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Abstract—We present a robust FFT-based approach to scale-invariant image

registration. Our method relies on FFT-based correlation twice: once in the log-

polar Fourier domain to estimate the scaling and rotation and once in the spatial

domain to recover the residual translation. Previous methods based on the same

principles are not robust. To equip our scheme with robustness and accuracy, we

introduce modifications which tailor the method to the nature of images. First,

we derive efficient log-polar Fourier representations by replacing image functions

with complex gray-level edge maps. We show that this representation both

captures the structure of salient image features and circumvents problems related

to the low-pass nature of images, interpolation errors, border effects, and aliasing.

Second, to recover the unknown parameters, we introduce the normalized

gradient correlation. We show that, using image gradients to perform correlation,

the errors induced by outliers are mapped to a uniform distribution for which our

normalized gradient correlation features robust performance. Exhaustive

experimentation with real images showed that, unlike any other Fourier-based

correlation techniques, the proposed method was able to estimate translations,

arbitrary rotations, and scale factors up to 6.

Index Terms—Global motion estimation, correlation methods, FFT, scale-

invariant image registration, frontal view face registration.
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1 INTRODUCTION

THE estimation of the relative motions between two or more
images is probably at the heart of any autonomous system which
aims at the efficient processing of visual information. Motions in
images are induced due to camera displacements or displace-
ments of the individual objects composing the scene. Image
registration methods for global motion estimation address the
problem of compensating for the camera ego-motion and finally
aligning the images. Applications are numerous: from global
scene representation and image mosaicking to object detection/
tracking and video compression.

In this work, we focus on global registration schemes which
make use of all image information. In particular, we propose a
robust correlation-based scheme which operates in the Fourier
domain for the estimation of translations, rotations, and scalings in
images. For the class of similarity transforms, a frequency-domain
approach to motion estimation possesses several appealing
properties. First, through the use of correlation, it enables an
exhaustive search for the unknown motion parameters, and
therefore, large motions can be recovered with no a priori

information (good initial guess). Second, the approach is global
which equips the algorithm with robustness to noise. Third, the
method is computationally efficient. This comes from the shift
property of the Fourier Transform (FT) and the use of FFT routines
for the rapid computation of correlations.

The work in [1] introduces the basic principles for translation,
rotation, and scale-invariant image registration in the frequency
domain. Given two images related by a similarity transform, the
translational displacement does not affect the magnitudes of the FTs
of the two images. Resampling the Fourier magnitudes on the log-
polar grid reduces the problem of estimating the rotation and
scaling to one of estimating a 2D translation. Thus, the method relies
on correlation twice: once in the log-polar Fourier domain to
estimate the rotation and scaling and once in the spatial domain to
recover the residual translation. In the usual way, the authors use
phase correlation (PC) [2] instead of standard correlation while they
perform conversion from Cartesian to log-polar using standard
interpolation schemes (e.g., bilinear interpolation).

To enhance accuracy, the authors in [3], [4], [5] introduce new
sampling schemes and algorithms which reduce the inaccuracies
induced by resampling the magnitude of the FT on the log-polar
grid. To recover the rotation and scaling, the method in [3] relies on
the pseudopolar FFT [6], which rapidly computes a discrete FT on
a nearly polar grid. The pseudopolar grid serves as an intermediate
step for a log-polar Fourier representation which is obtained using
nearest-neighbor interpolation. Overall, the total accumulated
interpolation error is decreased; nevertheless, the pseudopolar
FFT is not a true polar Fourier representation and the method
estimates the rotation and scaling in an iterative fashion. In [4], the
authors propose to approximate the log-polar DFT by interpolating
the pseudo-log-polar FFT. The method is noniterative but the gain
in registration accuracy is not significant. The main idea in [5] is to
obtain more accurate log-polar DFT approximations by efficiently
oversampling the lower part of the Fourier spectrum using the
Fractional FFT. The presented experimental results do not
explicitly show the applicability of the algorithm in real images
related by large-scale factors while oversampling inevitably
increases the execution time.

The work in [7] introduces a robust technique to handle
arbitrary rotations and large translations and scale factors. It
leverages the log-polar transform in the spatial domain to achieve
these results. The main contribution of our work is to demonstrate
that FFT-based scale-invariant registration in real images is also
feasible even for large-scale factors (up to 6), arbitrary rotations,
and large translations.

In particular, we provide reasoning and experimentation which
show that robustness in FFT-based scale-invariant image registra-
tion depends on the image representation used and the type of
correlation employed rather than the method used to approximate
the log-polar DFT. In our scheme, we first replace image functions
with complex gray-level edge maps and then compute the
standard Cartesian FFT. Using simple arguments, we show that
this step both captures the structure of salient image features and
provides an efficient solution to problems induced by the low-pass
nature of images, interpolation errors, border effects, and aliasing.
Next, we simply resample the Cartesian FFT on the log-polar grid
using bilinear interpolation. Neither sophisticated FFT nor over-
sampling is employed to enhance accuracy. To perform robust
correlation, we replace phase correlation with gradient-based
correlation schemes [8], [9]. We present a novel theoretical analysis
which shows that under a reasonable assumption, the use of image
gradients tailors correlation to the nature of real images and
provides a mechanism to reject outliers induced by real-world
registration problems. Following our analysis, we introduce the
normalized gradient correlation (NGC), and finally, we estimate
the rotation and scaling using NGC in the log-polar Fourier
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domain. Contrary to the common belief that FFT-based schemes
are unable to handle real-world registration problems [7],
exhaustive experimentation with popular image data sets demon-
strates that, unlike any other Fourier-based techniques, our
formulation provides a fast and robust framework for scale-
invariant image registration.

The rest of the paper is organized as follows: Section 2 gives
the necessary background in scale-invariant FFT-based image
registration using correlation. Section 3 presents in detail the key
features of the proposed scheme. We present performance
evaluation experiments in Section 4, while Section 5 presents
results for the application of frontal view face registration. Finally,
Section 6 summarizes the contributions of this work.

2 FFT-BASED SCALE-INVARIANT IMAGE

REGISTRATION

Let IiðxÞ;x ¼ ½x; y�T 2 R2, i ¼ 1; 2, be two image functions. We

denote by bIiðkÞ, k ¼ ½kx; ky�T 2 R2, the Cartesian FT of Ii andMi the

magnitude of bIi. Polar and log-polar Fourier representations refer to

computing the FT as a function of kp ¼ ½kr; k��T and kl ¼ ½log kr; k��T ,

respectively, where kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x þ k2

y

q
and k� ¼ arctan ðky=kxÞ.

2.1 Translation Estimation Using Correlation

Assume that we are given two images, I1 and I2, related by an
unknown translation t ¼ ½tx; ty�T 2 R2:

I2ðxÞ ¼ I1ðxþ tÞ: ð1Þ

We can estimate t from the 2D cross-correlation function CðuÞ,
u ¼ ½u; v�T 2 R2 as bt ¼ argu maxfCðuÞg, where1

CðuÞ ¼4 I1ðuÞ ? I2ð�uÞ ¼
Z
R2
I1ðxÞI2ðxþ uÞdx: ð2Þ

From the convolution theorem of the FT [10], C can be alternatively
obtained by

CðuÞ ¼ F�1 bI1ðkÞbI�2 ðkÞn o
; ð3Þ

where F�1 is the inverse FT and � denotes the complex conjugate
operator. The shift property of the FT [10] states that if I1 and I2 are
related by (1), then, in the frequency domain, it holds

bI2ðkÞ ¼ bI1ðkÞejk
T t ð4Þ

and therefore (3) becomes

CðuÞ ¼ F�1
�
M2

1 ðkÞe�jk
T t
�
: ð5Þ

The above analysis summarizes the main principles of frequency
domain correlation-based translation estimation. For finite discrete
images of size N �N , correlation is efficiently implemented
through (3) by zero padding the images to size ð2N � 1Þ � ð2N �
1Þ and using FFT routines to compute the forward and inverse FTs.
If no zero padding is used, the match is cyclic and, in this case, the
algorithm’s complexity is OðN2 logNÞ.

2.2 Estimation of Translation, Rotation, and Scaling
Using Correlation

Assume that we are given two images, I1 and I2, related by a
translation t, rotation �0 2 ½0; 2�Þ, and scaling s > 0, that is,

I2ðxÞ ¼ I1ðDxþ tÞ; ð6Þ

where D ¼ s� and � ¼ cos �0 sin �0

� sin �0 cos �0

� �
. In the Fourier domain,

it holds [11] that

bI2ðkÞ ¼ ð1=j�jÞbI1ðk0Þejk
0T t; ð7Þ

where

k0 ¼ D�Tk ð8Þ

and � is the determinant of D. Taking the magnitude in both parts
of (7) and substituting D�T ¼ �=s, � ¼ s2 gives

M2ðkÞ ¼ ð1=j�jÞM1ðk0Þ ¼ ð1=s2ÞM1ð�k=sÞ: ð9Þ

Using the log-polar representation gives (ignoring 1=s2) [1]

M2ðklÞ ¼M1ðkl � ½log s; �0�T Þ: ð10Þ

We can observe that in the log-polar Fourier magnitude domain,
the rotation and scaling reduce to a 2D translation which can be
estimated using correlation. After compensating for the rotation
and scaling, we can recover the remaining translation using
correlation in the spatial domain. Note that if e�0 is the estimated
rotation, then it is easy to show that e�0 ¼ �0 or e�0 ¼ �0 þ �. To
resolve the ambiguity, one needs to compensate for both possible
rotations, compute the correlation functions, and, finally, choose as
the valid solution the one that yields the highest peak [1].

3 ROBUST FFT-BASED SCALE-INVARIANT IMAGE

REGISTRATION

3.1 Robust Translation Estimation Using Normalized
Gradient Correlation

To estimate the translational displacement, we can replace
standard correlation with gradient-based correlation schemes.
Gradient correlation (GC) combines the magnitude and orientation
of image gradients [9]:

GCðuÞ ¼4 G1ðuÞ ? G�2ð�uÞ ¼
Z
R2
G1ðxÞG�2ðxþ uÞ dx; ð11Þ

where

GiðxÞ ¼ Gi;xðxÞ þ jGi;yðxÞ ð12Þ

and Gi;x ¼ rxIi and Gi;y ¼ ryIi are the gradients along the
horizontal and vertical direction, respectively. Orientation correla-
tion (OC) considers orientation information solely [8] by imposing

GiðxÞ  
GiðxÞ=jGiðxÞj; if jGiðxÞj > �;
0; otherwise;

�
ð13Þ

and � is the value of a threshold. Thresholding jGiðxÞj removes the
contribution of pixels where gradient magnitude takes negligible
values. In the following analysis, we focus primarily on GC.

3.1.1 Frequency-Domain Analysis

From (5), we observe that the phase difference term e�jk
T t, which

contains the translational information, is weighted by the
magnitude M1. In practice, in cases where (1) holds approximately
only and M1 6¼M2, we estimate the translational displacement
through (3). In this case, the phase difference function is weighted
by the term M1M2. Due to the low-pass nature of images, the
weighting operation results in a correlation function with broad
peaks of large magnitude and a dominant peak whose maximum is
not always located at the correct displacement.

To tackle the problem, phase correlation (PC) [2] considers the
phase difference function solely

PCðuÞ ¼4 F�1
bI2ðkÞbI�1 ðkÞ
jbI2ðkÞkbI�1 ðkÞj

( )
¼ F�1

�
ejk

T t
�
¼ �ðu� tÞ: ð14Þ

Thus, the resulting correlation function will be a 2D Dirac located
at the unknown translation. In the presence of noise and dissimilar
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1. To be more precise, we assume hereafter that the images are of finite
energy such that correlation integrals such as the one in (2) converge.



parts in the two images, the value of the peak is significantly
reduced and the method may become unstable [1].

GC is an approach which lies somewhere between C and PC. In
the frequency domain, we have

GCðuÞ ¼ F�1f bG1ðkÞ bG�2ðkÞg: ð15Þ

Spatial-domain differentiation is equivalent to high-pass filtering
in the Fourier domain. Taking the FT in both parts of (12) yields

bGiðkÞ ¼ jkxbIiðkÞ � kybIiðkÞ: ð16Þ

Plugging (16) into (15) and using (4), we get

GCðuÞ ¼ F�1
�
M2

G1
ðkÞe�jkT t

�
; ð17Þ

where MGi
denotes the magnitude of bGi:

MGi
ðkÞ ¼ j bGij ¼ krMiðkÞ: ð18Þ

In this case, the weighting operation results in a peak of large
magnitude in the GC surface with very good localization accuracy.

3.1.2 Spatial Domain Analysis

From the definition of GC and using (12), we can easily derive

GCðuÞ ¼ G1;xðuÞ ? G2;xð�uÞ þG1;yðuÞ ? G2;yð�uÞ
þ jf�G1;xðuÞ ? G2;yð�uÞ þG1;yðuÞ ? G2;xð�uÞg:

ð19Þ

The imaginary part in the above equation is equal to zero;2

therefore

GCðuÞ ¼ G1;xðuÞ ? G2;xð�uÞ þG1;yðuÞ ? G2;yð�uÞ: ð20Þ

Using the polar representation of complex numbers, we define

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
i;x þG2

i;y

q
and �i ¼ arctanGi;y=Gi;x. Based on this representation, (20) takes
the form

GCðuÞ ¼
Z
R2
R1ðxÞR2ðxþ uÞ cos½�1ðxÞ � �2ðxþ uÞ�dx: ð21Þ

Equation (21) shows that GC is a joint metric that consists of
two terms, each of which can be an error metric itself. The first
term is the correlation of the gradient magnitudes Ri. The
magnitudes Ri reward pixel locations with strong edge responses
and suppress the contribution of areas of constant intensity level
which do not provide any reference points for motion estimation.
The second term is a cosine kernel applied on gradient orienta-
tions. This term is responsible for the Dirac-like shape of GC and
its ability to reject outliers induced by the presence of dissimilar
parts in the two images.

To show the latter point, let us first define the orientation
difference function

��uðxÞ ¼ �1ðxÞ � �2ðxþ uÞ: ð22Þ

For a fixed u 6¼ t, we recall that the images do not match, and
therefore, it is not unreasonable to assume that, for any spatial
location x0 2 R2, the difference in gradient orientation ��uðx0Þ
can take any value in the range ½0; 2�Þ with equal probability.
Thus, for u 6¼ t, we assume that ��uðxÞ is a stationary random
process yðtÞ, with “time” index t ¼4 x 2 R2, which 8t follows a
uniform distribution Uð0; 2�Þ. If we define the random process
zðtÞ ¼ cos yðtÞ, then it is not difficult to show that 8t the random

variable Z ¼ zðtÞ has a density function fZðzÞ ¼ 1=f�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

g
defined in ½�1; 1� with mean value EfZg ¼ 0.

The integral s ¼
R b
a zðtÞdt of the stochastic process zðtÞ is also a

random variable s. By interpreting the above as a Riemannian
integral and using the linearity of the expectation operator, we
conclude that

Efsg ¼
Z b

a

EfzðtÞgdt ¼
Z b

a

Z þ1
�1

zfZðzÞdz ¼ 0: ð23Þ

The above result shows that the integral
R
R2 cos ��uðxÞdx is equal

to zero in mean value.
We can derive a stricter result by further assuming mean-

ergodicity. In this case, the time average is equal to the mean. Thus,
we get

EðZÞ /
Z
zðtÞdt �

Z
R2

cos ��uðxÞdx ¼ 0;u 6¼ t; ð24Þ

which is essentially OC or, alternatively, GC after imposing Ri ¼ 1,
i ¼ 1; 2.

Experimentation has shown that the above assumptions hold
approximately for a wide range of image data sets. For example,
Fig. 1a shows the “Pentagon” image. We circularly shift the image
in two different fashions and, for each shift, we compute the
difference �� between the original and the shifted image. For each
case, Figs. 1b and 1c show the histogram with the distribution of
��. In both cases, �� is well-described by a uniform distribution,
and therefore, the value of

P
i cos ��ðxiÞ will be approximately

equal to zero.
Under the above assumptions, OC will be a Dirac function even

when the given images match only partially. To show this, we
model dissimilar parts by relaxing (1) as follows:

I1ðxþ tÞ ¼ I2ðxÞ; x 2 � � R2: ð25Þ

That is, after shifting I1 by t, I1 and I2 match only in x 2 �. From
the above analysis, we may observe that

OCðuÞ u6¼t ¼ 0:
�� ð26Þ

At u ¼ t, we have

OCðtÞ ¼
Z

�

cos ��tðxÞdxþ
Z
R2��

cos ��tðxÞdx ¼
Z

�

dx ð27Þ

since ��tðxÞ ¼ 0 8x 2 � and, in x 2 R2 � �, the two images do
not match. Overall, OC will be nonzero only for u ¼ t, and its
value at that point will be the contribution from the areas in the
two images that match solely.

Our analysis does not impose any bound to the number of
outliers. In fact, as their number increases, one would expect that
accuracy is enhanced since �� will better approximate the
uniform distribution. In practice, we expect that deviations from
our above assumptions will limit the dynamic range of the
algorithm. Additional sources of performance degradation are
errors in estimating the image gradients, possible image noise, and
aliasing effects. To conclude, we mention that the above analysis
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Fig. 1. (a) The 512� 512 pentagon image. (b)-(c) The distribution of the difference
in orientation �� between the original image and two circularly shifted versions.

2. This result is not exact for real image pairs where translations induce
nonoverlapping regions.



agrees with experimental results which have shown that gradient-
based correlation schemes are able to estimate translational
displacements reliably even when the overlap between the given
images is less than 20 percent. Note that phase correlation is able to
register images when the overlap is of the order of 40 percent [12].

3.1.3 Normalized Gradient Correlation

In the above analysis, we assumed Ri ¼ 1, i ¼ 1; 2. To optimize the
orientation difference function �� of the image-salient structures
solely, we introduce the normalized gradient correlation

NGCðuÞ ¼4 G1ðuÞ ? G�2ð�uÞ
jG1ðuÞj ? jG2ð�uÞj ¼

R
R2 G1ðxÞG�2ðxþ uÞdxR
R2 jG1ðxÞG2ðxþ uÞjdx : ð28Þ

Following the above analysis, (28) takes the form:

NGCðuÞ ¼4
R
R2 R1ðxÞR2ðxþ uÞ cos½�1ðxÞ � �2ðxþ uÞ�dxR

R2 R1ðxÞR2ðxþ uÞdx : ð29Þ

NGC has two interesting properties:

1. 0 � jNGCðuÞj � 1.
2. Invariance to affine changes in illumination.

The first property provides a measure to assess the correctness
of the match. To show the second property, consider I 02ðxÞ ¼
aI2ðxÞ þ b with a 2 Rþ and b 2 R. Then, by differentiation,
G02 ¼ aG2; therefore, the brightness change due to b is removed.
Additionally, R02 ¼ aR2 and ��02 ¼ ��2; thus, the effect of the
contrast change due to a will cancel out in (29). Note that if a 2 R,
we can achieve full invariance by looking for the maximum of the
absolute correlation surface.

3.1.4 Analysis in the Presence of Additive White Gaussian

Noise

In general, signal differentiation exacerbates noise effects. Never-
theless, under the assumption of white noise, correlation is not
affected by the degradation of the signal-to-noise ratio. Consider the
case of a 1D signal s corrupted by additive white Gaussian noise n:

rðtÞ ¼ sðtÞ þ nðtÞ; ð30Þ

where the noise is assumed to be uncorrelated with the signal. The
noise autocorrelation is given by Rnð�Þ ¼ �2

n�ð�Þ, where �2
n is the

noise variance. If we perform differentiation, then

dðtÞ ¼ sdðtÞ þ ndðtÞ; ð31Þ

where dðtÞ ¼4 drðtÞ
dt , sdðtÞ ¼4 dsðtÞ

dt , and ndðtÞ ¼4 dnðtÞ
dt . Obviously, nd is

uncorrelated with sd. Its autocorrelation is given by [13]

Rnd ð�Þ ¼ �
d2Rnð�Þ
d�2

¼ ��2
n

d2�ð�Þ
d�2

: ð32Þ

Assume that we are given two signals related by a shift �, that
is, s2ðtÞ ¼ s1ðtþ �Þ, and corrupted by additive white Gaussian
noise. The cross-correlation of d1 and d2 is

Rd1d2
ð�Þ ¼ Efd1ðtÞd2ðtþ �Þg
¼ Ef½sd1

ðtÞ þ ndðtÞ�½sd1
ðtþ � þ �Þ þ ndðtþ �Þ�g

¼ E sd1
ðtÞsd1

ðtþ � þ �Þf g � �2
n

d2�ð�Þ
d�2

ð33Þ

since noise and signals are assumed to be uncorrelated. The above
result shows that uncorrelated white noise does not affect the
estimation process. On the contrary, one can show that white noise
deteriorates the performance of phase correlation [2].

3.2 Robust Estimation of Rotation and Scaling

In our scheme, to estimate the rotation and scaling, we replace Ii
with Gi and then use MGi

as a basis to perform correlation in the
log-polar Fourier domain. This is possible since, from (8), we have
kr ¼ sk0r, and therefore,

MG2
ðkÞ ¼ krM2ðkÞ
¼ ð1=sÞk0rM1ðk0Þ
¼ ð1=sÞMG1

ðk0Þ
¼ ð1=sÞMG1

ð�k=sÞ:

ð34Þ

The use of MGi
is a key element of our approach. It equips the

method with accuracy and robustness. We discuss the above
arguments in detail as follows:

First, MGi
captures the frequency response of the image-salient

features solely. Areas of constant intensity level induce low-
frequency components which hinder the estimation of the rotation
and scaling. To illustrate this, consider the “Lena” image and the
scenario where the motion is purely rotational. To estimate the
rotation, we use the 1D representation Aðk�Þ ¼

R
Mðkr; k�Þdkr and

correlation over the angular parameter k�. The image contains a
wide range of frequencies and, consequently, A is almost flat
(Fig. 2b, dashed line). In this case, matching by correlation can be
unstable. On the contrary, AG (obtained by averaging MG)
efficiently captures possible directionality of the image-salient
features: The two main orientations of the edges in the image give
rise to two distinctive peaks in AG (Fig. 2b, solid line). Using AG to
perform correlation, matching will be more accurate and robust.

Second, conversion from Cartesian to polar/log-polar induces
a much larger interpolation error for low-frequency components.
Fig. 3 clearly illustrates the problem. We may observe that, near
the origin of the Cartesian grid, less data are available for
interpolation. It is also evident that, for Cartesian-to-log-polar
conversion, the situation becomes far more problematic since the
log-polar representation is extremely dense near the origin. Thus,
recently proposed DFT schemes [3], [4], [5] sample the FT on non-
Cartesian grids, which geometrically are much closer to the
polar/log-polar ones. Therefore, accuracy is enhanced, however,
at the cost of additional computational complexity. On the
contrary, our approach to alleviating the problem differs sub-
stantially: Eliminate the effect of low-frequency components by
using the representation MGi

. This comes naturally since the
bottom line from the “Lena” example is that discarding low
frequencies from the representation will also result in more robust
and accurate registration. Our algorithm uses the Cartesian FFT
and bilinear interpolation without oversampling, and hence, it is
significantly faster than the schemes in [3], [4], [5].
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Fig. 2. (a) “Lena” and (b) the 1D representations A (dashed line) and AG

(solid line).

Fig. 3. (a) Cartesian, (b) polar, and (c) log-polar grids.



Third, the periodic nature of the FFT induces boundary effects
which result in spectral leakage in the frequency domain.
Attempting to register images with no preprocessing typically
returns a zero-motion estimate (�0 ¼ 0, s ¼ 0). To reduce the
boundary effect, one can use window functions [14]. Assuming
that there is no prior knowledge about the motion to be estimated,
the reasonable choice is to place the same window at the center of
both images. In this case, windowing not only results in loss of
information but also attenuates pixel values in regions shared by
the two images in different ways. On the other hand, our scheme is
based on image gradients, and therefore, discontinuities due to
periodization will appear only if very strong edges exist close to
the image boundaries. Thus, unlike previously proposed schemes,
our method does not rely on image windowing.

Fourth, the estimation of the Fourier spectrum using FFT
routines is largely affected by aliasing effects. Rotations and
scalings in images induce additional sources of aliasing artifacts
which are aggravated by the presence of high frequencies. For
example, the commutativity of the FT and image rotation does not
hold in the discrete case: The DFT of a rotated image differs from
the rotated DFT of the same image resulting in rotationally
dependent aliasing [15]. Using filters with bandpass spectral
selection properties to compute Gi reduces the effect of high-
frequency noise and aliasing in the estimation process. Elementary
filter design suggests that we can obtain filters with such
properties by approximating the ideal differentiator with central
differences of various orders. Table 1 gives the filter coefficients for
central difference estimators up to third order.

3.3 The Algorithm

Based on our analysis in the previous sections, we propose a robust
gradient-based approach to scale-invariant image registration in
Algorithm 1.

Algorithm 1. ROBUST FFT-BASED SCALE-INVARIANT IMAGE

REGISTRATION ALGORITHM

Inputs: Two images Ii; i ¼ 1; 2 of size Xi � Yi related by a

translation t, rotation �0, and scaling s.

Step 1. Estimate Gi using central differences of second order and

zero-pad the images to size N �N , where N ¼ 2n and n is the

smallest integer such that N 	 maxfX1; Y1; X2; Y2g.
Step 2. Compute the N �N Cartesian FFT of Gi, and then, its

magnitude MGi
.

Step 3. Resample MGi
on an N=2�N=2 log-polar grid. Use

base ¼ expfN=2 logN=2g as the logarithmic base for the log

conversion along the radius axis and bilinear interpolation. Denote

by Li the corresponding log-polar Fourier magnitude

representations.

Step 4. From Li, extract the corresponding complex gradients GLi

using central differences of second order. Using the FFT with no

zero-padding and GLi , implement (28). Let ðm; kÞ be the location of

the maximum in the NGC surface. Estimate �0 (in degrees) and s as

�̂0 ¼ 180m=ðN=2Þ and ŝ ¼ basek.

Step 5. Scale down and rotate the zoomed image by �̂0 and �̂0 þ �
using bilinear interpolation. Use NGC in the spatial domain to

resolve the � ambiguity and estimate the residual translation t̂.

From our experiments, we observed that the choice of the filter
order is not critical; we suggest the use of the second-order central
difference estimator since it gave slightly better results. Addition-
ally, notice that, after Step 2, the distance of the available Cartesian
data (to be interpolated) from the origin is in the range ½0; N=2�.
Thus, our choice of an N=2�N=2 log-polar grid implies that no
oversampling takes place during the Cartesian-to-log-polar con-
version. The choice of the base ensures that the extrapolated data
will also span the range ½0; N=2�. As for the type of interpolation
used in the log-polar Fourier domain, we found that bilinear
interpolation, compared to nearest neighbor, enhanced the
performance of our scheme substantially, without adding sig-
nificant computational overhead.

4 PERFORMANCE EVALUATION

To evaluate the performance of our scheme, we used a popular
database with real images [16]. We examined two registration
problems: P.1: Translations and scalings. P.2: Translations, rota-
tions, and scalings. The database provides a set of 6 and 10 data
sets for P.1 and P.2, respectively. Each data set consists of a
collection of images capturing a particular scene. Depending on the
data set, the image resolution varies from 348� 512 to 650� 850.
We used approximately 1,000 image pairs, covering a wide range
of rotations and scale factors up to 6. Fig. 4 shows a representative
example of image pairs used in our experiments.

4.1 Comparison with State-of-the-Art

The target of this section is twofold. First, we present a comparison
between OC, PC, and the proposed NGC. For this purpose, we also
implemented the proposed scheme (Algorithm 1) using OC and
PC in the log-polar Fourier domain (Step 4). For all variants, we
preserved the original image resolution and used FFT length equal
to 1,024. Second, we assess the performance of the state-of-the-art
in FFT-based image registration. In particular, we implemented an
improved version of method given in [3] as follows: We replaced
the pseudopolar FFT with an accurate polar FFT recently proposed
in [17]. Next, to approximate the log-polar FT, we resampled the
polar FFT on the log-polar grid using bilinear interpolation.
Finally, to estimate the rotation and scaling, we used PC. Since the
method failed badly for most data sets without windowing, we
preprocessed all images using a Tukey window prior to applying
the algorithm.

To compare all schemes, we examined the maximum scale
factors that each method recovered successfully for each data set.
We obtained these factors by attempting to register the first image
in each data set (reference image) with all the other images in the
particular data set (target images). Table 2 gives an overview of the
results. For each data set, we present the maximum scale factor bs
and the corresponding rotation b�0 estimated by all schemes along
with the ground truth s and �0 as given in [16], [18].

The proposed scheme (using NGC) gave excellent results. For
most data sets (“Asterix,” “Belledonee,” “Bip,” “Laptop1,” “Bark,”
“Boat,” “East Park,” “East South,” “Laptop2,” “Resid,” and
“UBC”), the algorithm correctly estimated the maximum scale
change considered. For “Van Gogh,” the maximum scale factor
detected was only 3.4. The reason is explained in detail in the next
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TABLE 1
Filter Coefficients for Central Difference Estimators
of the Theoretical Differentiator Up To Third Order

Fig. 4. An example of image pairs considered in our experiments and registration
accuracy achieved by the proposed scheme. The reference image is scaled down,
rotated, and translated according to the estimated motion parameters, and then
superimposed on the target image.



section. Moreover, the method estimated translations and rotations
to nearly one pixel and degree accuracy, respectively.

Replacing NGC with OC gave considerably worse results. In
particular, the maximum scale factors recovered were approxi-
mately reduced by half compared to those detected using NGC. OC
is robust only if the orientation difference function �� follows a
uniform distribution for displacements other than the correct. This
is not the case for images resampled on a log-polar grid. More
specifically, near the origin, resampling induces artifacts since very
few data are available for interpolation in the original Cartesian
representation. The structure (and therefore, the orientation) of the
artifacts is more related to the Cartesian-to-log-polar conversion
rather than the image to be interpolated. The result is a bias in the
detection process. We conclude that to achieve robust performance,
both magnitude and orientation information must be considered.

Additionally, a simple visual inspection of Table 2 reveals the
performance improvement obtained using NGC instead of PC.
Using our NGC, we were able to detect successfully maximum
scale changes in the range ½4; 6�. Replacing NGC with PC, the
maximum scale factors recovered were limited in the range ½2:5; 4�.

Finally, the gain in performance compared to the state-of-the-art
is evident. Interestingly, we can observe that the implementation of

our scheme using PC in the log-polar Fourier domain gave
significantly better results. We conclude that the choice of
sophisticated methods to approximate the log-polar DFT is not a
critical element of robustness in FFT-based scale-invariant image
registration.

4.2 Performance Evaluation for All-Possible Image Pairs

In this section, we present an exhaustive evaluation of our scheme
by attempting to register all possible image pairs for problems P.1
and P.2. Since the method recovered rotations and translations
within very good accuracy, we examined the ability of the
method to detect scale changes solely. In particular, we grouped
together all possible scale factors into four groups as follows:
Small: s � 1:5, Moderate: 1:5 < s � 2:5, Large: 2:5 < s � 3:5, and
Very Large: 3:5 < s � 6. For each group and data set, we
computed the detection ratio ¼4 (number of correct detections)/
(number of image pairs).

Table 3 gives an overview of the obtained results. The
robustness of the proposed scheme is evident. With the exception
of “Laptop1” and “Van Gogh,” only a few misdetections were
observed for all data sets and scale changes considered.

For “Laptop1” and “Van Gogh,” the method appeared to be
unstable. Figs. 5a and 5b show an image pair taken from the
“Laptop1” data set, for which the method failed. We may observe
that the camera does not zoom in/out, it is the laptop that is
moving toward the camera. Therefore, there is no single global
rotation, scale, and translation to be recovered but two motions: the
scale change induced by the laptop movement and the zero motion
of the background (i.e., the background remains unchanged). This
yields two peaks in the resulting correlation function, but the
scheme in its current form just picks the maximum which
corresponds to the zero motion of the background. Figs. 5c and
5d show an image pair taken from the “Van Gogh” data set. The
image on the right has a white frame placed on a black
background. This yields very strong edge responses which bias
the detection process. This extreme case will rarely be encountered
in most real-world applications. In both cases, to reduce the
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TABLE 2
The Maximum Scale Factors and the Corresponding Rotations Recovered by the Proposed Scheme

Using NGC, OC, PC, and the State-of-the-Art, Respectively

TABLE 3
The Detection Ratio for Each Scale Range and Data Set

Fig. 5. Two examples of image pairs for which the method failed. (a)-(b) From the
“Laptop1” data set. (c)-(d) From the “Van Gogh” data set.



background effect, we used a Tukey window [14]. Table 4 shows
the obtained results. Only one misdetection occurred.3

4.3 Performance Evaluation in the Presence of Gaussian
Noise

In this section, we assess the performance of our scheme in the
presence of additive zero-mean white Gaussian noise. We con-
sidered two large noise levels: PSNR ¼ 20 and PSNR ¼ 14 dB. For
each PSNR and image pair, to assure the validity of the
classification results, we repeated the experiment using a total of
20 noisy image pairs. Table 5 outlines the overall results for each
PSNR value. For each scale range, we present the mean value of the
detection ratio.

For PSNR ¼ 20 dB, the method appeared to be very robust.
Compared to the noise-free case, we observed a degradation in
performance, only for s > 3:5. In the same scale range and for
PSNR ¼ 14 dB, the method failed. Nevertheless, the method
recovered scale factors up to 3.5 consistently for most data sets.

4.4 Performance Evaluation for Various Image
Resolutions

In this experiment, we assess the performance of the method for
various image resolutions. To simulate low resolution, we low-
pass filtered the original image and then decreased its dimensions
using nearest-neighbor interpolation [15]. We considered two cases
such that the maximum dimension Nmax of the low-resolution
image was 512 and 128, while the FFT length was also set to 512
and 128 respectively. Table 6 gives the overall results for each case.

For the typical case Nmax ¼ 512, no misdetections occurred for
s � 3:5. For the same resolution and s > 3:5, a slight degradation
in performance was observed. For very low-resolution images
(Nmax ¼ 128), the method appeared to be robust for scale
changes up to 2.5. In the range 2:5 < s � 3:5, performance was
still satisfactory.

5 APPLICATION TO FRONTAL VIEW FACE

REGISTRATION

Accurate registration of face data is a typical prerequisite for most
face recognition and verification algorithms. Even small alignment
errors may result in significant degradation performance; thus,
researchers usually report results after manual alignment, which is
often performed using eyes annotation.

Assuming frontal view faces, it is not unreasonable to model

global motion with a similarity transform which can be estimated

using the proposed scheme. Thus, we chose to perform a

representative set of registration attempts using the FA and DupII

data sets of the FERET database [19], [20]. Matching FA with DupII

results in very challenging registration cases since the assumption

for a similarity transform is often violated by other sources of

misalignment such as 3D rotations, nonuniform illumination

changes, occlusions, and facial expression variations.
The data sets share a total of 75 subjects. FA contains one face

image per subject while DupII at least two faces per subject and a
total of more than 200 face images. For each subject, we attempted
to register each face from FA with the corresponding faces from
DupII. Since no ground truth data are available, we present a
qualitative performance analysis of our scheme by calculating, for
each pair of faces, the absolute differences between the estimated
scale and rotation parameters and the ones obtained by performing
manual eye-based registration. In a similar spirit, we assess the
performance of SIFT-based registration [21] using RANSAC. For
each method, Figs. 6a and 6b show the histograms (obtained using
all pairs) with the distribution of the scale �s and rotation ��
absolute differences, respectively.

Our scheme outperforms SIFT-based matching in two aspects.

First, it appears to be more accurate. This is illustrated by the total

number of face pairs for which �s and �� are relatively small (for

example, �s � 0:1 and �� � 1
). Second, it is significantly more

robust. This is illustrated by the total number of face pairs for

which �s and �� are relatively large (for example, �s 	 0:15 and

�� 	 3
). Fig. 7 shows an example illustrating the registration

accuracy achieved by the proposed scheme.
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TABLE 4
Detection Ratio for “Laptop1” and “Van Gogh” Using Tukey Windowing

TABLE 5
The Overall Detection Ratio for PSNR Equal to 20 and 14 dB

TABLE 6
The Overall Detection Ratio for Various Image Resolutions

Nmax and FFT Length were set to 512 and 128, respectively.

Fig. 6. (a) The distribution of the scale difference �s. The width of each histogram
bin is 0.05 units, while its center is indicated by the numbering of the x-axis.
(b) The distribution of the rotation difference ��. The width of each histogram bin
is 0.5 units, while its center is indicated by the numbering of the x-axis. Blue color:
Proposed scheme. Yellow color: SIFT.

3. For the remaining performance evaluation results, we applied the
same Tukey window to “Laptop1” and “Van Gogh” only.

Fig. 7. Registration accuracy achieved by the proposed scheme for the application
of face registration. The zoomed-in image is scaled down, rotated, and translated
according to the estimated motion parameters, and then superimposed on the
zoomed-out image.



In general, assuming that the given images share a sufficient
number of image features, spatial domain registration schemes
[21], [22] are able to handle more challenging registration problems
than the proposed method does such as affine distortions and
severe partial matching scenarios. However, this is not the case for
face registration problems, where face data may substantially vary
not only due to different capturing conditions but also due to
significant appearance changes of the individual subjects. Our
scheme measures global similarity, and therefore appears to be
more suitable for handling cases where robust matching of local
features is not feasible.

Other advantages of our algorithm over SIFT-based registration
methods are:

. Computational efficiency. Our approach naturally draws
advantages from very recent advances in parallel im-
plementations of the FFT [23], [24], [25]. We expect that,
using such optimized architectures, near real-time perfor-
mance can be achieved. Even with a conventional 3 GHz
Pentium IV computer, to register a pair of 512� 512
images, a Matlab implementation of our algorithm requires
about 1 second, while Lowe’s precompiled code typically
requires about 4-12 seconds. For larger image sizes, the
gain in performance is consistently more than 10�.

. Constant time of processing. Our approach makes use of
all image information and has a fixed time of processing
which depends on the FFT resolution. On the contrary,
SIFT’s execution time depends on the image content and,
more specifically, on the number of detected keypoints.

. Ease of implementation. Contrary to spatial domain
methods, our scheme requires fine-tuning of very few
parameters with the most important being the FFT length.

6 CONCLUSIONS

We presented a gradient-based approach which operates in the
frequency domain for the estimation of scalings, rotations, and
translations in images. We attribute the robustness of the proposed
scheme to both the image representation used and the type of
correlation employed. We provided reasoning and experimenta-
tion which verify the validity of our arguments. There is no other
FFT-based technique which is able to recover large motions in real
images. A key feature of Fourier-based registration methods is the
speed offered by the use of FFT routines. The proposed scheme
estimates large motions accurately and robustly without the need
of excessive zero-padding and oversampling, thus without sacrifi-
cing part of the computational efficiency which typifies the
frequency-domain formulation.

The supplementary material, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputer
society.org/10.1109/TPAMI.2010.107, of our paper includes:

1. Additional experiments on a very challenging data set.
2. Comparison with the method in [5].
3. Comparison with the method in [7].
4. Additional registration examples from the Inria database.
5. Detailed results for each data set for Sections 4.3 and 4.4,

respectively.
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