) and reconstruction error (bottom) for different values for α

2011; Kwak 2008). In particular, for n test samples, we com-
pute

er(m) = 1

n

n
∑

j=1

∥
∥
∥
∥
∥

xorig
j −

m
∑

l=1

bcor
l bcorT

l xcor
j

∥
∥
∥
∥
∥

(21)

where xorig
j and xcor

j represent the original and the training
image respectively, Bcor = [bcur

1 · · ·bcur
m ] ∈ R

p×m is the es-
timated subspace of the corrupted data and m denotes the
number of components used. For the methods that use pre-
images for approximating the reconstruction error (21) is re-
formulated as

er(m) = 1

n

n
∑

j=1

∥
∥xorig

j − x̃cor
j (m)

∥
∥ (22)

where x̃cor
j (m) is the pre-image associated with the recon-

struction using m components in the feature space (i.e. solv-
ing optimization problems (5) and (11) using m components
for matrix B). Note, that for Euler-PCA de-noising is per-
formed by calculating pre-images in two ways: by applying
the ∠-operator and by the gradient ascent optimization. We
denote the latter method as e-PCA-GA. The calculation of
pre-images for G-KPCA is also performed in a similar fash-
ion.

Additionally we use the angular error between the cor-
rupted subspace Bcor (learned from the corrupted training
set) and the uncorrupted subspace Borig = [borig

1 · · ·borig
m ] ∈

R
p×m (learned from the original images) as follows (Gu-

nawan et al. 2005; Krzanowski 1979)

ea(m) = m −
m

∑

l=1

m
∑

s=1

cos2(borig
l ,bcor

s

)

. (23)

For the nonlinear methods Borig and Bcor are in the fea-
ture space but still cos(borig

l ,bcor
s ) can be efficiently com-

puted using the kernel. In contrast to the reconstruction error
which introduces an inherent error due to the chosen number
of components, the angle error shows the difference caused
by the outliers directly.

4.1.1 Synthetic Corruptions

In this experiment, a percentage of training images is cor-
rupted by randomly placed patches of random pixel noise
as shown in Fig. 9. We vary both the number of corrupted
images and the size of the corrupted area. For convenience,
we say “a % of images by b %” to denote that a % of the
images in our training set was corrupted by randomly placed
patches the size of which is b % of the total image size. After
training we analyze the results based on the reconstruction
and angle errors.

In our experiments, we tested the 5 different methods for
7 setups. These setups can be summarized into three types:

– Type (i): large occlusions on few images (e.g. 5 % of im-
ages by 30 % and 10 % of images by 30 %)

– Type (ii): medium sized occlusions on a few images (e.g.
10 % of images by 20 %, 15 % of images by 10 % and
25 % of images by 10 %)

– Type (iii): small occlusions on many images (e.g. 80 % of
images by 5 % and 85 % of images by 5 %)

Prior to our experiments, we optimized α of e-PCA via
a validation set. We found that for 0 ≤ α < 2 performance
was attained for α = 1.9. This also verifies the findings of
Fig. 4. We have to note here that α was kept fixed to α = 1.9



Int J Comput Vis

Fig. 5 Approximation error between e-PCA and e-PCA-GA

for all the experiments in this paper. This is in contrast with
GKPCA which includes an extra step for finding the opti-
mum variance.

In order to test whether the pre-image approximation us-
ing (15) is a valid choice we calculated the attained mini-
mum of optimization problem (11), after performing the gra-
dient ascent, and we compare it with the error given in (16).
For all experiments the error of the fast pre-image approxi-
mation resulted in similar or lower errors. A representative
example can be found in Fig. 5 where the pre-image approx-
imation error is plotted versus the number of components. It
is evident that both the pre-image computation methods pro-
duce similar errors (here we have to note that the pre-image
approximation error is different than the reconstruction er-
ror in (22) since the former is in the feature space while the
latter is in the input space).

Figure 6 shows the reconstruction errors of all tested
methods. In type (i) and (ii), HQ-PCA performs well for few
components, while R1-PCA performs worse than HQ-PCA
but better than standard PCA. As the number of components
increases, PCA, R1-PCA and HQ-PCA perform the same.
PCA-L1 performs well only for a small number of compo-
nents. G-KPCA performs as good as HQ-PCA. In all exam-
ples, both versions of the proposed Euler-PCA performs the
best even for a large number of components.

More distinctions between the tested methods are observ-
able for type (iii). Here, PCA and R1-PCA have similar per-
formance, up to 30 components, after which R1-PCA out-
performs standard PCA. Similar conclusions can be drawn
for HQ-PCA. Again, Euler-PCA outperforms all other meth-
ods. Qualitative reconstruction results can be seen in Fig. 9.
As it can be seen, our method is able to largely suppress such
outliers.

The angular error results reveal different performance as
it can be seen in Fig. 7. HQ-PCA outperforms PCA-L1 only
for a large number of components. R1-PCA and standard
PCA perform similarly. G-KPCA seems to perform the sec-
ond best. This suggest that the performance improvement
obtained for G-KPCA might be due to the fact that, for this
experiment, the calculation of pre-images is not necessary. It
seems that this calculation (as required by the reconstruction
experiment) might be problematic. Once more, the proposed
Euler-PCA performs best.

4.1.2 Hand Occlusions

In our second experiment we use skin-like occlusions to ver-
ify the results of the previous section. In particular, we oc-
clude a subset of the training data with hand signs of the
American fingerspelling alphabet3 (Fig. 8). The chosen sign
(letter), its orientation and its position are randomized, and
the skin color is adjusted to fit the subject.

Figure 10 shows the reconstruction error and Fig. 11 the
angular error. As before, HQ-PCA and G-KPCA outperform
R1-PCA and standard PCA. Again, PCA-L1 performs the
worst. Euler-PCA performs the best. Slightly different re-
sults can be observed for the angular error. In contrast to
our previous setup, here, R1-PCA, PCA and Euler-PCA per-
form similarly well. Again, G-KPCA performs very well for
this experiment. However, HQ-PCA and PCA-L1 seem to
perform worse. The corruption by hand occlusions is much
more subtle than the one introduced by the random pixel
patches. Therefore, PCA and R1-PCA achieve a similar per-
formance to Euler-PCA in terms of angular error. Nonethe-
less, the general trend follows our results of the previous
section. Euler-PCA works well in terms of both reconstruc-
tion and angular error. Figure 12 shows an example of the
reconstruction quality.

4.2 Object Tracking

We evaluate the incremental version of Euler-PCA for the
application of visual tracking. The aim of a visual track-
ing system is to locate a predefined target object on every
frame of a video sequence. Automatic systems span a wide
range of applications, such as traffic monitoring (Kamijo
et al. 2000; Hsieh et al. 2006), surveillance (Haritaoglu et al.
2000; Collins et al. 2001), video retrieval and summarization
(Luo et al. 2003), vehicle navigation (Hashima et al. 1997;
Fraundorfer et al. 2007), driver assistance (Handmann et al.
1998; Avidan 2004), human computer interaction (Wren
et al. 1997; Liwicki and Everingham 2009) and face analy-
sis (Gunes and Pantic 2010; Cohn et al. 1999). Many track-
ing algorithms indicate that an adaptive approach based on

3The fingerspelling alphabet is a subset of sign language which is uti-
lized for spelling names. Examples can be found at http://asl.ms/.

http://asl.ms/
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Fig. 6 Reconstruction error with different rates of occluded images. Here, the mean value over 10 executions with different random patches is
shown. Variance is indicated by error bars

online learning is advantageous to fixed appearance mod-
els learned offline (Babenko et al. 2011; Ross et al. 2008;
Mei and Ling 2009). We evaluate the tracking performance
of Euler-PCA based on precision and accuracy and then
compare it to four other state-of-the-art holistic trackers.

4.2.1 Framework

We combine the appearance model learned by the incremen-
tal version of Euler-PCA with a motion affine transforma-
tion and a particle filter, in a similar fashion to Ross et al.
(2008) and Chin and Suter (2007). In general, a particle fil-
ter calculates the posterior of a system’s states based on a
transition model and an observation model. In our tracking
framework, the transition model is described as a Gaussian

Mixture Model around an approximation of the state poste-
rior distribution of the previous time step,

p
(

Ai
t |A1:P

t−1

) =
P

∑

i=1

wi
t−1 N

(

At ;Ai
t−1,Ξ

)

(24)

where Ai
t is the affine transformation of particle i at time

t , A1:P
t−1 is the set of P transformations of the previous time

step, whose weights are denoted by w1:P
t−1, and Ξ is an in-

dependent covariance matrix, which represents the variance
in horizontal and vertical displacement, rotation, scale, ratio
and shew. In the first phase, P particles are drawn from (24).
In the second phase, the observation model is applied to es-
timate the weighting for the next iteration (the weights are
normalized to ensure

∑P
i=1 wi

t = 1). Furthermore, the most
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Fig. 7 Angular error with different rates of occluded images. Here, the mean value over 10 executions with different random patches is shown.
Variance is indicated by error bars

probable sample is selected as the state Abest
t at time t . Thus,

the estimation of the posterior distribution is an incremental
process and utilizes a hidden Markov model which only re-
lies on the previous time step.

Our observation model computes the probability of a
sample being generated by the learned eigenspace in the ap-
pearance model. We assume that the probability of the ob-
servation, given the tracking parameters at t , is analogous to
an exponential as

p
(

φ
(

yi
t

)|Ai
t

)

∝ e−γ ‖φ(yi
t )−BBH φ(yi

t )‖2
F

= e−γ ‖zi
t−BBH zi

t‖2
F (25)

where yi
t is the observation vector at time t of location Ai

t , zi
t

is its mapping from (8) and γ is the parameter that controls

Fig. 8 Examples of the corruptions in the training data

the spread. Algorithm 4 describes the proposed visual track-
ing framework, which we coin Euler Kernel Tracker (eT).

4.2.2 Results

We present the performance evaluation results of the pro-
posed Euler Kernel Tracker (eT). We compare the perfor-
mance of our method with that of four other state-of-the-
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Fig. 9 Reconstructions of PCA, PCA-L1, R1-PCA, HQ-PCA, G-KPCA, e-PCA-GA and Euler-PCA (top to bottom) after learning with 80 %
images occluded by an area of 5 % (20 components). The last row shows the corrupted training data. The uncorrupted images are shown in Fig. 3
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Fig. 10 Reconstruction error with different rates of hand occluded images. Here, the mean value over 10 executions is shown. Variance is indicated
by error bars

Fig. 11 Angular error with different rates of hand occluded images. Here, the mean value over 10 executions is shown. Variance is indicated by
error bars
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Fig. 12 Reconstructions of PCA, PCA-L1, R1-PCA, HQ-PCA, G-KPCA, e-PCA-GA and Euler-PCA (top to bottom) after learning with 50 %
hand occluded images (20 components). The bottom row shows the training data. The uncorrupted images are shown in Fig. 3
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Algorithm 4 EULER KERNEL TRACKER AT TIME t

Input: The previous eigenspace Bt−1, Σ t−1, locations
A1:P

t−1, weights w1:P
t−1, image frame It ∈ [0,1] and α.

1: Draw P particles A1:P
t from p(Ai

t |A1:P
t−1) as in (24).

2: Take all image patches from It which correspond to par-
ticles A1:P

t and order their values lexicographically to
form vectors y1:P

t .
3: Form the mapping z1:P

t as in (8) and compute the prob-
ability of each particle p(zi

t |Ai
t ) as in (25) and extract

the weights w1:P
t .

4: Choose Abest
t and zbest

t as the affine transform and fea-
tures of the particle with the largest weight.

5: Using zbest
t update the subspace by applying Algo-

rithm 3 in a batch after a certain number of frames (5
in our implementation).

art tracking approaches: IVT4 (Ross et al. 2008), IKPCA5

(Chin and Suter 2007), the L1 tracker6 (Mei and Ling 2009)
and MIL tracker7 (Babenko et al. 2011),

We evaluate the performance of all methods on 8 very
popular video sequences (subsets of which are used in
Babenko et al. (2009, 2011), Ross et al. (2008), Mei and
Ling (2009), Comaniciu et al. (2003)), Vi , i = 1, . . . ,8, with
drastic changes of the target’s appearance including pose
variation, occlusions and non-uniform illumination.8 Quali-
tative results are illustrated in Fig. 13.

Video V1 is provided along with 7 annotated points which
indicate the ground truth. We also annotate 3–7 fiducial
points for the remaining sequences (Liwicki et al. 2012).
Our quantitative performance evaluation is based on the root
mean square (RMS) error between the true and the esti-
mated locations of these points (Ross et al. 2008). Simi-
larly to (Babenko et al. 2011), we additionally present pre-
cision plots which visualize the quality of the tracking. Such
graphs show the percentage of frames in which the target
was tracked with an RMS error less than a certain threshold.

In our experiments, all trackers use an affine motion
model with a fixed number of drawn particles (800 parti-
cles). We attempt to optimize the performance of all track-

4The Matlab implementation is publicly available at http://www.cs.
toronto.edu/~dross/ivt/.
5The Matlab implementation of the IKPCA was kindly provided by the
authors of the paper.
6The implementation is publicly available at http://www.ist.temple.
edu/~hbling/code_data.htm.
7The implementation (only for translation motion model) is publicly
available at http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml,
we carefully modified it in order to support an affine motion model
in a particle filter framework.
8Videos V4 and V5 are available at http://vision.ucsd.edu/~bbabenko/
project_miltrack.shtml and the remaining videos are published at
http://www.cs.toronto.edu/~dross/ivt/.

ers using video-specific parameters. That is, for each tracker
and video, we found the parameters which gave the best per-
formance in terms of robustness (i.e. how many times the
tracker went completely off) and accuracy (measured by the
RMS error).

Apart from the L1 tracker (for which the resolution of the
template increases geometrically the complexity) the track-
ing template was chosen to be of resolution of 32 × 32. All
trackers were optimized with respect to (wrt) the variance of
the Gaussian from which we sample the particles. Addition-
ally to the variance of the Gaussian, which is common for all
the systems, we optimize eT, IVT and IKPCA wrt the num-
ber of components and the spread γ . For eT the value for α

is fixed to 1.9. IKPCA was also optimized wrt the variance
of the Gaussian RBF function. Furthermore, we optimized
L1 wrt the resolution of the templates (the tracking becomes
impractical for particles larger than 20 × 20). For MIL we
optimized wrt the parameters mentioned in Babenko et al.
(2011) (e.g. the number of positives in each frame, the num-
ber that controls the sampling of negative examples, the
learning rate for the weak classifiers).

For these versions of the trackers, Table 2 lists the mean
RMS error for all sequences and the average frame rate of
each tracker,9 while Fig. 14 plots the RMS error as a func-
tion of the frame number. Figure 15 shows the accuracy in
terms of precision plots. Qualitative tracking results for all
methods are shown in Fig. 13. The videos are provided as
part of the supplementary material.

In general, the robustness of eT is similar to IVT, al-
though, eT performs the best in terms of precision for most
videos. MIL and L1 are more robust and track the target
in V5 successfully. However, particularly visible in the re-
sults for V8, L1 is not precise for outliers caused by mo-
tion blur. MIL is based on a bag of features approach, and
consequently is inherently unprecise. IKPCA fails for all se-
quences. Our tracker performs very well particularly for V4

in which the target undergoes many prolonged partial occlu-
sions. The e-PCA’s robustness successfully suppresses these
outliers for this video sequence. In terms of efficiency, IVT
and e-PCA operate in the highest frame rate, while all other
methods operate in less than one frame per second.

4.3 Background Modeling

Background modeling algorithms aim to estimate the back-
ground of a scene from a video sequence usually captured
with a static camera. This problem can be naturally tack-
led using PCA (Oliver et al. 2000): the frames of the video
are used to estimate a low dimensional subspace. Then the

9MATLAB implementations on a desktop computer with Intel Core i7
870 at 2.93 GHz and 8 GB RAM.

http://www.cs.toronto.edu/~dross/ivt/
http://www.cs.toronto.edu/~dross/ivt/
http://www.ist.temple.edu/~hbling/code_data.htm
http://www.ist.temple.edu/~hbling/code_data.htm
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
http://www.cs.toronto.edu/~dross/ivt/
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Fig. 13 Qualitative tracking results for videos V1 to V8
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Fig. 14 Mean root square error achieved by all tested trackers as a function of the frame number for each video sequence
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Fig. 15 Tracking precision for each video sequence

Table 2 Mean RMS error for
general tracking, and tracking
rate. “(lost)” indicates sequences
in which the tracker clearly does
not follow the target throughout

V1 V2 V3 V4 V5 V6 V7 V8 Fames/second

IVT 6.82 (lost) 4.07 10.79 (lost) 3.31 1.78 2.62 3.157

IKPCA (lost) (lost) (lost) (lost) (lost) (lost) (lost) (lost) 0.832

L1 6.17 (lost) 2.87 11.10 12.68 9.53 1.62 13.58 0.076

MIL 16.95 (lost) 13.61 14.62 37.56 12.73 4.14 23.87 0.129

eT 5.14 (lost) 3.68 4.68 (lost) 3.04 1.73 2.44 2.935

Table 3 Maximum similarity
of Fig. 16 Airport Bar Lobby Curtain Escalator Fountain Mall Campus Water

PCA 0.540 0.503 0.600 0.686 0.442 0.508 0.545 0.286 0.767

PCA-L1 0.540 0.504 0.604 0.671 0.442 0.548 0.540 0.286 0.767

R1-PCA 0.474 0.499 0.607 0.727 0.428 0.563 0.551 0.294 0.503

HQ-PCA 0.486 0.498 0.615 0.755 0.422 0.558 0.544 0.292 0.776

e-PCA 0.584 0.533 0.609 0.747 0.479 0.534 0.563 0.304 0.774

Table 4 Execution time
required to compute the
appearance model for the last
frame of each video sequence (5
components)

Airport Bar Lobby Curtain Escalator Fountain Mall Campus Water

PCA 0.003 s 0.002 s 0.003 s 0.002 s 0.002 s 0.002 s 0.002 s 0.010 s 0.003 s

PCA-L1 12.4 s 9.5 s 5.1 s 6.3 s 21.7 s 1.2 s 3.3 s 9.7 s 1.4 s

R1-PCA 123.0 s 120.0 s 44.7 s 124.9 s 233.0 s 12.4 s 35.9 s 182.8 s 8.1 s

HQ-PCA 2663.4 s 930.8 s 365.8 s 3106.8 s 2536.7 s 36.7 s 91.0 s 282.3 s 71.8 s

e-PCA 0.007 s 0.006 s 0.006 s 0.006 s 0.006 s 0.006 s 0.006 s 0.026 s 0.006 s

background corresponding to each of the video frames is ob-

tained by reconstructing the frame from this subspace. Once

the background estimate is obtained, the foreground objects

can be segmented typically by subtraction and thresholding.
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Fig. 16 Similarity with changing number of components

For our evaluation, we used the popular data set from Li
et al. (2004). The set consists of 9 videos including illu-
mination changes, indoor/outdoor environments as well as
dynamic background changes. The ground truth for fore-
ground/background pixels of 20 randomly selected frames
for each video is also provided Li et al. (2004). Standard
PCA, PCA-L1, R1-PCA and HQ-PCA are used for compar-
ison. We present quantitatively and qualitatively results. For
the former case, we use the similarity measure (Maddalena
and Petrosino 2008)

Similarity = tp

tp + fp + fn
(26)

where tp, fp and fn are the numbers of correctly labeled
foreground, falsely labeled background and falsely labeled
foreground pixels respectively. The setup for PCA, PCA-L1,
R1-PCA, HQ-PCA and e-PCA is similar to Sect. 4.1. Fur-

thermore, PCA and Euler-PCA is updated incrementally for
each frame during learning.

We used the complete set of preceding frames to train
the models (e.g. for frame 100, the preceding 99 frames are
used for the appearance model), and for each video, we eval-
uate the similarity for the frames in which the ground truth
is provided. The mean similarity, as a function of the num-
ber of components, is plotted in Fig. 16. The best similarity
value for each method and video is summarized in Table 3,
while Fig. 17 shows the performance qualitatively. In gen-
eral, e-PCA performs the best in 5 out of 9 sequences, and
the second best for 3. The results of the other methods vary
for each sequence. The videos are provided in the supple-
mentary material.

In Table 4 we highlight the computation time of the ap-
pearance model for the final frame of each video sequence.
Our tests were conducted in MATLAB (64 bit) on a desktop
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Fig. 17 Examples of background modeling for each video and each method. In the results, black indicates correctly predicted background, blue
indicates correctly predicted foreground, red indicates misclassified background and white indicates misclassified foreground
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computer with an Intel core i7 870 processor at 2.93 GHz
and 8 GB RAM. PCA and Euler-PCA can be updated incre-
mentally, making their running time less than a second for
all sequences. In contrast, the other methods require a recal-
culation of the complete appearance model for each frame.
Consequently, these methods are much slower.

5 Conclusion

We introduce a fast, direct and robust approach to PCA. The
proposed Euler-PCA allows for fast incremental computa-
tion and retains the favorable properties of standard �2-norm
PCA, while suppressing outliers. Our experiments show that
Euler-PCA achieves promising results for the applications of
face reconstruction, object tracking and background model-
ing. In future work we intend to introduce e-PCA to a range
of further applications in human computer interaction, com-
puter vision and pattern recognition.
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Appendix A: Proof of Theorem 1

Proof Given A = ΦΦH and B = ΦH Φ their eigenspaces
is provided by A = UAΛAUH

A and B = UBΛBUH
B . Fur-

thermore, UH
A UA = UH

B UB = I. Let us define matrix M =
ΦUBΛ

− 1
2

B . We get

MH AM = Λ
− 1

2
B UH

B ΦH ΦΦH ΦUBΛ
− 1

2
B

= Λ
− 1

2
B UH

B BBUBΛ
− 1

2
B

= Λ
− 1

2
B UH

B UBΛBUH
B UBΛBUH

B UBΛ
− 1

2
B

= Λ
− 1

2
B ΛBΛBΛ

− 1
2

B

= ΛB. (27)

Therefore, ΛA = ΛB and UA = M for non-zero eigenval-
ues. �

Appendix B: Proof that
‖ 1√

2
ei∠b − b‖2

F = ‖ 1√
2

− R(b)‖2
F

∥
∥
∥
∥
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2
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∥
∥
∥
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2

F

=
p
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(
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ei∠b(c) − b(c)

)2

=
p

∑

c=1

(
1√
2
ei∠b(c) − R

(

b(c)
)
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∑
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(
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− R
(
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)
)2

=
∥
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∥
∥

1√
2

1 − R(b)

∥
∥
∥
∥

2

F

, (28)

where R(b) = [√Re(b(c))2 + Im(b(c))2] is a vector with
the magnitude of the elements of b and 1 is a vector of
ones. �
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