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Abstract—In this paper, a modified class of support vector
machines (SVMs) inspired from the optimization of Fisher’s dis-
criminant ratio is presented, the so-called minimum class variance
SVMs (MCVSVMs). The MCVSVMs optimization problem is
solved in cases in which the training set contains less samples that
the dimensionality of the training vectors using dimensionality re-
duction through principal component analysis (PCA). Afterward,
the MCVSVMs are extended in order to find nonlinear decision
surfaces by solving the optimization problem in arbitrary Hilbert
spaces defined by Mercer’s kernels. In that case, it is shown
that, under kernel PCA, the nonlinear optimization problem is
transformed into an equivalent linear MCVSVMs problem. The
effectiveness of the proposed approach is demonstrated by com-
paring it with the standard SVMs and other classifiers, like kernel
Fisher discriminant analysis in facial image characterization
problems like gender determination, eyeglass, and neutral facial
expression detection.

Index Terms—Facial images, Fisher’s discriminant analysis,
kernel methods, principal component analysis (PCA), support
vector machines (SVMs).

I. INTRODUCTION

PATTERN recognition systems employing support vector
machines (SVMs) [1] have drawn much attention due to

their good performance in practical applications and their solid
theoretical foundations. The applications of SVMs span several
disciplines such as object recognition [2], speech and speaker
recognition and verification [3], face verification, face detection
and gender determination from facial images [4]–[6], and spam
mail identification [7].

In binary classification problems, SVMs try to find a sep-
arating decision hyperplane with the maximum margin. The
margin is defined as the minimum distance of the class sample
distances to the decision hyperplane. The property that dis-
tinguishes SVMs from other nonparametric techniques, like
nearest-neighbor classification or neural networks, is that it
is based on structural risk minimization [1], [8], [9]. Typical
pattern recognition methods attempt to minimize the misclassi-
fication errors on the training set (empirical risk minimization).
Instead, SVMs minimize the structural risk, that is the prob-
ability of misclassifying a previously unseen sample drawn
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randomly from a fixed but unknown probability distribution. If
the Vapnik–Chervonenkis (VC) dimension [10] of the family
of decision surfaces is known, the theory of SVMs provides an
upper bound for the probability of misclassification of the test
set for any possible probability distributions of the data points
[1]. The main reason that has made SVMs so popular is that
they consist of quadratic optimization problems which can be
solved very efficiently and it is guaranteed that they will find
a global minimum. Another aspect of SVMs is that they can
be used in order to construct nonlinear decision surfaces. In
order to find such surfaces a nonlinear function is first used in
order to project the samples to a very high dimensional feature
space (this space has often the structure of a Hilbert space),
where the vectors are linearly or near-linearly separable and a
maximum margin hyperplane is found. The decision surface
can be found without having to compute explicitly the mapping

, but by only computing dot products in the Hilbert space by
means of the kernel trick [8], as long as the mapping satisfies
the Mercer’s conditions [11], [12]. The interested reader may
refer to [13] for details on the geometry of Hilbert spaces (also
referred as feature spaces).

The kernel trick procedure has been used to create the non-
linear generalizations of linear techniques, like principal com-
ponent analysis (PCA) [14] into kernel-PCA (KPCA) [15] for
nonlinear component analysis, Fisher’s linear discriminant anal-
ysis (FLDA) [16], [17] into kernel-Fisher’s discriminant anal-
ysis (KFDA) [18], [19] and recently into the so-called com-
plete kernel Fisher’s discriminant analysis (CKFDA) algorithm
[20] for discriminant learning and recognition, and independent
component analysis (ICA)[21] into kernel-ICA [22] for signal
separation. The interested reader may refer to [8], [20], and [23]
and to references therein for details about kernel based algo-
rithms.

In [18], a unified framework in terms of a nonlinearized
variant of the Rayleigh coefficients has been proposed and has
been applied in order to formulate nonlinear generalizations of
Fisher’s discriminant analysis and oriented PCA with kernel
functions. In order to overcome the fact that both calculation and
eigenanalysis of covariance matrices in arbitrary dimensional
Hilbert spaces are generally ill-posed problems, regularization
parameters have been incorporated in the optimization problem.

An effort to merge Fisher’s discriminant and SVMs has
been done in [6], where a modified class of SVMs has been
constructed, inspired by the optimization of the Fisher’s dis-
criminant ratio [24]. In detail, motivated by the fact that the
Fisher’s discriminant optimization problem for two classes
is a constraint least-squares optimization problem [6], [23],
[18], the problem of minimizing the within-class variance has
been reformulated, so that it can be solved by constructing the
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optimal separating hyperplane for both separable and nonsepa-
rable cases. In the face verification problem, the modified class
of SVMs has been applied successfully in order to weight the
local similarity value of the elastic graphs nodes according to
their corresponding discriminant power for frontal face veri-
fication [6]. It has been shown that it outperforms the typical
maximum margin SVMs [6].

In [6], only the case where the number of training vectors
was larger than the feature dimensionality was considered (i.e.,
when the within-class scatter matrix of the samples is not sin-
gular). In this paper, the method is extended in problems where
the feature vector dimensionality is larger than the number of
available samples, forming in that way the proposed minimum
class variance support vector machines (MCVSVMs). It will be
proven that the solution of MCVSVM problems in such cases
can be found through PCA dimensionality reduction. After-
ward, in order to define nonlinear decision surfaces obtained
through the MCVSVMs optimization, the problem will be
generalized in dot product Hilbert spaces. It will be proven that
the nonlinear MCVSVMs problem is equivalent to a linear one,
subject to an initial KPCA embedding of the training data. The
proposed methods have been inspired from the recent advances
in solving the Fisher’s discriminant optimization problem in
cases where the training set contains less samples than the fea-
ture dimensionality [20], [25], [26], where it has been proven
that, under KPCA, the KFDA is reformulated into an equivalent
linear FLDA. Moreover, we will show that MCVSVMs have
both the advantages of FLDA and SVMs. That is, MCVSVMs
consider class distribution characteristics in their optimization
problem but at the same time ensures separability, in contrast
to FLDA that does not ensure separability and to maximum
margin SVMs that take into consideration only the samples that
are in the class boundaries.

The proposed methods have been applied to facial image
characterization problems like gender determination, eyeglass
and neutral state detection. The experiments indicate the
power of the proposed approach against other techniques like
maximum margin SVMs [1] and CKFDA [20]. As will be
shown in the paper in small sample size problems (e.g., image
classification problems), the MCVSVMs should be defined and
solved in spaces defined from PCA or KPCA embeddings. The
motivations to apply the proposed method in image processing
applications and especially to facial image characterization
problems is that PCA and KPCA spaces have been proven
very rich in information for the specific applications and that
classifiers and feature extraction methods based on the min-
imization of within-class-variance (e.g., FLDA and KFDA)
have been very successfully applied. This was first shown in
the pioneer work of Turk and Pentland [27] and Kirby and
Sirovich [28], where PCA has been applied for facial feature
extraction, face recognition and face detection. Since then, PCA
plus LDA classifiers has been used for facial image retrieval
[16] and face recognition [17]. Moreover, PCA plus two-class
LDA classifiers have been used for eyeglass detection, in [17].
This is similar to the proposed approach, where a PCA plus
MCVSVMs classifiers have been tested for eyeglass detection.

In order to capture nonlinearities in facial image modeling,
KPCA has been widely used. In [29], KPCA plus SVM clas-

sifiers have been used for recognition. This is very similar to
our approach where KPCA plus MCVSVMs have been used in
various facial image characterization applications. Moreover, in
[20], it has been proven that the KFDA is equivalent to firstly
applying KPCA and afterward performing LDA. Moreover, it
has been shown that this scheme is very successful for facial
feature extraction and face recognition. In [30], Gabor-based
KPCA spaces have given very good results in face recognition.
Finally, one of the best gender determination algorithm is the
one presented in [4], where SVMs have been applied directly to
facial images.

Summarizing the contributions of this paper are as follows.
• The presentation of the MCVSVMs in their general form,

for the cases where the training set contains more samples
than the dimensionality of the samples and for the cases
where the training set contains less samples than the sam-
ples dimensionality.

• The generalization of MCVSVMs in arbitrary Hilbert
spaces, using Mercer’s kernels in order to define nonlinear
decision surfaces.

• The theoretical and experimental investigation of the rela-
tionship of MCVSVMs with SVMs and CKFDA.

The rest of this paper is organized as follows. The problem
will be outlined in Section II. In Section III, the linear case
of MCVSVMs is treated for the case where the number of the
training vectors is smaller than the samples dimension. In Sec-
tion IV, the problem will be defined and solved in reproducing
Hilbert spaces in order to find the nonlinear decision surfaces.
In Section V, a discussion is carried out about the relationship
of the proposed decision surfaces with maximum margin SVMs,
CKFDA, and the surfaces proposed in [6]. The experimental re-
sults are discussed in Section VI. Finally, conclusions are drawn
in Section VII.

II. PROBLEM STATEMENT

Let a training set with finite number of elements
be separated into two different classes and ,

with training samples and labels . The
simplest way to separate these two classes is by finding a sepa-
rating hyperplane

(1)

where is the normal vector to the hyperplane and
is the corresponding scalar term of the hyperplane, also

known as bias term [6]. The decision whether a test sample
belongs to one of the different classes and is taken by
using the linear decision function ,
also known as canonical decision hyperplane [1].

A. Fisher’s Linear Discriminant Analysis

The best studied linear pattern classification algorithm for
separating these classes is the one that finds a decision hyper-
plane that maximizes the Fisher’s discriminant ratio, also known
as Fisher’s linear discriminant analysis (FLDA)

(2)
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Fig. 1. FLDA decision hyperplane that cannot separate linearly the data even
though the data are linear separable. The MCVSVMs and SVMs solutions lead
to a hyperplane that fully separates the data.

where the matrix is the within-class scatter matrix defined
as

(3)

and are the mean sample vectors for the classes
and , respectively. The matrix is the between class scatter
matrix defined in the two-class case as

(4)

where and are the cardinalities of the classes and
, respectively, and is the total mean vector of the set . The

solution of the optimization problem (2) can be found in [24]. It
can be proven that the corresponding separating hyperplane is
the optimal Bayesian solution when the samples of each class
follow Gaussian distributions with same covariance matrices
[24]. The decision hyperplane that is derived from the FLDA
optimization problem (2) does not separate the data, using the
FLDA hyperplane, even though the training samples are linearly
separable [24]. This fact is illustrated in Fig. 1, where it is shown
that FLDA leads to a decision hyperplane that does not separates
the data even though the data are indeed linear separable. The
SVM and MCVSVM solution, that will be presented in the fol-
lowing, find a decision hyperplane, which in this case the two
solutions coincide, that separates linear the data.

B. Support Vector Machines (SVMs)

In the SVMs case, the optimal separating hyperplane is the
one which separates the training data with the maximum margin
[1]. The SVMs optimization problem is defined as

(5)

subject to the separability constraints

(6)

C. Minimum Class Variance Support Vector Machines
(MCVSVMs)

In [6], inspired by the maximization of the Fisher’s dis-
criminant ratio (2) and the SVMs separability constraints, the
MCVSVMs have been introduced. Their optimization problem
is defined as

(7)

subject to the separability constraints (6). It is required that the
normal vector satisfies the constraint . A de-
tailed discussion about this constraint will be given in Section V.
It is interesting to note here that, since the matrix is positive
semi-definite (i.e., , ) and, in particular,
if the within-class scatter matrix is not singular, then

. Thus, when is invertible, no solutions
with can be found. Fig. 2 describes pictorially the
solution of the optimization problems of SVMs, MCVSVMs,
and FLDA, where , and , are the
means and the variances of the classes and , respectively,
along the projection . As can be seen from the case illustrated
in Fig. 2, the SVMs solution does not take into consideration
the class distribution and results to a nonrobust solution. On the
other hand, the solution of the MCVSVMs takes into consider-
ation both the samples in the boundaries and the distribution of
the classes and gives a robust solution. FLDA gives a robust so-
lution in this problem, as well. Now, by examining Figs. 1 and
2, we have a first experimental indication that MCVSVMs is a
compromise between SVMs and FLDA. In the case where the
training vectors are not linearly separable, the optimum deci-
sion hyperplane is found by using the soft margin formulation
[1], [6] and solving the following optimization problem:

(8)

subject to the separability constraints

(9)

where is the vector of the non-negative slack
variables and is a given constant that defines the cost of the
errors after the classification. Larger values of correspond to
higher penalty assigned to errors. The linearly separable case
can be achieved when choosing . The solution of the
minimization of (8), subject to the constraints (9), is given by
the saddle point of the Lagrangian

(10)

where and are the vec-
tors of the Lagrangian multipliers for the constraints (9). The
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Fig. 2. Illustration of the SVM, MCVSVM, and FLDA optimization problems (a) search for a directionw, such that the projected samples are separable with the
maximum possible margin �; (b) search for a direction w, such that samples projected onto this dimension are separable and the variances (� and � )
of the projected samples is minimized; (c) search for a directionw, such that the distance of the centers of the classes projected onto this dimension (m and
m ) is maximized while the variances (� and � ) of the projected samples is minimized.

Karush–Kuhn–Tucker (KKT) conditions1 [34] imply that, for
the saddle point of , , , , , the following hold:

(11)

where the subscript denotes the optimal case and
is the vector denoting the class labels.

If the matrix is invertible, i.e., feature dimensionality is
less or equal to the number of samples minus two ,
the optimal normal vector of the hyperplane is given by (11)

(12)

By replacing (12) into (10) and using the KKT conditions (11),
the constraint optimization problem (8) is reformulated to the
Wolf dual problem

where is a -dimensional vector of ones and
. It is worth noting here that, for the typical

1KKT conditions are necessary for a solution in nonlinear programming to be
optimal. The necessary conditions for inequality constrained problem were first
published in the M.S. thesis of Karush [31], although they became renowned
after a seminal conference paper by Kuhn and Tucker [32]. For SVM based
optimization problems the interested reader may refer the tutorial paper [33].

maximum margin SVMs problem [1], the matrix is
. The corresponding decision surface is

(13)

The optimal threshold can be found by exploiting the fact
that for all support vectors with , their corre-
sponding slack variables are zero, according to the KKT condi-
tion (11). Thus, for any support vector with

, the following holds:

(14)

Averaging over these patterns yields a numerically stable solu-
tion for the bias term

(15)

As can be seen, an analytical solution for the optimal vector
is given only when the matrix is invertible. In Sections III

and IV it will be shown that:
• solutions for the MCVSVMs can be found when the matrix

is singular, which is the typical case in small sample
size problems (e.g., facial image classification problems)
where the dimensionality is much larger than the number
of available samples ;

• the MCVSVMs can be defined and solved in reproducing
Hilbert spaces in order to find the corresponding nonlinear
decision surfaces.

III. MCVSVM HYPERPLANES IN SMALL

SAMPLE SIZE PROBLEMS

When is singular, the optimal normal vector cannot
be found directly from (12). In this case, it will be proven that,
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through dimensionality reduction using PCA [27], the optimiza-
tion problem (8) under the separability constraints (9) is refor-
mulated into an equivalent one in a lower dimensional space,
where the MCVSVMs optimization problem can be solved.

Let the total scatter matrix be defined as

(16)

It can be proven that is bounded, compact, self-adjoint
and positive operator in [20]. Thus, according to the
Hilbert–Schmidt theorem [35], its eigenvectors system is an
orthonormal basis of . Let and be the complementary

-dimensional spaces spanned by the orthonormal eigenvec-
tors of that correspond to nonzero eigenvalues and to zero
eigenvalues, respectively. Thus, each vector can be
represented as with and [20], [25].
Let the linear mapping be defined as

(17)

It will be shown below that the optimization problem (8) subject
to the constraints (9) can be solved in instead of .

Theorem: Under the mapping the optimization problem (8)
subject to the constraints (9) is equivalent to

(18)

subject to the constraints

(19)

A proof of the above Theorem can be found in Appendix I.
Thus, the above problem can be solved in a subspace iso-

morphic to . In order to find this subspace, the matrix , with
columns the orthonormal eigenvectors of that correspond to
non-null eigenvalues will be used. The number of these eigen-
vectors is . In case that the training samples are lin-
early independent, . In many problems (e.g., facial
image characterization problems), it can be safely assumed that
the initial training vectors are linearly independent [20], [27].
Since the columns of form an orthonormal basis of ,
the space is isomorphic to the space , under the PCA
transform

(20)

which is an one-to-one mapping from to . Under this
mapping the optimization problem, (18) is equivalent to

(21)

where is the within-class scatter matrix of the projected sam-
ples in and is given by . The separability
constraints are reformulated as

(22)

where are the projected training vectors in .
Thus, without losing any information it is feasible to solve the
constraint optimization problem in and then move to
using (20). Although the new total scatter matrix ,
is not singular, the new within-class scatter matrix may be
still singular, containing one null eigenvector. This happens due
to the fact that in small sample size problems the rank of is

while the rank of is . Thus, in the space,
the is not invertible and contains one eigenvector that corre-
sponds to null eigenvalue. The matrix should become invert-
ible in order to find the MCVSVMs hyperplane. There are two
alternatives to achieve this. In the first case, in order to satisfy
the invertibility of the matrix , the matrix is formed using
the eigenvectors of . That is, along with the eigenvec-
tors that correspond to null eigenvalues, only the eigenvector
that corresponds to the lowest nonzero eigenvalue is discarded.
The alternative is to perform eigenanalysis to the singular
and to remove the eigenvector that corresponds to null eigen-
value. The optimization problem (21) subject to the separability
constraints (22) can be solved using the KKT conditions and
the Wolf dual problem (II-C) having now as matrix

, since the matrix is not singular. The op-
timal normal vector in is .
The final decision hyperplane in is given by

(23)

For the choice of , a strategy similar to the one used Section II
can be followed.

Summarizing the procedure, the training phase includes
an initial projection of the training samples to using

; the MCVSVMs optimization problem is solved in this
reduced space; for the test phase when a test vector arrives for
classification, it should be first projected to (using )
and finally classified using (23).

IV. MCVSVM NONLINEAR DECISION SURFACES

In this section, the optimization problem of the nonlinear
MCVSVM decision surfaces will be defined and solved. These
decision surfaces are derived from the minimization of the
within-class variance in a dot product Hilbert space subject
to separability constraints. The space will be called feature
space while the original space will be called input space
[13].



2556 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 10, OCTOBER 2007

Let us define the nonlinear mapping that maps
the training samples to the arbitrary dimensional feature space.
In this paper, only the case in which the mapping satisfies the
Mercer’s condition [1] will be considered. In the space the
within-class scatter is defined as

(24)

the mean vector is and the
mean vector is .

The problem (8), in the feature space is to find a vector
, such that

(25)

subject to the constraints

(26)

Fig. 3 demonstrates the optimization problem in the feature
space. The optimal decision surface is given by the minimiza-
tion of a Lagrangian similar to the one in the linear case (10).
The KKT conditions for the optimization problem (25) subject
to the constraints (26) are similar to (11) (use instead of
and instead of ). Since the feature space is of arbitrary
dimension, the matrix is almost always singular. Thus, the
optimal normal vector cannot be directly found from

(27)

It will be proven, as in the linear case, that there is a solution to
the optimization problem (25) subject to the constraints (26), by
demonstrating that there is a mapping that makes this solution
feasible. This mapping is the kernel PCA (KPCA) transform.
Let us define the total scatter matrix in the feature space
as

(28)

where . The matrix is bounded, com-
pact, positive and self-adjoint operator in the Hilbert space .
Thus, according to the Hilbert-Schmidt theorem [35], its eigen-
vectors system is an orthonormal basis of . Let and be
the complementary spaces spanned by the orthonormal eigen-
vectors of that correspond to nonzero eigenvalues and to zero
eigenvalues, respectively. Thus, any arbitrary vector ,
can be uniquely represented as with and

.
It can be proven, using the same reasoning as in the linear

case, that the optimal decision surface for the optimization
problem (25) subject to the constraints (26) can be found in the
reduced space spanned by the nonzero eigenvectors of .
The number of the nonzero eigenvectors of is ;

Fig. 3. Illustration of the nonlinear MCVSVMs. Search for a directionw in the
feature spaceH, such that samples projected onto this dimension are separable
and the variances (� and � ) of the projected samples are minimized.

thus, the dimensionality of is , and according
to the functional analysis theory [36], the space is isomor-
phic to the -dimensional Euclidean space . The
isomorphic mapping is

(29)

where is the matrix with columns the eigenvectors of that
correspond to non-null eigenvalues and is a one-to-one mapping
from onto .

Under this mapping, the optimization problem is reformu-
lated as

(30)

where is the within-class scatter matrix of the projected vec-
tors in given by (KPCA transform). The
equivalent separability constraints are

(31)
where are the projected vectors in using
the KPCA transform. For details on the calculation of the pro-
jections using the KPCA transform someone can refer to [15].
Under the projection to KPCA mapping, the optimal decision
surface for the optimization problem (25) subject to (26) in
can be found by solving the optimization problem (30) subject
to (31) in . It is very interesting to notice here that now
the problem falls in the linear MCVSVMs case (i.e., a linear
MCVSVMs optimization should be solved) with dimensionality

equal to . The problem here is that the matrix may
still be singular since the rank of is at most and the rank
of is at most . However, if the matrix is singular it
contains only one null dimension. Thus, in order to satisfy the
invertibility of along with the null eigenvectors of , only
one more eigenvector is discarded, which corresponds to lowest
nonzero eigenvalue (as in the linear case).

Now that is not singular the solution is derived in
the same manner as in Section II. That is, the optimization
problem (30) subject to the constraints (31) can be found
by solving the Wolf dual problem (Section II-C) having as

. The optimal normal vector of
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this problem is . The decision
surface in is given by

(32)

for the optimal choice of a similar strategy to Section II can
be followed.

Summarizing, in order to find the optimal decision surface
derived from the optimization problem (25) subject to the
constraints (26), the training samples should be projected to

using the KPCA transform (matrix ) and solve a linear
MCVSVMs problem there; for the test phase when a sample

arrives for classification it should be first projected to
using the KPCA transform (matrix ) and afterward classified
using (32).

V. RELATIONSHIP WITH OTHER DECISION SURFACES

In this section, a discussion about the relationship of the pro-
posed approach with other classifiers like SVMs [1], CKFDA
[20] and the decision surfaces proposed in [6] will be given.
This discussion will also lead to some explanations about the
constraint that has been employed in the opti-
mization problem (7).

A. Relation With SVMs

Let the within-class scatter matrix for a certain training set
be invertible, then by letting the optimization
problem (8) is equivalent to

(33)

as can be seen the constraint is equivalent to
in (7). The separability constraints are

(34)

where and
since the matrices , are real and positive definite ma-
trices. Then, the solution of the optimization (8) subject to the
constraints (9) is found by using the Wolf dual problem (II-C)
having as

(35)

which is a Wolf dual problem of the maximum margin SVMs
[1].

Fig. 4. Illustration of the effect of the projection to a vectorwwithw S w =

0. If w S w > 0 is valid for the vector w then all the training vectors of the
different classes are projected to one vector different for each class, while if
w S w = 0 all the training vectors are projected to the same point.

It can be easily verified that the within-class scatter matrix of
the is equal to where is the identity ma-
trix. From the above analysis, it can be verified that the problem
(33) subject to the constraints (34) is equivalent to a maximum
margin SVMs problem [1] in a transformed space with within-
class scatter matrix equal to . Thus, MCVSVMs converge
to maximum margin SVMs when the within-class scatter ma-
trix of the data tends to . Hence, all the useful theoretical
properties (i.e., minimization of the structural risk, unique solu-
tion) of the typical linear SVMs hold as well for the MCVSVMs.

It should be noted here that, if the condition
holds for the normal vector , then the previous analysis does
not hold for the decision hyperplanes/surfaces that are defined
by these normal vectors (i.e., they cannot be fitted in the SVMs
framework).

B. Relationship With Complete Kernel Fisher Discriminant
Analysis

In this section, the relationship of the proposed decision hy-
perplanes/surfaces with the ones derived through CKFDA [20]
is analyzed. Moreover, we will indicate some important aspects
of CKFDA that has not been treated in [20]. Only the linear case
will be considered, in our discussion, since the nonlinear case is
a direct generalization of the linear one using Mercer’s kernels.

As it has been proven in the Theorem in Section III, in order to
solve the linear or the generalized nonlinear constraint optimiza-
tion problems of MCVSVMs, the solution space can be mapped
in using PCA or KPCA in the linear or the nonlinear case,
respectively. Afterward, a linear optimization problem is solved.

In the linear case, presented in Section III, in order to move
from to , we have removed one column from the
matrix , which is the eigenvector that corresponds to the lowest
nonzero eigenvalue of . If this column is not removed from

, then contains one eigenvector that corre-
sponds to a null eigenvalue. Let be , then,
under the projection to , all the training samples are sepa-
rated without an error, while . In other words, the
canonical decision hyperplane (where

with and ) satis-
fies the separability criterion (6) while for the normal vector ,

and . That is, is a solution of the
optimization problem (7) subject to separability constraints (6)
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Fig. 5. (a) Maximum margin SVM hyperplane; (b) hyperplane of FLDA; (c) MCVSVM hyperplane.

if the constraint has been removed. This fact is
proven in Appendix II. Fig. 4 describes pictorially the effects of
the vectors for the case, and . It is
interesting to notice that the vector is the one given by the ir-
regular discriminant projection defined in [20] and [25] in case
of a two class problem. That is, the vector is the solution of
the optimization problem

subject to (36)

which is also a maximization point of the Fisher’s discriminant
ratio

(37)

that makes . This interesting attribute of the
irregular discriminant projections (i.e., the ones that satisfy

while ) that provide perfect sep-
arability in the training set has not been discussed in [20].
Summarizing the constraint is included in the
MCVSVMs optimization problem (7) and (8) due to the fol-
lowing.

1) The vectors , with cannot be fitted in the
SVMs framework (Section V-A).

2) The interesting vector with that satisfies
the separability criteria (6) can be found by eigenanalysis
only (Section V-B) and not by solving a quadratic opti-
mization problem.

We can now conclude that MCVSVMs method is a compro-
mise between FLDA and maximum margin SVMs.

C. Relationship With the Decision Surfaces in [6]

Finally, for completeness, a note about the decision surfaces
proposed in [6] will be made. These decision surfaces have
been inspired by the solution of the linear case where the
term is employed in the dual optimization problem
(13). This term has been expressed as an inner product of

the form , since is a posi-
tive definite matrix (assuming that the original within-class
scatter matrix of the data is not singular). Then, in [6],
instead of projecting using , the transformed vector

has been projected in the Hilbert space using

and the matrix
is used for solving the dual optimization problem, where

is the kernel function. Of course, the
decision surface provided in [6] is not the solution of the
optimization problem of MCVSVMs in Hilbert spaces [opti-
mization problem (25) subject to (26)].

VI. EXPERIMENTAL RESULTS

A. Experiments With Artificial Data

Artificial data have been used in order to show that the pro-
posed MCVSVM hyperplanes and surfaces are not so sensitive
to outliers as the ones defined by the maximum margin SVMs.
A comparison of the linear maximum margin SVMs against the
linear MCVSVMs in the separable case is shown in Fig. 5. The
advantage of the MCVSVMs method is that it takes into account
both the class distribution statistics and the vectors that are in the
boundaries, in contrast to the maximum margin SVMs that con-
siders only the vectors that lie in the boundaries.

In the case of a nonlinear decision surface, the suitability of
the proposed approach against the maximum margin SVMs can
be seen in Fig. 6. The SVMs approach totally failed to capture
the nonlinearity of the data [Fig. 6(a)]. The KFDA based sur-
face [Fig. 6(b)]) that considers the class distribution captured
the nonlinearity of the data. The proposed MCVSVMs captured
the underlying nonlinearity of the data [Fig. 6(c)].

B. Experiments on Gender Determination Using the XM2VTS
Database

Experiments were conducted using real data from the
XM2VTS database [37] for testing the proposed algorithm to
the gender determination problem. The luminance informa-
tion at a resolution of 720 576 has been considered in our
experiments. The images were aligned using fully automatic
alignment according to the eyes position coordinates that have
been derived by the method reported in [38]. The facial region
has been detected using the face localization and normaliza-
tion method proposed in [39]. The resolution of the resulting
“face-prints” was 85 156. As in the gender determination
experiments in [4], little or no hair information has been present
in the training and the test facial images. The power of the pro-
posed approach is demonstrated against the maximum margin
SVMs [1] and the CKFDA framework proposed in [20].

A total of 2360 “face-prints” (1256 males and 1104 females
images) have been used for our experiments. For each classifier,
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Fig. 6. Optimal decision surface using second order polynomial kernel and (a) maximum margin SVM, (b) regular CKFDA in [20], and (c) the proposed
MCVSVM.

Fig. 7. Average error rates for gender determination using various kernels: (a) polynomial kernel; (b) RBF kernel.

the average error rate was estimated with five-fold cross valida-
tion. That is, a five-way data set split with 4/5 used for training
and 1/5 used for testing, with four subsequent nonoverlapping
data permutations. The average size of the training set has been
1888 facial images (1005 male images and 883 female images)
and the average size of the test set has been 472 images (251
male images and 221 female images). The persons that have
been included in the training set has been excluded from the test
set. The overall error rate has been measured as
where is the total number of classification errors for the test
sets in all data permutations and is the total number of the
test images (here, ).

A similar experimental setup has been used in gender de-
termination experiments in [4], where it has been shown that
maximum margin SVMs outperform several other classifiers in
this problem. The interested reader may refer to [4] and to the
references therein for more details on the gender determina-
tion problem. For the experiments using the maximum margin
SVMs, the methodology presented in [4] has been used. The
typical kernels that have been used in our experiments have been
polynomial and radial basis functions (RBF) kernels

(38)

where is the degree of the polynomial and is the spread of
the Gaussian kernel.

The quadratic optimization problem of SVMs has been
solved using a decomposition similar to [5]. For the proposed

method, the original dimensional facial
image space has been projected to a lower dimensional image
space using the strategy described in Sections III and IV, and,
afterward, the quadratic optimization problem of MCVSVMs is
solved. For CKFDA, the regular and the irregular discriminant
projections are found using the method proposed in [20]. That
is, two classifiers were obtained, one that corresponds to regular
discriminant information and another one that corresponds to
the irregular discriminant information. In the conducted experi-
ments the irregular discriminant information, even though it has
no errors in the training set it has lead to over 15% overall error
rate in the test sets. Thus, irregular discriminant information
has not been used in the CKFDA method.

The experimental results with various kernels and parameters
are shown in Fig. 7. As can been seen in Fig. 7, the error rates
for the MCVSVMs are constantly lower than those achieved for
the other tested classifiers for all the tested kernels and param-
eters. Some of the support faces used for constructing the non-
linear MCVSVM surfaces are shown in Fig. 8. The lowest error
rates for the tested classifiers are summarized in Table I. The
best error rate for the MCVSVMs have been 2.86% while for
SVMs have been 4.4%. Confusion matrices for the best case of
MCVSVMs and SVMs can be found in Tables IV and V, respec-
tively. Finally, statistical analysis of the results can be found in
Section VI-E.

C. Eyeglass Detection Using the XM2VTS Database

The proposed algorithm has been also tested in eye-glass de-
tection from facial images. The output of the eye-glass detec-
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Fig. 8. Some of the Support faces used by the polynomial MCVSVMs of degree 3: (a) support men; (b) support women.

TABLE I
BEST ERROR RATES OF THE TESTED CLASSIFIERS AT GENDER DETERMINATION

Fig. 9. Experimental results for eyeglass detection using various kernels: (a) polynomial kernel; (b) RBF kernel.

TABLE II
BEST ERROR RATES OF THE TESTED CLASSIFIERS AT EYEGLASS DETECTION

tion can be used in order to assist eye-glass removal algorithms
[40] and/or in order to assist face verification systems in re-
ducing their false rejections, by asking the client to remove his
eyeglasses during the verification procedure. The procedure de-
scribed for the gender determination experiments has been also
followed in eyeglass detection. From the total of 2360 “face-
prints” of the XM2VTS database, 1518 are facial images with
eye-glasses and the 842 without eyeglasses. The average size of
the training set has been 1888 facial images (1215 images with
eyeglasses and 673 images without eyeglasses) and the average
size of the test set has been 472 images (303 facial images with
eyeglasses and 169 without eyeglasses).

Fig. 9 shows the experimental results with various kernels and
parameters. The best experimental results for the tested classi-
fiers are summarized in Table II. As can be seen, the proposed

nonlinear MCVSVMs technique outperforms all the other tested
classifiers in eyeglass detection as well. Confusion matrices for
the best case of MCVSVMs and SVMs can be found in Ta-
bles IV and V, respectively. Finally, statistical analysis of the
results can be found in Section VI-E.

D. Neutral Facial Expression Detection Using Cohn–Kanade
Database

The final experiment illustrates the application of the
MCVSVMs to the neutral facial expression detection problem.
Gabor-based features have been used for this specific problem
[30]. The recognition of the neutral facial expression can be
also used to assist face verification algorithms [41], that, in
general, are sensitive to the change of facial expressions and
ask the client to have a neutral facial expression when using the
verification system.

The Cohn–Kanade database [42] was used for the facial ex-
pression recognition in 6 basic facial expressions (anger, dis-
gust, fear, happiness, sadness and surprise) classes. This data-
base, is anottated with facial action units (FAUs). These combi-
nations of FAUs were translated into facial expressions, in order
to define the corresponding ground truth for the facial expres-
sions. In order to form the dataset to be used for the experiments,
every image sequence available was taken under consideration,
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Fig. 10. Neutral versus expressive Images of a poser of Kanade database.

Fig. 11. Experimental results for neutral detection determination using poly-
nomial kernel with various degrees.

for every subject (96 subjects in total). One image for the neu-
tral state and one image for the fully intensed facial expression
were chosen from each image sequence (first and last frame of
the image sequence respectively). Not all six facial expressions
were present for every subject. For example, a subject may have
three video sequences posing happiness and none posing sad-
ness, thus creating three samples for the happiness facial expres-
sion and three samples for the neutral facial expression, but none
for the sadness facial expression. The chosen images were used
to build the database, consisting of 704 images (equal number of
samples for the neutral and fully expressive images). In Fig. 10,
a sample of image sequences of one poser from this database, is
shown.

The same procedure, as in the previous experiments, has been
used for measuring the performance of the tested classifiers.
That is, from the total of 704 “face-prints” of the Cohn–Kanade
database the 352 are neutral facial images while the remaining
352 are expressive images. The average size of the training set
has been 564 facial images (282 expressive and 282 neutral im-
ages) and the average size of the test set has been 141 images
(70.5 neutral and 70.5 expressive images).

Fig. 11 shows the results of the regular CKFDA, SVMs, and
MCVSVMs approach for the polynomial kernel and for various
degrees. As can be seen, MCVSVMs approach is constantly
better than SVMs and CKFDA for all the tested polynomial ker-
nels. The lowest error rates are summarized in Table III. The
confusion matrices for MCVSVMs and SVMs in neutral state
detection can be found in Tables IV and V, respectively. Finally,
statistical analysis of the results can be found in Section VI-E.

TABLE III
BEST ERROR RATES OF THE TESTED CLASSIFIERS

FOR NEUTRAL STATE DETECTION

E. Statistical Significance of Results

In order to calculate if the difference in performance is not
just numerical, but also statistically significant, the McNemar’s
test [43], [44] has been used. McNemar’s test is a null hypoth-
esis statistical test based on a Bernoulli model. If the resulting

-value is below a desired significance level (for example, 0.02),
the null hypethesis is rejected and the performance difference
between two algorithms is considered to be statistically signif-
icant. The McNemar’s test has been widely used in order to
estimate the statistical significance between recognition algo-
rithms [20], [45]. We have used the best cases of SVMs and
MCVSVMs in all experiments in order to measure the signifi-
cance and it has been calculated that . Thus, the dif-
ference in performance, for the best cases, is statistically signif-
icant.

Apart from measuring the significance of the best results, we
have measured the significance in terms of mean classification
rate. To do so, we have used the method in [46]. We have mea-
sured that there is statistical significant difference between the
mean classification rate of SVMs and MCVSVMs in the gender
determination experiments for the tested parameters in the non-
linear case (all polynomial kernels with degrees from 2 to 6 and
RBF kernel parameters). This also holds for eyeglass detection
for all the tested parameters (all polynomials and RBF kernel
parameters). According to the presented experiments, we could
not conclude that the difference in performance, according to
mean recognition rate, between MCVSVMs and SVMs is sta-
tistical significant for the neutral state recognition experiments.

Finally, we have measured the sparseness of the MCVSVMs
solution. A machine learning algorithm yields a sparse result
when, among all the coefficients that describe the model, only a
small number are nonzero [1], [47]. In statistical learning theory,
sparsity is related to statistical robustness and fast optimiza-
tion. In order to have insights concerning the sparsity of the
approaches, we have measured the minimum and maximum
number of support vectors (SVs) in every experimental setup for
SVMs and MCVSVMs. For MCVSVMs, the number of SVs is
measured from the solution of their optimization problem, i.e.,
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TABLE IV
CONFUSION MATRICES FOR THE BEST RESULTS OF MCVSVMS FOR A) GENDER DETERMINATION, B) EYEGLASS DETECTION, AND C) NEUTRAL STATE

DETERMINATION

TABLE V
CONFUSION MATRICES FOR THE BEST RESULTS OF SVMS FOR A) GENDER DETERMINATION, B) EYEGLASS DETECTION, AND C) NEUTRAL STATE DETERMINATION

after the application of PCA or KPCA. From the conducted ex-
periments it has been verified that MCVSVMs are as sparse as
SVMs in the specific applications.

VII. CONCLUSION

A novel class of decision hyperplanes and surfaces, the
so-called MCVSVMs, inspired from the Fisher’s discrimi-
nant ratio and SVMs has been proposed. Solutions for the
MCVSVMs in cases when the training set contains less and
more samples that the feature dimensionality have been de-
scribed. Moreover, kernels have been employed in order to
define MCVSVM nonlinear decision surfaces. The relationship
of MCVSVMs with SVMs and FDA has been discussed and it
has been indicated both theoretically and by using artificial data
that MCVSVMs are a compromise between maximum margin
SVMs and FDA classifiers. It is believed that the proposed
classifiers have the advantages of both SVMs and FDA. Finally,
the described experiments have shown that the proposed class
of decision surfaces outperforms SVMs and CKFDA in gender
determination, eyeglass and neutral state detection from facial
images. Topics for further research on this subject include the
incorporation of robust statistics [48]–[50] for the calculation
of the within-class scatter matrix in order to cope with the
presence of possible outliers in the class distributions. Another
potential topic for further research is to meticulously study the
generalization ability of the proposed classifiers by carefully
combining the results in [51], where the generalization ability
of KPCA is discussed, with the results in [52], where the
generalization of soft-SVM classifiers is measured.

APPENDIX I
PROOF OF THEOREM IN SECTION III

Since and are both positive and , it is easy
to verify that for if and only if
and (or equivalently if and only if
and ). Let and be the complementary spaces
spanned by the orthonormal eigenvectors of that correspond
to nonzero to zero eigenvalues, respectively. Since is the null
space of for every , t is valid that (every

can be written, in a unique manner, as a linear combination
of the orthonormal eigenvectors of that correspond to zero
eigenvalues).

Since is a compact self-adjoint and positive operator in
any can be written as . Hence

(39)

Using the previous facts the Lagrangian (10) can be written
as

(40)

If for some , , then under the projection ,
for all training vectors , with then .
In other words, all the training vectors fall in the same point
under the projection . Thus, is a constant . Now,
using the KKT condition , the following is valid:

(41)

Hence, the Lagrangian (40) can be written as

(42)
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The optimum hyperplane can be written, in a unique
manner, as ( and ) and then
using the chain rule it can be easily shown that

(43)

Thus, the decision surface depends only on (an arbitrary
vector can be chosen). The separability constraints (9) can
be safely replaced by the separability constraints (18) and the
Theorem has been proven.

APPENDIX II
PROOF OF PROPOSITION 1

Proposition 1: Let and be the total scatter and the
within-class scatter matrix of a training set

with finite number of elements. If, for some ,
and , then the training samples under

the projection are separated without an error.
Proof: Since is not singular and positive, it

follows that . Since the projection
to all the training vectors fall in the same point,

and all the training vectors fall in the
point . Since , . Hence, under the
projection , all the projected vectors are separated without an
error.

REFERENCES

[1] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[2] M. Pontil and A. Verri, “Support vector machines for 3D object recog-

nition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 6, pp.
637–646, Jun. 1998.

[3] A. Ganapathiraju, J. E. Hamaker, and J. Picone, “Applications of
support vector machines to speech recognition,” IEEE Trans. Signal
Process., vol. 52, no. 8, pp. 2348–2355, Aug. 2004.

[4] B. Moghaddam and Y. Ming-Hsuan, “Learning gender with support
faces,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp.
707–711, May 2002.

[5] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines:
An application to face detection,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, San Juan, PR, 1997, pp. 130–136.

[6] A. Tefas, C. Kotropoulos, and I. Pitas, “Using support vector machines
to enhance the performance of elastic graph matching for frontal face
authentication,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 7,
pp. 735–746, Jul. 2001.

[7] H. Drucker, W. Donghui, and V. N. Vapnik, “Support vector machines
for spam categorization,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp.
1048–1054, Sep. 1999.

[8] B. Scholkopf and A. Smola, Learning With Kernels. Cambridge, MA:
MIT Press, 2002.

[9] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[10] V. N. Vapnik and A. J. Chervonenkis, “On the uniform convergence
of relative frequencies of events to their probabilities,” Theory Probab.
Appl., vol. 16, pp. 264–280, 1971.

[11] S. Saitoh, Theory of Reproducing Kernels and its Applica-
tions. Harlow, U.K.: Longman Scientific & Technical, 1988.

[12] R. C. Williamson, A. J. Smola, and B. Scholkopf, “Generalization per-
formance of regularization networks and support vector machines via
entropy numbers of compact operators,” IEEE Trans. Inf. Theory, vol.
47, no. 6, pp. 2516–2532, Sep. 2001.

[13] B. Scholkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Muller, G.
Ratsch, and A. J. Smola, “Input space vs. feature space in Kernel-based
methods,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1000–1017,
Sep. 1999.

[14] K. I. Diamantaras and S. Y. Kung, Principal Component Neural Net-
works. New York: Wiley, 1996.

[15] A. Scholkopf, B. Smola, and K. R. Muller, “Nonlinear component anal-
ysis as a Kernel eigenvalue problem,” Neural Comput., vol. 10, pp.
1299–1319, 1998.

[16] D. L. Swets and J. Weng, “Using discriminant eigenfeatures for image
retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8, pp.
831–836, Aug. 1996.

[17] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs.
Fisherfaces: Recognition using class specific linear projection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul.
1997.

[18] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, A. Smola, and K.-R.
Muller, “Constructing descriptive and discriminative nonlinear fea-
tures: Ayleigh coefficients in Kernel feature spaces,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 623–628, May 2003.

[19] L. Juwei, K. N. Plataniotis, and A. N. Venetsanopoulos, “Face recogni-
tion using Kernel direct discriminant analysis algorithms,” IEEE Trans.
Neural Netw., vol. 14, no. 1, pp. 117–126, Jan. 2003.

[20] J. Yang, A. F. Frangi, J. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA:
A complete kernel Fisher discriminant framework for feature extraction
and recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no.
2, pp. 230–244, Feb. 2005.

[21] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Anal-
ysis. New York: Wiley, 2001.

[22] F. R. Bach and M. I. Jordan, “Kernel independent component analysis,”
J. Mach. Learn. Res., vol. 3, pp. 1–48, 2002.

[23] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An
introduction to Kernel-based learning algorithms,” IEEE Trans. Neural
Netw., vol. 12, no. 2, pp. 181–201, Mar. 2001.

[24] K. Fukunaga, Statistical Pattern Recognition. San Diego, CA: Aca-
demic, 1990.

[25] J. Yang and J.-Y. Yang, “Why can LDA be performed in PCA
transformed space?,” Pattern Recognit., vol. 36, no. 2, pp. 563–566,
2003.

[26] H. Cevikalp, M. Neamtu, M. Wilkes, and A. Barkana, “Discrimina-
tive common vectors for face recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 1, pp. 4–13, Jan. 2005.

[27] M. Turk and A. P. Pentland, “Eigenfaces for recognition,” J. Cogn.
Neurosci., vol. 3, no. 1, pp. 71–86, 1991.

[28] M. K. Sirovich, “Application of the Karhunen-Loeve procedure for the
characterization of human faces,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 12, no. 1, pp. 103–108, Jan. 1990.

[29] K. I. Kim, K. Jung, and H. J. Kim, “Face recognition using Kernel
principal component analysis,” IEEE Signal Process. Lett., vol. 9, no.
1, pp. 40–42, Jan. 2002.

[30] L. Chengjun, “Gabor-based Kernel PCA with fractional power poly-
nomial models for face recognition,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 5, pp. 572–581, May 2004.

[31] W. Karush, “Minima of functions of several variables with inequalities
as side constraints,” M.Sc., Dept. Math., Univ. Chicago, Chicago, IL,
1939.

[32] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proc. 2nd
Berkeley Symp., Berkeley, CA, 1951, pp. 481–492.

[33] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Minining Knowl. Discovery, vol. 2, pp. 121–167,
1998.

[34] R. Fletcher, Practical Methods of Optimization, 2nd ed. New York:
Wiley, 1987.

[35] V. S. P. HutsonJ, Applications of Functional Analysis and Operator
Theory. London, U.K.: Academic, 1980.

[36] E. Kreyszig, Introductory Functional Analysis With Applications.
New York: Wiley, 1978.

[37] K. Messer, J. Matas, J. V. Kittler, J. Luettin, and G. Maitre,
“XM2VTSDB: The extended M2VTS database,” in Proc. 2nd
Inf. Conf. AVBPA, Washington, DC, Mar. 22–23, 1999, pp. 72–77.

[38] K. Jonsson, J. Matas, and Kittler, “Learning salient features for real-
time face verification,” in Proc. 2nd Inf. Conf. AVBPA, Washington,
DC, Mar. 22–23, 1999, pp. 60–65.

[39] C. Kotropoulos, A. Tefas, and I. Pitas, “Morphological elastic graph
matching applied to frontal face authentication under well-controlled
and real conditions,” Pattern Recognit., vol. 33, no. 12, pp. 31–43, Oct.
2000.

[40] C. Wu, C. Liu, H.-Y. Shum, Y.-Q. Xy, and Z. Zhang, “Automatic eye-
glasses removal from face images,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 3, pp. 322–336, Mar. 2004.

[41] Y. Tian and R. M. Bulle, “Automatic detecting neutral face for face au-
thentication,” in Proc. Spring Symp. Intelligent Multimedia Knowledge
Management, Aug. 20–23, 2003, pp. 24–26.



2564 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 10, OCTOBER 2007

[42] T. Kanade, J. Cohn, and Y. Tian, “Comprehensive databases for facial
expression analysis,” in Proc. IEEE Int. Conf. Face and Gesture Recog-
nition, Grenoble, France, Mar. 2000, pp. 46–53.

[43] J. Devore and R. Peck, Statistics: The Exploration and Analysis of
Data, 3rd ed. Pacific Grove, CA: Brooks Cole, 1997.

[44] I. McNemar, “Note on the sampling error of the difference between
correlated proportions or percentages,” Psychometrika, vol. 12, pp.
153–157, 1947.

[45] B. A. Draper, K. Baek, M. S. Bartlett, and J. R. Beveridge, “Recog-
nizing faces with PCA and ICA,” Comput. Vis. Image Understand., vol.
91, no. 1–2, pp. 115–137, 2003.

[46] H. Cevikalp, M. Neamtu, and M. Wilkes, “Discriminative common
vector method with Kernels,” IEEE Trans. Neural Netw., vol. 17, no.
6, pp. 1550–1565, Nov. 1996.

[47] F. Girosi, “An equivalence between sparse approximation and support
vector machines,” Neural Comput., vol. 10, pp. 1455–1480, 1998.

[48] G. Seber, Multivariate Observations. New York: Wiley, 1986.
[49] I. Pitas and A. N. Venetsanopoulos, Nonlinear Digital Filters: Princi-

ples and Applications. Norwell, MA: Kluwer, 1990.
[50] A. G. Bors and I. Pitas, “Median radial basis function neural network,”

IEEE Trans. Neural Netw. , vol. 7, no. 6, pp. 1351–1364, Nov 1996.
[51] J. Shawe-Taylor, C. K. I. Williams, N. Cristianini, and J. Kandola, “On

the eigenspectrum of the gram matrix and the generalization error of
Kernel-PCA,” IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2510–2522,
Jul. 2005.

[52] J. Shawe-Taylor and N. Cristianini, “On the generalization of soft
margin algorithms,” IEEE Trans. Inf. Theory, vol. 48, no. 10, pp.
2721–2735, Oct. 2002.

Stefanos Zafeiriou (M’04) was born in Thessa-
loniki, Greece, in 1981. He received the B.Sc. (with
highest honors) and Ph.D. degrees in informatics
from the Aristotle University of Thessaloniki, in
2003 and 2007, respectively.

He is currently a Researcher and Teaching As-
sistant at the Department of Informatics, Aristotle
University of Thessaloniki. He has coauthored more
than 20 journal and conference publications. His
current research interests lie in the areas of signal
and image processing, computational intelligence,

pattern recognition, and computer vision.
Dr. Zafeiriou received various scholarships and awards during his undergrad-

uate and doctorate studies.

Anastasios Tefas received the B.Sc. and Ph.D.
degrees in informatics from the Aristotle University
of Thessaloniki, Thessaloniki, Greece, in 1997 and
2002, respectively.

Since 2006, he has been an Assistant Professor
with the Department of Information Management,
Technological Educational Institute of Kavala. From
1997 to 2002, he was a Researcher and Teaching
Assistant in the Department of Informatics, Uni-
versity of Thessaloniki. From 2003 to 2004, he was
a temporary Lecturer in the Department of Infor-

matics, University of Thessaloniki, where he is currently a Senior Researcher.
He has coauthored over 50 journal and conference papers. His current research
interests include computational intelligence, pattern recognition, digital signal
and image processing, detection and estimation theory, and computer vision.

Ioannis Pitas (SM’94–F’07) received the Diploma
of electrical engineering and the Ph.D. degree in
electrical engineering from the Aristotle University
of Thessaloniki, Thessaloniki, Greece, in 1980 and
1985, respectively.

Since 1994, he has been a Professor at the De-
partment of Informatics, Aristotle University of
Thessaloniki, where he served as Scientific Assis-
tant, Lecturer, Assistant Professor, and Associate
Professor in the Department of Electrical and Com-
puter Engineering from 1980 to 1993. He served

as a Visiting Research Associate at the University of Toronto, Toronto, ON,
Canada; the University of Erlangen-Nuernberg, Nuernberg, Germany; and
the Tampere University of Technology, Tampere, Finland. He also served as
Visiting Assistant Professor at the University of Toronto and Visiting Professor
at the University of British Columbia, Vancouver, BC, Canada. He was a
Lecturer in short courses for continuing education. He has published 140
journal papers, 350 conference papers, contributed to 18 books in his areas of
interest, and edited or co-authored another five. He is the co-author of the books
Nonlinear Digital Filters: Principles and Applications (Norwell, MA: Kluwer,
1990),3-D Image Processing Algorithms (New York: Wiley, 2000), Nonlinear
Model-Based Image/Video Processing and Analysis (New York: Wiley, 2001),
and author of Digital Image Processing Algorithms and Applications (New
York: Wiley, 2000). He is also the editor of the book Parallel Algorithms
and Architectures for Digital Image Processing, Computer Vision and Neural
Networks (New York: Wiley, 1993). His current interests are in the areas of
digital image and video processing and analysis, multidimensional signal
processing, watermarking, and computer vision.

Dr. Pitas has been member of the European Community ESPRIT Parallel Ac-
tion Committee. He was Co-Editor of the journals Multidimensional Systems
and Signal Processing and was Technical Chair of the 1998 European Signal
Processing Conference. He has also been an invited speaker and/or member of
the program committee of several scientific conferences and workshops. He was
an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,
Associate Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS, and As-
sociate Editor of the IEEE TRANSACTIONS ON IMAGE PROCESSING. He was the
General Chair of the 1995 IEEE Workshop on Nonlinear Signal and Image
Processing and General Chair of IEEE International Conference on Image Pro-
cessing 2001.


