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Discriminant Nonnegative Tensor
Factorization Algorithms

Stefanos Zafeiriou

Abstract—Nonnegative matrix factorization (NMF) has proven
to be very successful for image analysis, especially for object rep-
resentation and recognition. NMF requires the object tensor (with
valence more than one) to be vectorized. This procedure may result
in information loss since the local object structure is lost due to vec-
torization. Recently, in order to remedy this disadvantage of NMF
methods, nonnegative tensor factorizations (NTF) algorithms that
can be applied directly to the tensor representation of object col-
lections have been introduced. In this paper, we propose a series
of unsupervised and supervised NTF methods. That is, we extend
several NMF methods using arbitrary valence tensors. Moreover,
by incorporating discriminant constraints inside the NTF decom-
positions, we present a series of discriminant NTF methods. The
proposed approaches are tested for face verification and facial ex-
pression recognition, where it is shown that they outperform other
popular subspace approaches.

Index Terms—Face verification, facial expression recognition,
linear discriminant analysis, nonnegative matrix factorization
(NMF), nonnegative tensor factorization (NTF), subspace tech-
niques.

I. INTRODUCTION

W HEN an object is represented using a linear combina-
tion of bases, there are two main directions. The first

refers to dense coding. In computer vision, dense coding is
related to object representation using a combination of dense
bases (i.e., in case the image representations dense bases cor-
respond to dense 2-D matrices). A very popular dense coding
is the one that corresponds to bases images that are found by
the application of principal component analysis (PCA) to facial
images [1].

The other direction refers to sparse coding. In computer vi-
sion, sparse coding corresponds to object representation using
bases with components that are spatially distributed without any
connectivity. The representation using sparse bases was a first
step towards the implementation of part-based representation
[2]–[7]. Moreover, in [2], it is showed that linear sparse coding
of natural images yielded features qualitatively very similar to
the receptive fields of simple cells in primary visual cortex. Sub-
sequently, the very closely related model of independent com-
ponent analysis (ICA) [4] was introduced to give similar results
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[2], [3]. The problem with the above models [2], [4] is that they
permit the existence of negative entries to the representation.
This is in contrast with the fact that the firing rates of the simple
cells in primary visual cortex are nonnegative [6].

The nonnegativity of the firing rates and the fact that the rep-
resentation of an object into its parts is more naturally coded by
using only additions between the different bases [8]–[12] lead
to the introduction of nonnegative matrix factorization (NMF),
proposed in [5] and [13] using either the least squares error or
the Kullback–Leibler (KL) divergence for measuring the cost
of the approximation. Over the past few years, the NMF al-
gorithm and its alternatives have proven to be very useful for
several problems, especially for facial image characterization
and representation problems [13]–[20]. In [19], a general NMF
method has been proposed using generalized Bregman distances
and general multiplicative update rules for the factorization have
been introduced.

NMF, like PCA [21], represents a facial image as a linear
combination of basis images. NMF does not allow negative el-
ements in either the basis images or the representation coeffi-
cients used in the linear combination of the basis images. Thus,
it represents a facial image only by additions of weighted basis
images. The nonnegativity constraints correspond better to the
intuitive notion of combining facial parts to create a complete
facial image. The bases of PCA are the Eigenfaces, resembling
distorted versions of the entire face, while the bases of NMF
are localized features that correspond better to the notion of fa-
cial parts. The belief that NMF produces local representations
is mainly intuitive (i.e., addition of different nonnegative bases
using nonnegative weights). Recently, theoretical work has been
done [22] in order to determine whether NMF provides a correct
decomposition into parts and at the same time a set of require-
ments has been defined. This set of requirements is quite restric-
tive and cannot be satisfied by all kinds of image databases (e.g.,
facial image databases) [20]. Nevertheless, the sparsity of NMF
in various facial image characterization problems has been in
many cases verified [13], [15], [20].

The NMF algorithm has attracted a significant interest in
the scientific community [13]–[20]. Methods for enhancing the
sparsity (i.e., produce more local bases) of NMF have been
proposed in [7], [14], and [18]. One disadvantage of NMF is
that the object images should be vectorized in order to find
the nonnegative decomposition. This vectorization leads to
information loss, since the local structure of the images is lost.
In order to remedy this drawback, the 3-D nonnegative tensor
factorization (NTF) has been proposed [23]–[25]. In [23] and
[25], an image database is represented as a 3-valence tensor,
i.e., a 3-D cube that has as slices the 2-D images. Update rules
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for the factors, used in the decomposition, that guarantee a
nonincreasing behavior for the costs of the nonnegative decom-
position have been proposed. An other drawback of NMF that is
remedied through NTF is that, in general, NMF decompositions
are nonunique in contrast to NTF decompositions, which are
essentially unique under some mild conditions, for 3-valence
tensors [26], [27], while the uniqueness of tensor factorization,
with valence greater than 3 is even easier to satisfy. In this
paper, we extend the 3-D NTF to -valence NTF, providing
proofs of convergence.

NMF has been further extended to supervised alternatives, the
so-called discriminant-NMF (DNMF) or Fisher-NMF (FNMF)
methods [16], [17], [20], [28], [29] by incorporating discrimi-
nant costs in the decomposition (for simplicity reasons, we will
refer to all these methods [16], [17], [20], [28], [29] as DNMF
variants). The intuitive motivation behind DNMF methods is to
extract bases that correspond to discriminant facial regions for
facial expression recognition [16], face recognition [17], and fa-
cial identity verification [20]. The incorporation of constraints in
the NMF optimization problem is an active research topic [30],
[31].

In this paper, we start by generalizing the 3-valence NTF
framework proposed in [25] to arbitrary valence NTF decompo-
sition. Afterwards, we generalize the NMF method with gener-
alized Bregman distances [19] using arbitrary valence nonneg-
ative tensors. This results in the derivation of a set of general
multiplicative update rules for NTF. When applying the pro-
posed approach to a number of Bregman distances, we come
up with closed-form solutions for the update rules of the fac-
torization. Afterwards, we propose a novel supervised feature
extraction and object representation method by extending the
DNMF method using tensors. To do so, we present two frame-
works. In the first one, we use the KL divergence for measuring
the cost of the NTF approximation, which leads to the gener-
alization of the DNMF method proposed in [20] using arbi-
trary valence tensors. Afterwards, we apply discriminant con-
straints in the NTF framework that uses generalized Bregman
distances and we propose a general framework for discrimi-
nant nonnegative tensor factorization (DNTF). Moreover, we
provide closed-form DNTF solutions for a variety of Bregman
distances. Recently, tensor-based description of popular feature
extraction methods, such as linear discriminant analysis (LDA),
has gained much attention by the research community and the
advantages of tensorization have been discussed [32], [33]. The
proposed methods can be used for supervised decomposition
of arbitrary nonnegative tensor representations. The presented
DNTF methods have both the advantages of DNMF and NTF
methods. Finally, following the reasoning in [20], we propose
another novel discriminant scheme, i.e., NTF plus LDA.

Summarizing the contributions of this paper, they are as fol-
lows.

• The generalization of the NTF framework proposed in
[25] using arbitrary valence tensors. This is treated in
Section II-C. This generalization will help us derive the
DNTF update rules with KL divergence.

• The presentation of a novel general NTF framework using
generalized Bregman distances (in Section II-D). A very
similar method to this has been independently developed

in [49] and has been applied to musical instrument identi-
fication.

• The presentation of a novel DNTF framework by general-
izing the method in [20] using arbitrary valence tensors (in
Section III-B).

• The presentation of a novel general DNMF framework
using generalized Bregman distances (in Section III-C).

• Novel feature extraction method by combing NTF with
LDA (in Section IV).

The rest of this paper is organized as follows. The NMF and the
-valence NTF methods are outlined in Section II. The formu-

lation of the DNTF algorithms is described in Section III. The
way DNTF and NTF can be used in order to extract low-dimen-
sional features is presented in Section IV. In the same section,
NTF plus LDA schemes are also proposed. Experimental re-
sults are presented in Section V. Finally, conclusions are drawn
in Section VI.

II. FROM NONNEGATIVE MATRIX FACTORIZATION TO

NONNEGATIVE TENSOR FACTORIZATION

In this section, we will briefly describe the way NMF is for-
mulated and how it can be afterwards extended to NTF using
Kruskal’s tensors. In the following, let there be a database of
nonnegative vectors with a total of vectors (or ob-
jects). Let also each vector be a vectorized representation of a
tensor . In the simple case when is a tensor
representation of an image, i.e., , then is a colum-
nwise vectorization of .

A. Nonnegative Matrix Factorization

For two vectors and , the
KL divergence (or relative entropy) between them is defined as
[5]

(1)

It can be shown that, in general, KL divergence is nonnegative
and equal to zero if and only if its two arguments are equal. The
basic idea behind NMF is to approximate the image by a linear
combination of the elements of such that ,
where is a nonnegative matrix, whose columns sum
up to one. In order to measure the error of the approximation

, the divergence can been used [5].
In order to apply NMF in the database , the matrix

should be constructed, where is the th
element of the th vector in the database. In other words, the th
column of is the vector. NMF aims at finding two matrices

and such that

(2)

The vector after the NMF decomposition can be written as
, where is the th column of . Thus, the columns

of the matrix can be considered as basis images and the vec-
tors as the corresponding weight vectors. The vectors can
also be considered as the projected vectors of a lower dimen-
sional feature space for the original facial vector [20].
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The defined cost for the decomposition (2) is the sum of all
KL divergences for all images in the database. This way, the
following metric can be formed:

(3)

as the measure of the cost for factoring into [5].
The NMF factorization is the outcome of the following opti-

mization problem:

subject to

(4)

NMF has nonnegative constraints on both the elements of
and ; these nonnegativity constraints permit the combination
of multiple basis images in order to represent an image (e.g., a
face) using only additions between the different bases. The con-
straint is a convenient way of eliminating the de-
generacy associated with the invariance of under the trans-
formation , [13], for all the positive
diagonal matrices . By using an auxiliary function and the ex-
pectation–maximization (EM) algorithm, update rules for
and that guarantee a nonincreasing behavior of (3) can be
found in [5].

B. Nonnegative Matrix Factorization With
Generalized Bregman Distances

In [19], a general method for NMF using generalized
Bregman distances has been proposed. Let be a
continuously differentiable and strictly convex function defined
on a closed, convex set . The Bregman distance
between and is defined as1

(5)

where . The generalized Bregman distance for
the decomposition is

(6)

1For notation compactness, we will use the same notation� for denoting the
generalized Bregman distances between scalars, i.e., � ��� �� defined on� �
� , between vectors � ����� defined on � � � and between arbitrary
valence tensors � ����� defined on � � � .

and the total distance for the decomposition

(7)

Let us have . In [19], it has been proven
that the following function:

(8)

with is an auxiliary function for
.

Now by letting
and assuming a multiplicative separable [i.e.,

], then the following update rules:

(9)

(10)

guarantee a nonincreasing behavior of the cost function while
satisfying the nonnegativity constraints. Moreover, when the
function is not separable in a multiplicative way, then in this
case, update rules for the decomposition can be also derived
(one such example is the KL divergence [19]).

C. Nonnegative Tensor Factorization

In order to extend NMF to NTF, the concept of a matrix
(which is a 2-valence tensor) is extended, using

Kruskal’s tensor notation, to -valence tensors. Every object
has a nonnegative representation as a -valence tensor,
i.e., . Thus, the object database is -va-
lence tensor with . The dimension

is indexed by with . For example, the most
natural way to model a facial image database using a tensor is
by a 3-valence tensor , where is the
resolution of an image (i.e., height and width) and
is the number of images in the database. We will consider the
general case of -valence tensors. A -valence tensor is of
rank at most if it can be expressed as a sum of rank-1
Kruskal tensors, i.e., a sum of -fold outer-products:

, where .
NMF can be now extended to NTF by finding a number of

valence-1 tensors so that the tensor can be decomposed as

(11)
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with the elements , . In order
to measure the error of the above approximation, the KL diver-
gence, in the general -valence tensor case, is used as

(12)

The optimization problem of the NTF decomposition is

subject to

and (13)

The constraint , , is added by following the
same reasoning as the constraint in the case of the
NMF. That is, the normalization of the matrices
is a generalization of the normalization of the bases matrix in
the NMF algorithms for eliminating the degeneracy associated
with the invariance of under the transformation ,

, where is a diagonal matrix with positive di-
agonal elements and proving the convergence of NMF algo-
rithms to stationary limit points [13], [34]–[36]. Moreover, the
normalization used is similar to the one considered in [37] for
conic coding (the convex coding requires the normalization of
the weights matrix as well; in our case, the weights matrix is
the matrix ). It is clear that all the proposed algorithms con-
verge with or without normalization, since the proofs of conver-
gence do not depend on the normalization of the various factors.
Nevertheless, we have experimentally verified that when using
this normalization the limit point is closest to stationary solu-
tions. Additional comments about these constraints are given in
Section III-B.

The update rules that can guarantee a nonincreasing behavior
of the cost (12) for the factors with are shown in
(14) at the bottom of the page. The corresponding update rules
for the factors are given by

(15)

For , we also normalize the terms so as

(16)

in order to obey the summation to one constraint.
A proof of the above statements is given in Appendix I. This

proof will help us calculate the update rules for the DNTF
that will be presented in the following section. An implemen-
tation of the NTF algorithm based on the KL divergence for
3-valence tensors using only matrix operations can be found in
Appendix II.

When choosing 3-valence tensors, we meet the decom-
position proposed in [23]. The 3-D NTF decomposition has
proved to be more suitable for part-based object representation
than NMF [23]. Examples (such as the decomposition of the
Swimmer data set [22]), which demonstrate the superiority of
the 3-D NTF over the NMF, can be also found in [23]. In [22],
it has been pointed out that one of the reasons for choosing
NTF over NMF is the fact that tensor factorizations under some
mild conditions are unique for rank , in contrast to matrix
factorizations that are, in general, nonunique [23].

D. Nonnegative Tensor Factorization Using
Generalized Bregman Distances

In this section, we will analyze the NTF problem using gen-
eralized Bregman distances and afterwards we will propose dis-
criminant NTF methods using these distances. The approaches
proposed here are the generalization of the NMF methods that
have been proposed in [19] and briefly described in Section II-B.
A very similar method to this has been independently devel-
oped in [49] and has been applied to musical instrument iden-
tification. The problem is the same as (11) but now we will not
use KL divergence; instead, we consider the general form for a
Bregman distance

(17)

The generalized Bregman distance can be expanded as

(18)

(14)
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By applying the rule in (5), the distance (18) can be expanded
as

(19)

Before we proceed, let us define the matrices
(or, equivalently, ).

This notation will also help us in the next sections.
In order to find a multiplicative rule for the factors , we

will define an auxiliary function for general Bregman distances.
To do so, we start by observing that for all , we
can rewrite (19) as (20) shown at the bottom of the page, where

is a tensor of valence ,
which is the th slice tensor of the -valence tensor with

.
Now let us define the function

(21)

where the notation holds for the vector that corresponds
to the th row of the matrix (the corresponding notation for
the th column of is ). Using the definition of generalized

Bregman distance (5), the cost can be written as (22)
shown at the bottom of the page.

Now we will generalize the NMF framework [19] for defining
auxiliary functions. That is, the auxiliary function of
is the following:

(23)

where the is defined as follows:

(24)

The proof of the fact that is an auxiliary function
for can be found in Appendix III.

(20)

(22)
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In order to derive the update rules for the factors , we
need to calculate the partial derivatives , as shown at
the end of Appendix III. We have

(25)

As in [19], we are mainly interested in investigating the
Bregman distances for which is multiplicative separable [i.e.,

]

(26)

then the update rules that connect the iteration with the
previous iteration , for a multiplicative separable , are shown
in (27) at the bottom of the page.

For some special Bregman distances (such as KL divergence,
Frobenius and Itakura–Saito distance), we have the following
update rules. For the Frobenius norm (i.e., ), as
shown in (28) at the bottom of the page, an implementation of
the NTF algorithm based on Frobenius norm for 3-valence ten-
sors using only matrix operations can be found in Appendix IV.
For the Itakura–Saito distance [i.e., ], we have
(29) shown at the bottom of the page.

For the KL divergence, is not multiplicative separable and
is treated a bit differently from the others that have a multiplica-
tive separable (as shown at the end of Appendix III). The up-
date rules are shown in (30) at the bottom of the page.

For all the above update rules, the factors for
can undergo a similar normalization as (16) in order to obey the
summation to one constraint.

III. FROM DISCRIMINANT MATRIX FACTORIZATION TO

DISCRIMINANT TENSOR FACTORIZATION

Both the costs of NMF and NTF decomposition treat uni-
formly all the objects in the database. That is, there is no-class
information incorporated in the costs of the decomposition. In
[16], [17], [20], [28], and [29], an alternative discriminant cost
has been formulated by incorporating discriminant costs inside
the cost function to be minimized. This procedure has lead to
the so-called DNMF method. This decomposition has been mo-
tivated by the intuition of finding basis images that correspond
to discriminant parts of faces. That is, discriminant costs (which
have been the minimization of within-class variance and the
maximization of between-class variance) have been incorpo-
rated in a form that has been used in many NMF methods (e.g.,
local NMF (LNMF) [14]). The bases of discriminant NMF

(27)

(28)

(29)

(30)
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methods have been proved very useful for face verification, face
recognition, and facial expression recognition [16], [17], [20],
[28], [29]. For more details concerning the motivation behind
the discriminant NMF methods and how these methods have
been formulated, the interested reader may refer to [16], [17],
[20], [28], and [29]. Especially, for intuitive and experimental
verification of the fact that DNMF methods are well suited for
facial expression description and recognition, the interested
reader should refer to [29].

For formulating the DNMF and DNTF methods, let the data-
base be separated in different disjoint object classes. For the
th class, the notation is used. The class contains sam-

ples. For example, in our experiments, the different classes were
facial classes for face verification or facial expression classes for
facial expression recognition.

A. Discriminant Nonnegative Matrix Factorization

In order to formulate the DNMF method, we will use as an
example the facial image characterization problems (i.e., face
verification and facial expression recognition) that have been
considered in our experiments. Now, let the matrix that con-
tains all the facial images of the database be organized as fol-
lows. The th column of the database is the th image of the
th class. Thus, . The vector that corre-

sponds to the th column of the matrix is the coefficient vector
for the th facial image of the th class and will be denoted as

. The mean vector of the vectors for

the class is denoted as and the mean of
all classes as . Then, the within-class scatter
and between-class scatter matrices for the coefficient vectors
are defined as

and

(31)

A modified divergence has been constructed inspired from the
minimization of the Fisher criterion [20]. The discriminant costs
include the to be as small as possible while to be
as large as possible. The discriminant cost function is given by

(32)

where and with . Following the same EM
approach used by NMF [5] and LNMF [14] techniques, update
rules can be found in [20].

B. Discriminant Nonnegative Tensor Factorization

Using the notion of Kruskal tensors, we can extend the
DNMF method to the DNTF method. In DNMF, the dis-
criminant constraints concern the coefficients of the
decomposition. The problem now involves the selection of
proper coefficients of the NTF decomposition on which the

discriminant analysis should be applied. In order to answer
this question, let us examine the decomposition of a 3-valence
tensor. In this case, the tensor is a 3-D
matrix that is built of slices that are the images
and every image . Let ,

, and . The Khatri–Rao
product of the two matrices and is defined as

. Let
, then each vector is the

vectorized image , i.e., the image scanned columnwise.
That is, each vectorized image is a linear combination of the

with the coefficients of the decomposition taken
from the th row of the matrix . Thus, the weights of the
representation are stored in the matrix , while the bases are
found by combining the two matrices and .

In the same way as in the DNMF decomposition (or like
other methods, e.g., PCA plus LDA [38]), the discriminant anal-
ysis should be incorporated in the coefficients of the decom-
position, which in the 3-valence tensor case correspond to the
elements of the matrix . The th row of the
matrix corresponds to the coefficients of the image .
Following the same reasoning, we can generalize for the case
of -valence tensors that the matrix has rows
that correspond to coefficients of the decomposition of the ob-
jects . Let be a
column vector with the elements th row of the matrix . This
vector contains the representation coefficients of the object .
Using the above observations, it can be shown that the constraint

is the generalization of the
NMF constraint . The above constraint can be ex-
panded

(33)
where it can be simplified to the constraint ,

.
The objects are separated to different object

classes. The coefficient vectors are separated to classes
as well. The within- and between-class scatter

matrices for these vectors are defined as

and

(34)

where is the mean vector of the class of
vectors and the is the grand mean of

. The proposed divergence with the discriminant constraints is

(35)
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and the corresponding optimization problem of the factorization
is

subject to

and (36)

The update rules that guarantee a nonincreasing be-
havior of (35), under nonnegativity constraints, for ,
are given by (14) and (16). For , let

. Then, for the objects of
the th class (i.e., ), the update rules are given by (37)
shown at the bottom of the page, where is given by

(38)

The proof of convergence is provided in Appendix V. The above
procedure when having a 2-valence tensor degenerates to the
DNMF method in [20].

C. Discriminant Nonnegative Tensor Factorization
Using Generalized Bregman Distances

Let us define the following discriminant cost using general-
ized Bregman distances:

(39)

The optimization problem of a DNTF decomposition with
generalized Bregman distances is to minimize

subject to the nonnegativity constraints for all
the factors.

The function can be expanded as

(40)

Let us define and . Then,
we can define the discriminant cost

(41)

for which we should identify an auxiliary function.
It can be proven by using the results of Appendixes III and

V that the discriminant cost (41) has the following auxiliary
function:

(42)
Since and depend only on , the update rules
for the factors with are given by (27).

For the factors and when we have a multiplicative sep-
arable , the update rules can be found by solving (43) shown
at the bottom of the page, as shown in Appendix VI. Equation
(43) cannot provide us closed-form solutions for update rules
for every multiplicative separable Bregman distance. Moreover,
for the case of KL divergence, a closed-form solution cannot
be found by following the above framework. Thus, for the KL
divergence, only the framework in Section III-B can give us
closed-form update rules. The factors for can un-
dergo a similar normalization as (16) in order to obey the sum-
mation to one constraint.

For the Itakura–Saito distance, the update rules are given by

(44)

(37)

(43)



ZAFEIRIOU: DISCRIMINANT NONNEGATIVE TENSOR FACTORIZATION ALGORITHMS 225

where , , , and are defined in Appendix VI. In case
that is a 2-valence tensor, the above procedure describes
a general method for discriminant NMF using generalized
Bregman distances.

IV. FEATURE EXTRACTION AND NTF PLUS LDA SCHEMES

In this section, we will describe how low-dimensional fea-
tures can be derived from the NTF and DNTF decompositions
in test and training tensor object representations. Moreover, we
will complete the discriminant tensor decomposition framework
by introducing the NTF plus LDA framework following the
same reasoning as [20], where the NMF plus LDA scheme has
been proposed.

A. Feature Extraction

For feature extractions, we have generalized the feature ex-
traction in NMF [15], [20] using tensor-based notation and rep-
resentation. That is, in [15] and [20], a low-dimensional rep-
resentation of the image vector has been retrieved using
correlation with the image bases matrix , i.e., . In
the same manner, we can retrieve a low-dimensional represen-
tation of the tensor representation. Let be a
tensor representation. Then, by using the tensor decomposition

with , derived from the NTF
or the DNTF method, a low-dimensional representation can be
formed as . The th feature of the vector can be
found as

(45)

where for two tensors is the cor-
relation

(46)

Another way to extract features is by producing orthogonal
bases from the NTF or the DNTF decomposition (as has been
already proposed for NMF [50], [51]). Orthogonal bases have
been proven very useful in enhancing the performance of
well-known feature extraction techniques, such as the ones in
[39] and [40], in classification problems. We will describe the
method using the 3-valence tensor case and it can be easily
generalized in the -valence case. Let us have a 3-valence
tensor where is the number of objects in the
training database and every object is represented by a
matrix (2-valence tensor). Let the decomposition ,

, and . Let us create the matrix
whose columns are the vectorized objects of

the tensor , i.e.,

(47)

In order to create a set of orthonormal bases, we apply QR de-
composition to

(48)

The matrix contains orthonormal bases in its
columns.

In the case that a tensor object arrives, it is first
vectorized. Afterwards, features are extracted as

(49)

where is the pseudoinverse of given by
. For arbitrary valence tensors, the product

should be used in order to extract features. Then, the
above procedure for extracting features via orthogonal bases
can be applied in a straightforward manner.

B. NTF Plus LDA

Using the above feature extraction procedure, the NTF plus
LDA discriminant method can be formulated in the same
manner as the NMF plus LDA in [20]. That is, the training
low-dimensional feature representation can be used to
define the within and between scatter matrices and ,
respectively. These matrices can be calculated using the equa-
tions in (31), but now for the representations . Afterwards,
the multiclass discriminant Fisher discriminant criterion should
be defined and solved in order to find a linear discriminant
transformation

(50)

where is the trace matrix operator and is the number of
discriminant bases. For finding the optimal transform , one
may follow approaches like the ones proposed in [20], [38], and
[41]. For a tensor representation , the feature vector
derived from the NTF plus LDA approach is given by

(51)

V. EXPERIMENTAL RESULTS

We have conducted two sets of experiments in order to
compare the DNTF and NTF plus LDA approaches with other
approaches such as NMF, LNMF, NTF, DNMF, LDA, multi-
linear LDA, etc. To do so, we have chosen the face verification
problem, since DNMF and NMF plus LDA schemes have
already been tested for it [20]. Moreover, we have applied
the proposed approaches to the facial expression recognition
problem since DNMF has shown superior performance in that
problem [16].

Motivated by the experiments described in [23] and [25],
we anticipate that NTF methods would outperform the corre-
sponding NMF methods. Moreover, since an NMF plus LDA
algorithm achieved the best equal error rate (EER) in [20], we
anticipate that NTF plus LDA would have the best performance
in face verification problems. Finally, we anticipate that DNTF
algorithms would achieve the best performance in facial ex-
pression recognition problems, since DNMF algorithms outper-
formed all the other tested subspace algorithms in facial expres-
sion recognition [29], [42].
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Fig. 1. EER for configuration I of XM2VTS versus dimensionality for NTF and NTF plus LDA methods. The NTF are derived using KL divergence, Frobenius
(Fr.), and Itakura–Saito (It.) distance. Both correlation (Cor.) and orthogonal (Or.) feature extraction methods have been used.

Fig. 2. EER for configuration I of XM2VTS versus dimensionality for DNTF. The DNTF are derived using KL divergence and Itakura–Saito (It.) distance. Both
correlation (Cor.) and orthogonal (Or.) feature extraction methods have been used.

A. Frontal Face Verification Experiments

The experiments were conducted in the XM2VTS database
using the protocol described in [43]. The images were aligned
semiautomatically according to the eyes position of each facial
image using the eye coordinates. The facial images were down-
scaled to a resolution of 64 64 pixels. Histogram equaliza-
tion was used for the normalization of the facial image lumi-
nance. For the NTF-based methods and for multilinear LDA, an

tensor has been created in the training set.
The XM2VTS database contains 295 subjects, four recording

sessions, and two shots (repetitions) per recording session. It
provides two experimental setups, namely, configuration I and
configuration II [43]. Each configuration is divided into three
different sets: the training set, the evaluation set, and the test set.
The training set is used to create client and impostor models for
each person. The evaluation set is used to learn the verification
decision thresholds. In case of multimodal systems, the evalua-
tion set is also used to train the fusion manager [43]. For both

configurations, the training set has 200 clients, 25 evaluation im-
postors, and 70 test impostors. The two configurations differ in
the distribution of client training and client evaluation data. For
additional details concerning the XM2VTS database, an inter-
ested reader can refer to [43].

The experimental procedure followed in the experiments was
the one also used in [20]. For comparison reasons, the same
methodology using the configuration I of the XM2VTS database
was used. The performance of the algorithms is quoted by the
EER, which is the scalar figure of merit that is often used to
judge the performance of a verification algorithm. An interested
reader may refer to [20] and [43] for more details concerning the
XM2VTS protocol and the experimental procedure followed.

1) Comparing Various NTF and NTF Plus LDA Methods:
We have performed experiments with the various distances used
for building NTF methods. That is, KL divergence, Frobenius
distance, and Itakura–Saito distance have been used for defining
the various factorizations. Moreover, we have tested the two fea-
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Fig. 3. EER for configuration I of XM2VTS versus dimensionality for NMF, LNMF, DNMF,CSDNMF, NTF, and DNTF.

Fig. 4. EER for configuration I of XM2VTS versus dimensionality for PCA, PCA plus LDA, NMF plus LDA, NTF plus LDA, and multilinear LDA.

TABLE I
COMPARISON OF THE BEST EERS FOR ALL TESTED METHODS

ture extraction methods [i.e., the correlation based in (45) and
the second using orthogonal bases in (49)]. Finally, we have ap-
plied LDA in all NTF methods. The EER versus the dimension-
ality of the decomposition for the above mentioned methods is

Fig. 5. Difference images for each facial expression for a poser from the
Cohn–Kanade database.

shown in Fig. 1. As can be seen, the best verification perfor-
mance, when comparing the various NTF methods, has been
achieved when using Frobenius distance and orthogonal bases
(EER equal to 3.5%). As can also be seen, the application of
LDA on the features extracted by NTF highly increases the per-
formance giving a very low EER of 0.8%.

2) Comparing the Various DNTF Methods: In the second set
of experiments, the different DNTF methods proposed in this
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Fig. 6. Facial expression recognition rate versus dimensionality in Cohn–Kanade database for NTF methods.

Fig. 7. Facial expression recognition rate versus dimensionality in Cohn–Kanade database for DNTF methods.

paper have been tested. That is, we have tested DNTF methods
based on KL divergence and Itakura–Saito distance. We have
also applied both feature extraction methods. The best perfor-
mance has been achieved by DNTF with KL divergence, giving
an EER equal to 1.2%. The EER versus the dimensionality for
the above discriminant decomposition is shown in Fig. 2.

3) Comparing the Various Tested Methods: We have com-
pared our method with the NMF method in [5], LNMF [14],
DNMF [20], NTF [25], DNMF [20], class specific DNMF [20],
PCA [1], PCA plus LDA [38], and multilinear LDA [32].

In Fig. 3, a comparison of EERs between the methods based
on NMF and NTF is shown. That is, for NMF, LNMF, DNMF,
CSDNMF, NTF, and DNTF, the EER is plotted versus the di-
mensionality. As can be seen, the best results are when using
the proposed DNTF method with KL divergence.

In Fig. 4, the EER of the methods based on the addition of
an LDA step (i.e., PCA plus LDA, multilinear LDA, NMF plus
LDA, and NTF plus LDA) and PCA is plotted versus the dimen-
sionality of the new lower dimensional space. The best perfor-
mance was that of NTF plus LDA giving an EER 0.8%. The

NMF plus LDA has led to EER 1.5% and multilinear LDA
EER 1.6%. Thus, NTF plus LDA had the best performance.

Finally, a comparison of the best EERs for the different tested
approaches can be found in Table I.

B. Facial Expression Recognition Experiments

The database used for the facial expression recognition
experiments was created using the Cohn–Kanade database
[44]. This database is annotated with facial action units (FAUs).
These combinations of FAUs were translated into facial expres-
sions according to [45], in order to define the corresponding
ground truth for the facial expressions. All the subjects were
taken into consideration and their difference images, created
by subtracting the neutral image intensity values from the
corresponding values of the fully expressive facial expression
image, were calculated. Each difference image was initially
normalized, resulting in an image built only from positive
values. These images form a tensor of .
The difference images are used instead of the original facial
expressive images, due to the fact that in the difference images,
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Fig. 8. Facial expression recognition rate versus dimensionality in Cohn–Kanade database for the tested approaches.

the facial parts in motion are emphasized [46], [47]. In Fig. 5,
an example of the difference images for each facial expression
is depicted.

In the experimental procedure, five sets containing 20% of
the data for each of the six facial expression classes, chosen ran-
domly, were created. One set containing 20% of the samples for
each class is used as the test set, while the remaining sets form
the training set. After the classification procedure is performed,
the samples forming the test set are incorporated into the current
training set while a new set of samples (20% of the samples for
each class) is extracted to form the new test set. The remaining
samples create the new training set. This procedure is repeated
five times. The average classification accuracy is the mean value
of the percentages of the correctly classified facial expressions.
For all the tested methods, a simple nearest neighbor classifier
[15], [16] has been used for classifying an expression.

1) Comparison of NTF Methods: We have tested various
NTF methods proposed in this paper for facial expression
recognition. We have also tested two different feature extrac-
tion methods. In Fig. 6, the facial expression recognition rate
versus feature dimensionality is plotted. The best performance
has been achieved by NTF using KL divergence with orthog-
onal bases giving a total of 89.1%.

2) Comparison of DNTF Methods: From the tested DNTF
methods, the one with the best performance was the DNMF with
KL divergence using orthogonal bases for feature extraction,
achieving a total 94.33%. The facial expression recognition rate
for various DNTF methods is plotted in Fig. 7.

3) Comparison of the Various Tested Methods: The other
tested approaches were NMF, LNFM, DNMF, PCA, and multi-
linear LDA. In Fig. 8, the performance of tested approaches in
facial expression recognition using 200 basis images in every
approach is shown. PCA plus LDA, NMF plus LDA, and NTF
plus LDA give a total of five features (six class problem) and
had rather poor performance, thus being omitted from the plots.
The multilinear LDA can extract more than five features [32].
As can be seen, the proposed DNTF method outperforms all the
other tested approaches in facial expression recognition.

TABLE II
COMPARISON OF THE BEST EERS FOR ALL TESTED METHODS

The best facial expression recognition accuracies achieved
when using PCA, NMF, LNFM, DNMF, and multilinear LDA
were equal to 58.9%, 75.6%, 82.2%, 87%, and 85.7%, respec-
tively. Therefore, an increase of the recognition accuracy by
more than 7% (in comparison with the DNMF results) is intro-
duced due to the use of the proposed DNTF. The facial expres-
sion recognition rates for various tested methods are plotted in
Fig. 8. A comparison of the best facial expression recognition
rate for all the tested methods can be found in Table II.

Moreover, in order to understand if the proposed approach
is statistically significantly better than other tested approaches,
the McNemar’s test [48] has been used for the facial expres-
sion recognition experiments. The McNemar’s test is a null hy-
pothesis statistical test based on a Bernoulli model. If the re-
sulting value is below a desired significance level (for example,
0.02), the null hypothesis is rejected and the performance dif-
ference between two algorithms is considered to be statistically
significantly better. Using this test, it has been verified that the
proposed DNTF outperforms the other tested classifiers in the
demonstrated experiments, at a significant level less that

.

VI. CONCLUSION

In this paper, we have proposed a series of unsupervised and
supervised feature extraction methods for the decomposition of
tensor objects with nonnegative representations such as facial
images. The proposed methods do not require the vectorization
of the representation. Thus, the local structure of the objects is
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not lost while the supervised methods increase the discrimina-
tion between different object classes. First, we have extended
NMF algorithm using arbitrary valence Kruskal tensors. That is,
we have proposed an NTF method using KL divergence. After-
wards, we proposed a general NTF framework using generalized
Bregman distances. Moreover, we proposed a series of discrim-
inant NTF methods by incorporating discriminant constraints
inside various NTF decompositions, including a framework for
DNTF with generalized Bregman distances. The presented ex-
periments have shown that the features derived via the proposed
procedures outperformed many other subspace representations
in frontal face verification and in facial expression recognition
problems.

APPENDIX I
DERIVATION OF NTF DECOMPOSITION

Let be an auxiliary function for if
and . If is an auxiliary func-

tion of , then is nonincreasing under the update
[5]. With the help of the

auxiliary function, the update rules for can be calculated.
By fixing all rank-1 tensor matrices , the elements
of the matrix are updated by minimizing

defined in (32).
For , we define the function

(52)

This function is an auxiliary function for
. It is straightforward to show that
. In order to prove that , since

is convex, the following inequality
holds:

(53)
for all nonnegative that satisfy . By letting

, we
obtain

(54)

From (54), it is also straightforward to show that
. Thus, is an

auxiliary function of .
Now, by letting

(55)

the update rule for can be calculated as

(56)

Moreover, using the sum to one constraint, the above rules be-
come

(57)

The update rules for all other tensors can be calculated in the
same manner.

APPENDIX II
IMPLEMENTATION OF THE NTF ALGORITHM WITH KL

DIVERGENCE USING MATRIX OPERATIONS

At every iteration the following updates should be repeated
for all matrices , , and . The matrix update rules pre-
sented in the following are equivalent to the update rules in
(14)–(15).

For the matrix we update, it as

(58)

where , denotes the
elementwise matrix multiplication and denotes elementwise
matrix division. Matrix is a matrix, a matrix
with nonnegative elements. The
is the Khatri–Rao product, i.e.,

. Matrix is equal to .
The is the unfolding of the tensor as

...
. . .

... (59)
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and matrix

(60)

Finally, matrix is formulated by repeating the
vector

as a row times, i.e.,

...

The estimation is obtained from the matrix when it is
normalized so that every column sums to one.

Afterwards, for

(61)

where . The Khatri–Rao
product is a real nonnegative matrix.
Matrix . The tensor is now unfolded as

...
. . .

... (62)

and . Matrix
. The estimation is obtained from the matrix

when it is normalized so that every column sums to one.

Finally, for matrix

(63)

where . Matrix is equal to
. The tensor is now unfolded as

...
. . .

... (64)

and matrix .
The above procedure can be easily extended for arbitrary va-

lence tensors by using the Khatri–Rao product between
matrices.

APPENDIX III
AUXILIARY FUNCTION OF NTF WITH GENERALIZED

BREGMAN DISTANCES

Here it will be proven that is an auxil-
iary function for . First, it is easy to verify that

, since
. Now, in order to prove that , we

calculate as shown in (65) shown at
the bottom of the page. Since function is considered convex,

, and , it
is valid that (66) shown at the bottom of the page, holds.

Now, since we have proven that is an aux-
iliary function of in order to derive update rules that
guarantee a nonincreasing behavior of , we should cal-
culate as shown in (67) at the top of the next page,
and in case that we have , (68) shown at the
top of the next page, holds.

For the special case of KL divergence, in which
and hence , we start with (67) and

derive (69) shown at the top of the next page.

(65)

(66)
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(67)

(68)

(69)

APPENDIX IV
IMPLEMENTATION OF THE NTF ALGORITHM IN (28)

USING MATRIX OPERATIONS

The algorithm that is described in iteration form in (28) can be
implemented using only matrix operations as follows. At every
iteration, matrix is updated as

(70)

where , where .
The is a matrix that contains the unfolding of the tensor
as in (59) and .

For the second matrix , we have

(71)

where , where .
Matrix is the unfolding of the tensor as in (62) and

.
For the third tensor

(72)

where , where . The
is the tensor unfolding of the tensor as in (62) and

.
APPENDIX V

DERIVATION OF THE DNMF DECOMPOSITION

For the DNMF decomposition, the update rules for all the
rank-1 tensors, except for the tensors, are the same as in the
NTF decomposition. For (i.e., the coefficients of the decom-
position), it can be easily proven, using the results of previous
Appendix IV, that the function is an auxiliary
function of . The function is defined as

(73)
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From (54), it is straightforward to show that
. Thus, is an auxiliary function of
.

The update rules are derived from setting
equal to zero for all the

. Let be the th element of the th object for
the th class. That is, is the element stored in the

th column and row of the coefficients matrix and,
according to the organization of the database to different
classes, . The partial derivatives of the

and are given by

and

(74)
Using (74), we obtain the quadratic equation

(75)

The mean can be expanded as
. Now, (75)

can be expanded as (76) shown at the bottom of the page. We
could have expanded as well, since participates in it.
However, as in [20], in order to simplify the calculations, we as-
sume that has very small contribution in the grand mean

.

By solving the quadratic equation (75), the update rules for
can be derived from (77) shown at the bottom of the

page, where is given by

(78)

since

APPENDIX VI
AUXILIARY FUNCTION FOR DISCRIMINANT NONNEGATIVE

MATRIX FACTORIZATION WITH GENERALIZED

BREGMAN DISTANCES

In this appendix, we calculate the update rules for the DNTF
method with generalized Bregman distances. Let us define the
DNTF cost function using generalized Bregman distance

(79)

where is cost defined in (22).
As commented in Section III-C, the auxiliary function for

is the following:

(80)
For all , we have

(81)

(76)

(77)
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thus, for all , the update rules for are
given by (27). In the case that and is multiplicative
separable, we have

(82)

which after some minor calculations becomes

(83)

In the case of Itakura–Saito distance, (83) becomes

(84)

In order to simplify the notation, let

(85)

Equation (84) can be transformed to a quadratic equation as

(86)

and the solution that can guarantee a nonnegative decomposition
is

(87)
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