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Abstract—In this, paper general solutions for nonlinear non-neg-
ative component analysis for data representation and recognition
are proposed. Motivated by a combination of the non-negative ma-
trix factorization (NMF) algorithm and kernel theory, which has
lead to a recently proposed NMF algorithm in a polynomial fea-
ture space, we propose a general framework where one can build a
nonlinear non-negative component analysis method using kernels,
the so-called projected gradient kernel non-negative matrix factor-
ization (PGKNMF). In the proposed approach, arbitrary positive
definite kernels can be adopted while at the same time it is ensured
that the limit point of the procedure is a stationary point of the op-
timization problem. Moreover, we propose fixed point algorithms
for the special case of Gaussian radial basis function (RBF) ker-
nels. We demonstrate the power of the proposed methods in face
and facial expression recognition applications.

Index Terms—TFace recognition, facial expression recognition,
kernel methods, non-negative matrix factorization, subspace
techniques.

1. INTRODUCTION

N the computer vision and pattern recognition fields, one
I of the most popular ways to represent an object is by ex-
pressing it as a linear combination of basis objects. The basis
objects are in many cases used to extract features and/or find
a low dimensionality object representation to be subsequently
used for recognition. The basis can also be used for compressing
the object representation. One of the most popular methods to
find a basis is the principal component analysis (PCA) [1]. PCA
has attracted a lot of attention in computer vision and especially
in recognition after its application to facial image representa-
tion [2]. More specifically, its use for face detection and recog-
nition problems was of great interest [3]. Another very popular
method, that works on the statistical independence of the basis
objects or the weights of the representation, is the independent
component analysis (ICA) [4]. ICA has been widely used for the
problem of face recognition [5], [6]. In this paper, we deal with
the problem of object representation using images and we are
particularly interested in face and facial expression recognition
problems.

Manuscript received March 16, 2009; revised October 23, 2009. First pub-
lished December 18, 2009; current version published March 17,2010. This work
was supported by the EPSRC project EP/E028659/1 Face Recognition using
Photometric Stereo. The associate editor coordinating the review of this manu-
script and approving it for publication was Dr. Miles N. Wernick.

The authors are with the Department of Electrical and Electronic Engineering,
Imperial College London, South Kensington Campus, London SW7 2AZ U.K.
(e-mail: s.zafeiriou @imperial.ac.uk; maria.petrou@imperial.ac.uk).

Digital Object Identifier 10.1109/TTP.2009.2038816

In [7] and [8], a decomposition of objects using a linear basis
was proposed by considering non-negativity constraints for both
the basis and the weights of the linear combination, the so-called
non-negative matrix factorization (NMF). NMF, like PCA, rep-
resents an image as a linear combination of basis images. NMF
does not allow negative elements in either the basis images or
the representation coefficients used in the linear combination of
the basis images. Thus, it represents an image only by additions
of weighted basis images. The non-negativity constraint arises
in many real image processing applications, since the pixels in a
grayscale image have non-negative intensities. As stated in [8],
an object (represented as an image) is more naturally coded into
its parts by using only additions of the different bases. More-
over, the non-negativity constraints correspond better to the in-
tuitive notion of combining facial parts to create a complete fa-
cial image. Apart from that, in [8], NMF has been also moti-
vated by biological indications, like the fact that the firing rates
in visual perception neurons are non-negative. Over the past few
years, the NMF algorithm and its alternatives have proven to
be very useful for several problems, especially for facial image
characterization and representation problems [8]-[15].

Both NMF and PCA are linear models; thus, they may fail
to model efficiently the nonlinearities that are present in most
real life applications. Nonlinear component analysis is a re-
search topic that has been greatly developed in the past decade
[17]-[19]. This is mainly attributed to the great success of
combining Support Vector Machines (SVMs) with kernels [20].
Since then, kernels have been widely used for finding nonlinear
counterparts of PCA, the so-called Kernel Principal Compo-
nent Analysis (KPCA) [17] and for discovering nonlinear high
order dependencies of data, the so-called Kernel Independent
Component Analysis (KICA) [18]. Recently, a nonlinear coun-
terpart of NMF has been proposed, the so-called Polynomial
non-negative Matrix Factorization (PNMF) [19]. The PNMF
has been partly motivated by biological issues like yielding
a model compatible with the neurophysiology paradigms
(non-negativity constraints and nonlinear image decomposition
[21]-[23]) and has been used to discover higher-order corre-
lations between image pixels that may lead to more powerful
latent features. For more details on the motivation of PNMF the
interested reader is referred to [19].

In PNMF, the original images are initially projected into
some polynomial feature spaces of arbitrary dimensionality
using polynomial functions. The problem is formulated as
follows: find a set of non-negative weights and non-negative
basis vectors, such that the nonlinearly mapped training vectors
can be written as linear combinations of the nonlinear mapped
non-negative basis vectors. These basis vectors have high

1057-7149/$26.00 © 2010 IEEE



ZAFEIRIOU AND PETROU: NONLINEAR NON-NEGATIVE COMPONENT ANALYSIS ALGORITHMS

resemblance with the so-called pre-images of the kernel based
methods [24]-[26]. For more details regarding the notion of
pre-images, the interested reader is referred to [24]-[26]. The
PNMEF has followed a similar to the original NMF approach for
solving the optimization problem [7]. That is, a proper auxiliary
function was defined and minimized in order to define proper
multiplicative updating rules that guaranteed the nonincreasing
evolution of the cost function. The PNMF method proposed
in [19] uses as nonlinear functions only polynomial kernels.
Moreover, the cost function, even though it was defined as a
nonlinear function of the images using arbitrary degree polyno-
mial kernels, was approximated by a quadratic function. Under
these two simplifications, in [19], multiplicative updating rules
were proposed for solving the defined optimization problem.
These updating rules only guaranteed the nonincreasing evolu-
tion of the cost function while it was not proven that the limit
point was a stationary point of the optimization procedure.
Stationarity is an important property of a limit point since every
local minimum has to be stationary. A lot of research has been
recently conducted in order to define methods that ensure the
stationarity of NMF, since the original NMF algorithm [7] has
been criticised for not possessing such a property [27]-[30].
Finally, we should comment that in [31] the original NMF
method was applied to the kernel matrix of the original data.
This is different from the approach proposed in [19] and the ap-
proach followed in this paper. In our case, the problem is formu-
lated as follows: find a set of non-negative weights and non-neg-
ative basis vectors, such that the non-negative training vectors
(under the nonlinear mapping) can be written as a linear com-
bination of the learned non-negative nonlinearly mapped basis
vectors. On the other hand, in [31] the aim was to find a non-neg-
ative decomposition of the kernel matrix which was just the ap-
plication of NMF to a non-negative matrix of inner products.

In this paper, we propose a general method for nonlinear

non-negative component analysis using arbitrary positive def-
inite kernels (Mercer’s kernels [24]), in order to remedy the
above mentioned limitations of PNMF [19] and the NMF of
kernel matrices [31]. Moreover, we present a method for non-
linear non-negative component analysis using Gaussian RBF
kernels. Summarizing, the contributions of the proposed ap-
proach are the following.

* A general method for nonlinear non-negative matrix fac-
torization (NNMF) in which arbitrary kernels can be used
(contrary to [19] where only polynomial kernels have been
used).

* In [19] the cost function was always approximated using
quadratic terms, which is unsatisfactory since the actual
nonlinear cost function was not truly minimized. In the
proposed method we consider the problem in the general
case, without having to approximate the cost function by a
quadratic function.

e The method is based on projected gradients which guar-
antee that the limit point will be a stationary point of the
optimization procedure, unlike the method in [19], which
was based on optimizing an auxiliary function, which did
not guarantee that the limit point would be stationary.

* By exploiting certain properties of the Gaussian RBF
kernels, we propose simple fixed point NNMF methods.
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Moreover, we reformulate the optimization problem and
propose a robust convex kernel non-negative matrix fac-
torization method.

* The proposed method, in contrast to [31], not only decom-
poses the kernel matrix but also identifies the projected
vectors (pre-images).

The rest of this paper is organized as follows. The problem
of nonlinear non-negative matrix factorization with polynomial
kernels is briefly outlined in Section II. The proposed solu-
tion, using projected gradients is presented in Section III. In
Section IV, a fixed point algorithm is proposed for the special
case of Gaussian RBF kernels. Experimental results of the pro-
posed method in face and facial expression recognition applica-
tions are described in Section V. Finally, conclusions are drawn
in Section VI. A short version of this paper can be found in [32].

II. NONLINEAR NON-NEGATIVE MATRIX FACTORIZATION IN A
POLYNOMIAL FEATURE SPACE

In this paper we consider the problem of representing fa-
cial images in a nonlinear way. Every facial image is scanned
row-wise to form an image vector x; € &Ei . Let us assume that
we have a database of M images in total. The problem of PNMF,
in [19], was formulated as follows. Let ¢ : §R£ — H be a map-
ping that projects image x; to a Hilbert space H of arbitrary
dimensionality. Our aim is to find a set of K vectors z; € RY
and a set of weights hj; > 0 such as

K
$(xi) & > hjib(z;) )]
7j=1
or more generally
X® ~ Z°H )

where X? = [¢(x1)...¢(xar)], Z® = [¢(z1) ... $(zp)] and
H];; = hj; withH € %iXM. Vectors z; are the so-called pre-
images [24]-[26] of the approximation. The dot product in H is
written by means of kernels as k(x;,x;) = (¢(x;), ¢(x;)) =
$(x;)T ¢(x;). In this paper, we apply our method using only
positive definite, continuous and symmetric kernels. The use of
indefinite kernels [33]-[35] for performing nonlinear non-neg-
ative component is a very interesting topic for further research.

In order to find the preimage matrix Z = [z; . ..zx] and the
weights matrix H, the least squares error is used for measuring
the error of the approximation

M
Dy(X®,Z%H) = Y [lp(xi) = > hjic(z)I>. (3
i=1 7

The optimization problem is as follows:

min
2120, hy;>

, Ds(X7, 27H) )

wherei=1,....,F,k=1,...,.Kandj=1,..., M.

In order to provide further motivation for the approach, we
may express problem (4) as follows. Given a database of images
Xe §Ri *M and a nonlinear mapping ¢ we want to find a matrix
Z of preimages z; of the same domain as x; (i.e., if x; are non-
negative grayscale images then we want the preimages z; to
be non-negative images, as well). After the projection, under
mapping ¢, we want the weights A ;; of the linear combination to
be non-negative. Moreover, let us consider the kernels K-means
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clustering algorithms [36], [37]. K-means uses K prototypes,
the centroids of clusters. These centroids are then used in order
to characterize the data. Let that our dataset X® be partitioned
in K clusters with cluster centroids being the columns of Z?.
Matrix H then contains the cluster indicators. That is, in case
that ¢(x;) belongs to p-cluster, then h,; = 1 else h,; = 0. Let
us consider the K -means kernel clustering objective function on
the columns of matrix X®

DK,¢—Z Z ||¢>Xz -

p=1¢(x;)eC

n K
- Zth||¢(xn -

=1 p=1

= IX* -

(2p)II?

(zp)I*

Z*H|? 5)

where C,, is the pth cluster. The proof of the derivation of (5) is
given in Appendix L. From the above, if we relax the elements of
H to take values not only in the set {0, 1} butin R, we can de-
duce that the proposed nonlinear non-negative component anal-
ysis of the optimization problem (4) is a relaxed kernel K -means
optimization problem, and the bases z; are the pre-images of the
centroids of the clusters.

In [19], in order to solve the constrained optimization
problem (4) the authors used auxiliary functions for both H
and Z. Before proceeding in describing how the algorithm in
[19] was formulated, we should define the following matrices:

(Ko 2ij $(x:) " p(x;) = k(xi, %))

((xi), p(x;))

[Kz 2ij = (0(2i), ¢(25)) = d(2:)" d(2;) = k(2i,2;)
(K. ]ij = ($(2i), ¢(x;)) = b(z:)" ¢(x;) = k(zi,%;)
K,.=K’,. ©)

In [19], the kernel considered was the polynomial kernel

k(xi, %) = (x] %) 7
where d was the degree of the polynomial. Assuming that vec-
tors x; are linearly independent, then matrix K, , (which has
the properties of a Gram matrix [24]) is positive definite. The
same holds for the Gram matrix K ., in the case that z; are
linearly independent. In all cases, both K, , and K . are at
least positive semidefinite matrices.

In order to calculate the solution of the optimization problem,
Buciu er al. [19] defined auxiliary functions and derived in that
way a nice set of updating rules. In an iterative scheme, let
us denote by ¢ the iteration step and by y®) the current esti-
mate of the solution of the problem. A function G is an auxil-
iary function for f(y) : R4 — R if G(y®,yt=1) > f(y®)
for any y*=1 ¢ ®¢ and G(y®,y®) = f(y®). Let us
define f(h;) (h; is the ith column of matrix H) as f(h;) =
Dy(é(x;), Z%h;) keeping matrix Z constant (if Z is kept con-
stant then Z?® is constant, as well). The auxiliary function for
f(h;) is defined as

G(h(t) h(t—l)) _ f(h(t—l)) n (h’('t) _ h(t—l))T
<V ) + L0 - B TLEO - h0Y) @)
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where L is a diagonal matrix with Ly, = [K. .h]i/he. As
we can see, the cost function is quadratic in terms of h;, thus

near h,(t_l) it can be written as
F0) = f0Y) + (0 - ") TV n?)
4500 BTV O B - BT ©)

Using the above expansion it can be proven that G is an auxiliary
function of f [19].

When keeping all but z; fixed, then f(z;) is defined as
f(z;) = D4(X? Z®H). Although the expansion of f in (9)
is valid, since f is quadratic in terms of h;, it is not valid
in case we want to expand )y imi

pand f(z;’) in a similar way around
zl(»t_l). This is due to the fact that, apart from the case of linear
kernel k(x;,x;) = X! x;, the cost function for arbitrary degree
polynomial kernels is not quadratic. Nevertheless, in [19], the
() (=1 : : :
f(z;) was expanded near z; only in quadratic terms (i.e.,
keeping only the first three terms of the Taylor expansion)

F@0) ~ fz{) + 2TV f (")
) = )TV a0 -

2
() (t 1))

i

(2" ~

2y (10)
and an auxiliary function G(z similar to (8) was de-
fined. In summary, in [19]:

« cost function Dy (X?®, Z?H) was defined using only poly-
nomial kernels;

* cost function D,(X?®,Z®H) was further approximated
using up to quadratic terms;

* the auxiliary function G(z 5) gt_l)) used was defined
only for polynomial kernels and only after the quadratic
approximation of the cost function.

In [19] by letting 8G(z,§t), zgt_l))/azg,? = 0 and

oG ( (t 1)) /Ohy; (t) = 0 the following multiplicative
updatlng rules were proposed for minimizing the cost function

3
ngl)
(KEZVHC-D)
(XK{-Y)
(Ze-DOKTY)

H® —HED o

70 Z0-1) ¢

t
) Q 1)
where matrix € is a diagonal matrix such that [Q];; =
Zk 1 hej and S is a normalization matrix such that the
columns of Z(*) sum up to one. Matrices KI ,» contain parts of
the first derivatives with respect to z; of the polynom1a1 kernels
(see Appendix I) and are defined as [K, .];; = d(x; Tz;)di-1
and [K..]i; = d(zz;)*. Operator @ is used for denoting
element-wise matrix multiplication while/denotes element-wise
matrix division. The main calculation in terms of complexity
is that of XK&’;ZD which requires O(F M Pd) calculations.
Thus, the complexity of the multiplicative updating rules is
O(rFMPd), where r is the maximum allowed number of
iterations.
As we have already mentioned, the updating rules (11) hold
only for polynomial kernels. Moreover, in [19], the cost function
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(3) does not increase, under the above updating rules, only if 0 <
zir < 1 (since nonincrease requires (x7'z)?"2 > (z7z)42,
which is true for 2 € [0,255] and z € [0,1]). Hence, if z;; > 1
the above updating rules are not valid for minimizing the cost. In
NMF [7], a similar normalization procedure was considered for
the basis (i.e., the elements of every basis function had to sum
up to one), but this was used in order to limit the solution for the
NMF algorithm and it was not a requirement for algorithmic
convergence, contrary to [19], in which the normalization of Z
was a requirement for convergence.

Summarizing, the only thing that is guaranteed by the above
optimization procedure is that the cost Dy, when approximated
by a quadratic function in terms of H or in terms of Z (with
0 < zjr < 1), is nonincreasing. The procedure can only be
used for polynomial kernels. Moreover, it is not proven that the
limit point is stationary nor that it is a local minimum. In the
following, we propose novel procedures, where a wide variety
of kernels can be used in the decomposition, without requiring
the cost function (3) to be quadratic. Moreover, we guarantee
that the limit point of the procedure is a stationary point of the
optimization problem.

Before describing the proposed algorithms, we briefly de-
scribe the difference between the Nonlinear non-negative Com-
ponent Analysis proposed in this paper and the non-negative
Matrix Factorization on Kernels proposed in [31].

In our approach, we consider the problem of approximating
X? using a matrix Z® and a matrix of weights H, with x;
and z; being in the same domain (i.e., RE 1) [this problem is
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In the proposed approach, we not only find an approximation
of the kernel matrix K, ., but we also identify the pre-images
Z®, as well. The latter cannot be achieved by following the ap-
proach in [31].

III. PROJECTED GRADIENT METHODS FOR NONLINEAR
NON-NEGATIVE MATRIX FACTORIZATION

Using the notion of kernels, metric (3), that quantifies the
approximation of the vectors in X as a linear combination of
the basis in Z®, can be expanded as (13), shown at the bottom
of the page.

The minimization of (13), subject to non-negative constraints
for the weights matrix H and the basis matrix Z, yields the non-
linear non-negative decomposition. This optimization problem
will be solved using projected gradients in order to guarantee
that the limit point is stationary and that the non-negativity con-
straints of z; and h; are met. In order to find the limit point, two
functions are defined

fz(H) =
fu(Z)
by keeping Z and H fixed, respectively.

The projected gradient method, used in this paper, succes-
sively optimizes two subproblems [30]

D4 (X?,Z*H) and

=D4(X® Z"H) (14)

min fr(Z)

j i > 1
formally expressed by (2)]. On the other hand in [31], the au- subject to zix 2 0 (15)
thors considered an easier and more restricted problem, namely  and
the E)" roblem of finding a non-negative decomposition of matrix
= K, .. That is, they set up the problem of approxi- QU fz(H)
MxM
matmg K., € R " subject to hg; > 0. (16)
K. .~ GW (12) The first partial derivative with respect to hp is
: : . MxP PxM 9
Wl'th two non-negative matrices G e RY .and W e R, fz _ [(Z(bTZ(I))H _ Z<I>TX<I>]ab
using the NMF algorithm of [29], [30]. As it can be seen, the Ohay
above problem is just the application of NMF to matrix K .. =[K..H-K. ;]a. 17
M P
Dy(X®,Z7H) = > " [lp(xi) = Y _ hjich(z;)|)?
i=1 j=1
T
M P
=2 | Z’w z) =2 hid(z;)
i=1 = j=1
M
= Z <¢) Xz Zh]z¢ ZJ 1)
P P
- Z hjip(xi)" (z) + Z Z hjihiid(z1) (Zj)>
7j=1 j=11=1
M P P P
= Z k(Xi,Xi)—2Zhﬁk(Z]‘,X1‘,)+ZZhJ7hll Zl,Z] (13)
i=1 j=1 j=11=1
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For the first partial derivative with respect to z,; we have (18),
shown at the bottom of the page.

The projected gradient KNMF method is an iterative method
that comprises two main phases. These two phases are itera-
tively repeated until the ending condition is met or the number
of iterations exceeds a given number. In the first phase, an iter-
ative procedure is followed for the optimization of (15), while
in the second phase, a similar procedure is followed for the op-
timization of (16). At the beginning, the basis matrix Z) and
the weight matrix H(") are initialized randomly, in such a way
that their entries are non-negative.

A. Solving Subproblem (15)

Consider the subproblem of optimizing with respect to Z,
while keeping matrix H constant. The optimization is an iter-
ative procedure that is repeated until Z(*) becomes a stationary
point of (15). At every iteration, a proper step size a, is required
to updating matrix Z(*). When a proper updating is found, the
stationarity condition is checked for and, if met, the procedure
stops.

1) Updating Matrix Z: For a number of iterations
t =1,2,... the following updatings are performed [30]:

Z(t+) — p [z@ - atVfH(Z(t))} (19)

where a; = (9t and g; is the first non-negative integer such that

fa(Z4D) — fua(20) < o (Vfua(20), 204D — 7))
(20)
The projection rule P[.] = max]., 0] refers to the elements of
the matrix and guarantees that the updating will not contain any
negative entries. Operator (., .) is the inner product between ma-

trices, defined as
(A,B) = Z Z aijbij
g

where [A];; = a;; and [B];; = b;;. Condition (20) ensures the
sufficient decrease of the fgr(Z) function values per iteration.

The search for a proper value for a; is the most time con-
suming procedure, thus, as few iteration steps as possible are
desired. Several procedures have been proposed for the selec-
tion and updating of the a; values [38], [39]. Algorithm 4 in
[30] has been used in our experiments. The values of parame-
ters [ and o are chosen to be equal to 0.1 and 0.01 (0 < 8 < 1,
0 < o < 1), respectively. These values are typical values used
in other projected gradient methods as in [30]. The choice of
o has been thoroughly studied in [30], [38], and [39]. During
experiments it was observed that a smaller value of J reduces
more aggressively the step size, but it may also result in a step
size that is too small. The search for a; is repeated until point
Z(*) becomes a stationary point.

21

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4, APRIL 2010

2) Checking for Stationarity: In this step it is checked
whether or not at the limit point the first order derivatives
are close to zero (stationarity condition). A commonly used
condition to check the stationarity of a point is the following
[38]:

IVE fi(ZO) | F < ez||V fuz(ZDV)]|| (22)

where VT fiz(Z) is the projected gradient for the constrained
optimization problem defined as

P [V fu(Z));,
V" fu(Z)]ix = {min(O, [V fu(2)];),

and 0 < ez < 1 is the predefined stopping tolerance. A very
low ez (i.e., ez ~ 0) leads to a termination after a large number
of iterations. On the other hand, a tolerance close to 1 will result
in a premature iteration termination.

if zjp >0

Zik = 0. (23)

B. Solving Subproblem (16)

A similar procedure should be followed in order to find a
stationary point for subproblem (16) while keeping fixed matrix
Z and optimizing with respect to H. A value for a;, is iteratively
sought and the weight matrix is updatingd according to

H+D = p [H(t) —aV fZ(H(t))} (24)

until the value of function fz(H) is sufficiently decreased, i.e.,

F2(HED) — f,(HO) < o <va(H<t>), HE+D _ H<t>> ,
(25)
As we shall see also in Section IV, since subproblem (16) is
always quadratic in terms of H, the left hand side of inequality
(25) can be expanded for any vector b as

fz(0" +b) = fz(0{") + BTV fz(0{")
+%bTV2 fzb  (26)
where V2fz(h1(»t)) is given by
V2 fz(hy) = 22" = K. .. 27)

Using expansion (26), criterion (25) can be substituted by the
following:

(1= 0) (Viz(H®), H+D —HO)
+% <H(t+1) ~-HY K. . (HD - H(f>)> <0 (28)

which is less computationally expensive than (25).

(18)
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This procedure is repeated until the limit point H®) is sta-
tionary. The stationarity is checked using a similar criterion to
(22), i.e.,

IVE fz(HD)||p < en||V f2(HD)| p (29)

where ey is the predefined stopping tolerance for this sub-
problem.

C. Convergence Criterion

The procedure followed for the minimization of the two sub-
problems, in Sections Sections III-A and III-B, is iteratively fol-
lowed until the global convergence criterion is met

IS ED)|p + 95215
<e(IVFED)IF + IVAZD)]r) G0

which checks the stationarity of the solution pair (H(®), Z(®)),
The computational complexity of the PGKNMF approach is dis-
cussed in Appendix IV.

D. Feature Extraction

Matrix Z may be subsequently used for extracting features
as follows. Explicit computation of ¢(z) (which may have infi-
nite dimensions for example for Gaussian RBF kernels) is not
needed due to the fact that all calculations are performed using
the so-called kernel trick.

Let y be a vector such that y € §Rf Then, the projected
vector y € R is calculated as follows:

- T
y =Z% (¢(y) - m®) 31)
where m® = 1/M Y, ¢(x;), the 71 s the pseudo-inverse of
7% and is calculated as
z¢ = (20770 17T — k17T (32)
The inverse Kz_i can be, in most cases, calculated, since usually
P < M; thus, K . is of full rank.

Now, using (32), feature extraction (31) may be reformulated

as

v =K. 12%" (4(y) - m?) = K. Lg(y)

where g(y) =[k(z1,y) -
MY k(xi,z1),....k(zp,y)—1/M Y, k(x;,zp)]*. In
[19], Z was directly used for feature extraction asy = Z'y.
This procedure leads to only linear features.

(33)

IV. NONLINEAR NON-NEGATIVE COMPONENT ANALYSIS
APPROACH FOR GAUSSIAN RBF KERNELS

In this section, we consider alternative approaches for non-
linear non-negative component analysis based on Gaussian RBF
kernels.

A. A Different Approach With Gaussian RBF Kernels

In this section, we consider the problem of nonlinear non-neg-
ative component analysis using Gaussian RBF kernels and we
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propose an alternative fixed point algorithm for the minimiza-
tion of the cost function. In kernel methods, the Gaussian RBF
kernel is given by

k(xi, %) = "I/ (34)
where o is the spread of the Gaussian function.

Let us consider the problem as follows. First, we consider the
kernel expansion

gi= > hjid(z;). (35)
J

Then, we seek to approximate it by g; = [;¢(x;). We allow
0i # 1, which is reasonable, since the length of g; is not crucial
for building decision functions [24]. The problem is to minimize
the following:

fZH) =) g~ &l
2

= Z Z hjid(z;) — Bip(xi) (36)

As in the algorithm in the previous section, we consider
solving the two partial minimization problems

hlfglo f(hy) (37
and
min f (zx) (38)

in an iterative manner, where f(h;) and f(zj) are equal to
f(Z,H) by keeping all but h; and z; constant, respectively.
For the minimization problem (37) we consider the actual op-
timization problem (36), while for the minimization problem
(38), we consider a transformed version of the problem, as ex-
plained next.

In the tth iteration for the solution of subproblem (37), we
follow the procedure of the auxiliary function. That is, we iden-
tify a solution via the definition and the optimization of a proper
auxiliary function. In our case, we choose an auxiliary as the
one in (8), but now we choose as L the diagonal matrix with
Ly = [K. .hilx/B2hyi (the proof is straightforward by using
the results in [19]). The updating rules are the following:

Bi [Kg; 1)]]'1'

(t) _ 4 (t=1)
hji = hi; KC-DR), (39)
or in matrix notation
K(tfl)
H®O —H-D o Co S (40)

K VHED

with [K, .];; = e—lxi=zl1* /o [K..l; = e—llzi=zil1*/o 4nd
C]'i = ,8,

We use a similar reasoning as the one followed in [24] for
finding the preimages of kernel algorithms, in order to specify
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the updating rules (38). That is, as in [24], we minimize the
orthogonal projection of ¢(x;) onto 3. hj;¢(z;) [(41), shown
at the bottom of the page], which is equivalent to

<¢(Xz‘)7 Zhji¢(zj)>

madeBF(Z) = Z

7
J ‘
=1

(42)
<Z hjid(z;), 3 hjz’¢>(zj)>

In order to further simplify the optimization procedure, we
only optimize the numerator

<¢(Xi)»zhji¢(zj)> :

Alternative, since all terms are non-negative, we may minimize

<¢(Xi)=zhji¢(zj)> .

By using fixed point iteration algorithms like in [24] (i.e., setting
0d(Z)/0z;, = 0), the updating rules for z;; for (43) may be
derived as

N
(43)

max
z;,0; “
=1

N
(44)

> wihiik(z ™Y, x;)
(t) _ 3
Zik =

5 k(¢ x;) <¢(xj), 5 oy )

(6063). 5 hsbn) )

(45)
Alternatively for (44)

Y wijhigh(zi %))

(t) _
= — (46)
> hugh(z ™, x;)
J

Zik =

In compact matrix notation, the updating rules for (45) may
be written as

X((H® 0 K7 diag(KY-VH®))

t
Z' — B(t—1

(47)
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where B(*~1) has in all its rows the diagonal elements of matrix
H(t)diag(Kg;1)H(t))K_g;1). After the iterations in (45), the
optimal /J"i(t) is given by

ALY = <¢<xi),2h§-?¢<z§”>> =Y WDk(xi,2). @8)
J J

The algorithm proposed in this Section is referred to as
KNMEF-RBF in the rest of the paper.

B. Convex Nonlinear Non-Negative Component Analysis

In this section, instead of finding both pre-images z; and
H simultaneously, we follow a different strategy. That is, we
follow similar lines as the convex non-negative matrix factoriza-
tion method proposed in [40]. In K-means and kernel K -means
algorithms the centroids, for reasons of interpretability, are often
considered to be in the space defined by the columns of X 2.
Hence, the centroids ¢(z;) can be written as

P(z;) =myjp(x1) + - +myip(xXN)
N
= Zmiqu(xi) =
i=1

7% =X®M. (49)
In case that we additionally incorporate a non-negativity con-
straint for the weights m;;, the centroids ¢(z;) can be inter-
preted as convex weighted sums of certain data points ¢(x;).
Moreover, expressing the centroids ¢(z;) as in (49) is a conve-
nient way to find the preimages z; for Gaussian RBF and other
kernels, by using simple fixed point algorithms [24].
Using (49), approximation (2) is reformulated as

X? ~X*MH =
K,.~K;.MH (50)
with m; > 0 and hg; > 0. The corresponding optimization
problem is given by

min _ Dy(X® X®MH) = ||X? - X*MH||%. (51)
m;p >0,k >0

<¢(X’i)7 Zhji¢(zj)>

2

N
min g
z;

i=1

<Z hji¢(zj)7zhji¢(zj)> !

<¢(Xi), 2 hji¢(zj)>

J

Zhji¢(zj)

— (i)

N
min 3 | l6(x)I” -

i=1

<Z hjid(z;), 32 hji¢(zj)>

(41)
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The above cost function can be written as

Dy(X® XPMH) =) "||p(xi) =Y _hjig(z;)||”

i=1 j=1

M P
=Y (ki %) =2 iy mik(xk, x)
i=1 Jj=1 k=1

P P N N
+ZZhﬁhliZkalmnjk(xk,xn)).
j=11=1 k=1n=1

(52)

It can be proven (see Appendix V) that the following updating
rules guarantee the nonincreasing behavior of (52):

t-1)T P
M® =Mt g K, HY (53)
Kmsz(t—l)H(t—l)H(t—l)T

and
M(t)TKm N P s4
M®TK, ,M®OHE-1 (>4)

H® = gt-1 o <

where p = 1 or p = 1/2. Updating rules for the p = 1/2 were
independently proposed in [40].
There are two subtle issues that deserve further consideration:
 the denominators in (53) and (54) might be zero;
o if h,(:l) = 0 and 0Dg/0hy; < 0 then according to the

updating rules (54), h,(:fl) does not change. Hence, the
proof of convergence for fixed point methods applied to
unconstrained function minimization cannot be repeated.
The above observations hold for w;;, as well. Another alterna-
tive for defining updating rules that guarantee the convergence
to stationary limit points and deal with the above issues, is to
follow similar lines to those in [29]. This leads to the following

updating rules:
MEE) — -1

D o [ Ve Do(XTXPMHCTD) ) o
Kz,zM(t—l)(t)H(t—l)H(t—1)T T A,

and
H(t,k) — H(t—l)

d v k
_ﬁ(t—l) VH(t;l)D¢(X 7:X M(t )H) ) (56)
M(t,k) Km’mM(t,k)H(t—l) _|_A2

Matrices M®*) and H®**) must be normalized to pro-
duce M+ and H*+1) | respectively, so that the elements
of each column of M@+ sum up to one. The gradients
VmDy(X?, X*MH) and Vg D,(X*, X®MH) are given
by
VmDy(X® X*MH) =K, ,MHH" - K, ,H
VaDy(X®,X*MH) =M'K, .MH - MK, . (57)

and

ey A mik, if [V]\/[l)¢()(q>,)(CI)IVIH)]“C Z 0
T max(mag, o), if [VaDy(X®, X®MH)]ix < 0.
) (58)
Similar is the definition of hy;. Parameter o takes a small value
(e.g., 107%) and A}, A, are matrices with elements equal to a
small constant § (e.g., 1076).
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TABLE 1
SIMULATION RESULTS AND TIMES FOR RANDOM MATRICES X, Z AND H
AND THE PGKNMF ALGORITHM

€ Starting Cost | Ending Cost | iterations | time(secs)
0.001 10.2x10% 2.7 x10° 25 1
0.0001 10.2x10% 1.5 x103 69 2
0.00001 10.2x10% 9 x10% 85 4

Fig. 1. (a) PNMF preimages; (b) PGKNMF preimages.

After the convergence of the above sequence, the pre-im-
ages z; can now be found by solving the following optimization
problem:

2
min,,

(59)

'f/)(zj) — B g:l mi ()

Zkj Z 0.

subject to

The above optimization problem can be solved using many al-
gorithms [24]. One of them is the projected gradient algorithm
in Section III-A. For the special case of Gaussian-RBF func-
tions, we can use the following updating rules for obtaining z;,
withj =1,...,P

N

S mik(zl",

h Xi)Xi

z§t+1) _

(60)

1=1
N
Z:l miik(z$, x;)

V. EXPERIMENTAL RESULTS

A. Experiments Using Simulated Data

We experimented with simulated data in order to confirm that
the proposed method can indeed reduce the defined cost func-
tion. For that, we produced matrices X, Z and H from [N (0, 1)
for an initial X € §R3_5X25, A= §Ri5x "He %i_X%. We present
experiments with e = 0.001, 0.0001 and 0.00001 (¢ is the prede-
fined constant that controls the convergence of the projected gra-
dient algorithm (30)) and for polynomial degree d = 2. The time
needed for execution, the starting cost and the ending costs can
be found in Table I. As it can be seen, the proposed PKGNMF
minimizes satisfactorily the cost function in a reasonable time.

Moreover, we compared PGKNMEF, in terms of time and ca-
pability to reach a minimum, with PNMF. For that, we include
an experiment using the Cohn-Kanade (CK) database (for the
description of the CK database see Section V-C). We used from
CK 25 randomly chosen samples, of resolution 40x 30, and we
formed matrices X € §R}|_200X25, Zc §Ri_200x9 and H x §R3_X 25,
The simulation results, using polynomial kernel of degree equal
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Fig. 2. (a) Mean approximation error and variance (error bars) for 100 random restarts for 100 images from the CK database; (b) mean approximation error and
variance (error bars) for 100 random restarts for 400 images from the XM2VTS; (c) mean KKT residual norm plotted versus 2000 iterations; (d) mean objective

function value versus 2000 iterations.

TABLE II
SIMULATION RESULTS AND TIMES FOR IMAGE DECOMPOSITION,
USING 25 IMAGES FROM THE CK DATABASE

Algorithm € Starting Cost | Ending Cost | iterations | time(min)
PGKNMF | 0.0001 | 2.0819 x 10° 8 x 10° 85 3
PNMF - 2.0819 x 10° 1.1 x 10° 100,000 10

to 2, can be found in Table II. From this Table it can be seen
that the reached minimum by PGKNMEF is at least one order
of magnitude smaller than the one reached with PNMF. More-
over, PNMF had to be executed for 100,000 iterations in order to
reach that minimum, taking up 10 mins. The calculated preim-
ages (i.e., columns of matrix Z) of PGKNMF and PNMF can
be found in Fig. 1. As it can be seen, the preimages of the pro-
posed method resemble more human faces than the preimages
of PNMEF, which are more like distorted versions of faces.

We also provide experimental results that show the ability of
the method described in Section IV to decrease the objective
function value (cost) in every iteration using the updating rules
(40), (47), and (48). In Fig. 2(a), the mean approximation error
(3) is plotted versus the number of iterations after 100 random
restarts for 100 images from the CK database. In Fig. 2(b),

the mean approximation error is plotted for 100 random
restarts using now 400 images from the XM2VTS database
(the XM2VTS database is described in Section V-F) (for both
experiments we used o = 10%). As it can be seen, the objective
function value is monotonically decreasing.

Furthermore, we conducted experiments in order to compare
the ability of the updating rules (53), (54) with p = 1/2 (abbre-
viated as CKNMF) and (55), (56) (abbreviated as RCKNMF)
to reach a stationary point. Let D (X%, X®MH) in (52) be
the cost function that measures the quality of the approximation.
From the Karush-Kuhn-Tucker (KKT) conditions [41], m;; and
hy; correspond to a stationary point of the minimization of (52)
iff [see (61), shown at the bottom of the page].

The convergence to a stationary point of the minimization of
(52) may be tested by checking the KKT conditions for opti-
mization problem (51). The KKT conditions in case of matrix
M can be rewritten as

min(M, VDy4(X? X*MH)) = 0 (62)
which state that both M and VD, (X®,X®*MH)) should be
component-wise non-negative and at least one (the smallest of

m;p > 0,
’ gﬂ’ Dy (X®, X*MH) > 0,
mik 5a—Dy(X®?, XPMH) = 0

hy; >0
52— Dy(X*, X*MH) > 0
hij i D(X®, XPMH) = 0

(61)
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TABLE III
BEST ACCURACY (%)/NUMBER OF BASIS IMAGES, FOR THE 13 SUBJECTS OF COHN-KANADE

Classifier NMF LNMF PNMF ICA PCA KICA KPCA | PGKNMF | KNMF-RBF | RCKNMF
CSM 77.4/36 81.4/25 81.8/16 71.4/25 72.9/16 74.3/36 | 74.9/29 82.2/26 82.5/48 81.7/46
SVM 78.6/100 | 81.4/81 | 83.9/100 80/64 81.4/100 | 82.9/25 | 82.9/32 84.2/120 84.2/47 82.9/T11

the two) is allowed to be zero (and similarly for matrix H). Ob-
viously, the KKT residual norm, defined as the L; norm of the
left hand side of (62)[27], must tend to zero. Consequently, by
monitoring its size (i.e., the number of nonzero elements), we
may test whether the proposed algorithm converges to a sta-
tionary point.

We compute and plot the ensemble averaged objective func-
tion and the ensemble averaged KKT residual norm over 100
runs of the updating rules, that is randomly initialized, for 2000
iterations [27]. Let us call the just mentioned figures of merit
“mean objective function” and “mean KKT residual norm”, for
brevity. The mean KKT residual norms of the proposed up-
dating rules (55), (56) and the updating rules in (53), (54) are
plotted in Fig. 2 ¢ and 2-D for 50 randomly selected samples
of XM2VTS database (K was selected as 15 and o = 10?),
respectively. As it can be seen in both figures, the mean KKT
residual norms and the objective function value of the proposed
updating rules are smaller than that of the updatings rules (55),
(56). This demonstrates that the solution of the proposed frame-
work (RCKNMF) is closer to the stationary point of the min-
imization of the objective function (52), than the solution ob-
tained by the updating rules of CKNMF.

B. Testing Methods and Classification Procedure

In this section we demonstrate the performance of the pro-
posed method to face and facial expression recognition applica-
tions. For comparison, NMF, [8], LNMF [9], ICA [6], [42], and
PCA [3] have also been implemented. Moreover, we also con-
sider the nonlinear alternative of NMF, the PNMF in [19] and
the nonlinear variants of PCA and ICA, namely KPCA [17] and
KICA [18], respectively.

For NMF and LNMF, each facial vector x, after subtracting
the mean vector of the training set, is projected to a lower di-
mensionality space using the pseudoinverse basis image matrix,
resulting in a feature vector f = ZTx. For the ICA approach,
which has been used for comparison purposes, we used the ar-
chitecture described in [42] and [6] that yields the features to be
used for classification. The ICA decomposition coefficients of
each image form essentially a row of matrix Fy,. = Xt,,PpA_l.
Here, suffix ¢r corresponds to the training set while te corre-
sponds to the testing set, P, is the projection matrix resulting
from the PCA procedure applied prior to ICA and A is the un-
mixing matrix found by the ICA algorithm. The number of in-
dependent components is controlled by the first p eigenvectors.
PCA alone was also applied at the experimental data. The same
strategies were adopted for KICA and KPCA using polynomial
and Gaussian RBF kernels. For PNMF, we used only polyno-
mial kernels and for the proposed PGKNMF we considered both
polynomial and Gaussian RBF kernels. For these methods, fea-
tures were extracted as described in Section III-D.

Let us denote by I(f.) the label of the input pattern f;. and
by I(f;.) the correct label of the same pattern. Then the accu-
racy of the classifier is defined as the percentage of the correctly
classified test images, i.e., the percentage of images for which

l(fie) = I(f:e). Three classifiers were employed for classifying
the features extracted by the tested algorithms. The first clas-
sifier is a nearest neighbor classifier based on the cosine sim-
ilarity measure (CSM). This approach uses as similarity mea-
sure the cosine of the angle between a test feature vector and
a prototype one, i.e one derived from the training phase. More
specifically, | = I(f} 1) where k = arg max;=1._n,.{d;} and
di = fLf; 1/|fee||||fir||.- The second classifier is a two layer
neural network based on Gaussian-RBFs (RBFNN). Finally, the
third classifier is based on SVMs [20] with different kernels
(linear, polynomial, and Gaussian-RBF). The sequential min-
imal optimization technique [43] was used to train the SVMs.
Since classical SVM theory was intended to solve a two class
classification problem, we chose the decision directed acyclic
graph (DDAG) learning architecture proposed in [44] which has
been adopted for multiclass classification. In the following, we
report the results for SVMs and Gaussian-RBF classifiers only
in the case that they achieved a better classification rate than the
simple CSM classifier.

C. Facial Expression Recognition Experiments With the
Cohn-Kanade (CK) Database

The first database used for the facial expression recognition
experiments was created using the CK database [45]. This data-
base is annotated with Facial Action Units (FAUSs). These com-
binations of FAUs were translated into facial expressions ac-
cording to [46], in order to define the corresponding ground truth
for the facial expressions.

We used two different experimental setups for facial expres-
sion recognition in the CK database. For the first setup, we used
the same samples as in [19]. That is, in [19], the authors have
used only 13 posers, the ones that display all the facial expres-
sions, i.e., anger, disgust, fear, happiness, sadness, and surprise.
These thirteen persons were chosen to create the image data-
base that was used in the facial expression recognition experi-
ments. Each subject from the CK database forms an expression
over time starting from the neutral pose and ending with a very
intense expression, thus having several video frames with dif-
ferent expression intensities. However, the number of these in-
termediate video frames is not the same for the various posers.
In [19], the authors have selected three poses with low (close to
neutral), medium and high (close to maximum) facial expres-
sions intensity and used them to form the database utilized in
their experiments. For the first experimental setup we used the
same data and the same experimental protocol [19].

The images were aligned manually using the eyes’ coordi-
nates and were downsampled to 40x30 pixels. To form the
training set, ny,, = 164 images were chosen for training the
system, i.e., learn matrices Z and H, and the remaining n¢. =
70 were used for testing. For this setup, a matrix X € J1200x164
was formed in the training phase. The whole procedure was re-
peated four times and the mean expression recognition rate was
calculated. The best results are summarized in Table III. As it
can be seen, the PGKNMF method repeatedly produces the best
results.
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TABLE IV
BEST ACCURACY (%)/VARIANCE (%), FOR THE DIFFERENCE IMAGES OF COHN-KANADE AND THE STATISTICAL ROBUST PROTOCOL
Classifier NMF LNMF PNMF ICA PCA KICA KPCA PGKNMF | KNMF-RBF | RCKNMF
CSM 67.4/2.2 | 75.6/1.9 | 77.8/2.3 | 61.2/2.6 | 49.9/2.6 | 61.6/2.7 | 62.7/2.9 81.1/2.3 77.172.5 79.8/2.4
RBFNN | 67.9/2.6 | 76.4/25 | 782721 | 62.122 | 53.523 | 63.472.6 | 67.5/2.6 82.42.4 78.2/2.3 80.572.5
SVM 69.3/2.5 | 78.5/2.6 | 80.3/2.6 | 65.7/2.5 | 59.2/2.7 | 65.4/2.6 | 69.4/2.3 83.5/2.0 80.5/2.1 81.4/2.2
TABLE V
MEAN RECOGNITION ACCURACY (%)/VARIANCE (%), FOR SUBJECTS OF THE JAFFE DATABASE USING THE ROBUST PROTOCOL
Classifier NMF LNMF PNMF ICA PCA KICA KPCA PGKNMF | KNMF-RBMF | RCKNMF
CSM 58.7/2.0 | 58.9/2.3 | 61.5/2.4 | 57.4/2.2 | 58.3/2.3 | 59.4/2.2 | 57.2/2.2 63.5/2.6 60.5/2.6 61.5/2.4
SVM 65.323 | 64.512.4 | 66.7/2.1 | 65.722 | 65.772.2 | 65.7/1.9 | 64.6/1.9 69.3/2.4 66.3/2.4 67.912.3
TABLE VI
MEAN RECOGNITION ACCURACY (%)/V ARIANCE (%), FOR THE DIFFERENCE IMAGES OF THE JAFFE DATABASE AND THE ROBUST EXPERIMENTAL PROTOCOL
Classifier NMF LNMF PNMF ICA PCA KICA KPCA PGKNMF | KNMF-RBF | RCKNMF
CSM 77.5/2.1 85.5/1.8 | 86.7/1.8 | 85.5/1.9 | 83.4/1.7 | 84.3/1.7 | 87.7/1.8 88.6/1.7 86.5/1.9 88.6/1.9

Apart from the above experimental setup, where we used the
whole CK database, we also used the difference images. All the
subjects were taken into consideration and their difference im-
ages, created by subtracting the neutral image intensity values
from the corresponding values of the facial expression image,
were calculated. Each difference image was initially normal-
ized, resulting in an image built only from positive values and
afterwards scanned row-wise to form a vector x € R}?%°. The
difference images were used instead of the original facial ex-
pression images, due to the fact that in the difference images,
the facial parts in motion are emphasized [47].

For the difference images we used the following testing pro-
tocol [48], [49]. In the experimental procedure, ten sets, con-
taining 20% of the data for each of the six facial expression
classes, chosen randomly, were created. One set containing 20%
of the samples for each class was used as the test set, while the
remaining sets formed the training set (i.e., 80% for training
and 20% for testing). In order to learn the parameters of all
methods (i.e, the kernel in kernel methods, the dimensionality
for all the tested methods and the parameters of the SVM and
Gaussian-RBF classifiers) the training set was further randomly
divided into training (80% of the images) and validation (20% of
the images) sets. This inner loop was repeated ten times and the
parameters, which gave the best mean recognition rate for the
validation sets, were adopted for the test set. After the classifi-
cation procedure was performed, the samples forming the test
set were incorporated into the current training set while a new
set of samples was extracted to form the new test set. The re-
maining samples created the new training set and the inner loop
was applied in order to learn the parameters. The whole proce-
dure was repeated ten times. The average classification accuracy
was the mean value of the percentages of the correctly classified
facial expressions in the test sets. The mean recognition results
and the variance of this setup are summarized in Table IV. As
it can be seen, the proposed methods produced the best facial
expression recognition rates.

D. Facial Expression Recognition Experiments With the Jaffe
Database

The second database used for experiments contains 213 im-
ages of Japanese female facial expressions (JAFFE) [50]. Ten
subjects produced three or four examples of each of the six fa-
cial expressions plus a neutral pose, thus producing a total of

213 images of facial expressions. Image registration was per-
formed in the same way as for the CK database. The same
experimental protocol as in the case of the CK database was
applied in the Jaffe database, as well. That is, the dataset was
randomly split into training (80%) and testing (20%). In every
cycle, in order to learn the parameters, the training set was fur-
ther split in training and validation subsets. The results for this
database are summarized in Table V. As it can be seen, the pro-
posed method achieved the best recognition accuracy on this
dataset.

We also experimented using Jaffe difference images. As it
can be seen from Table VI, the recognition rate for all the feature
extraction methods is dramatically increased by using difference
images. The proposed method also produced the best results for
this case, too.

E. Face Recognition Experiments With the Yale Database

The Yale face database [51] contains 65 grayscale images
of 15 individuals. There are 11 images per subject, one per
different facial expression or configuration: center-light, with
glasses, happy, left-light, without glasses, normal, right-light,
sad, sleepy, surprised and winking. For computational reasons
the image size was reduced to 42x 31 pixels after manual facial
image alignment.

For this database, the first 7 images of each subject were used
to form the training set. The remaining four samples were used
as test images. The training set was further randomly split into
four and three samples in order to implement the inner circle
for learning the parameters for each tested method and classifier
(as implemented in the CK and JAFFE database experiments).
The best results of all the tested methods and classifiers can be
found in Table VII. As it can be seen, for the simple cosine
classifier, the proposed method had the best performance, while
when using SVMs the PNMF showed the best performance.

F. Face Verification Experiments Using the XM2VTS Database

The experiments conducted with the XM2VTS database
used the protocol described in [52]. The images were aligned
semi-automatically according to the eyes’ position of each
facial image using the eye coordinates. The facial images
were down-scaled to a resolution of 64 x 64 pixels. Histogram
equalization was used for the normalization of the facial image
luminance.
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TABLE VII
BEST ACCURACY (%)/VARIANCE (%), FOR THE YALE DATABASE
Classifier NMF LNMF PNMF ICA PCA KICA KPCA PGKNMF KNMF-RBF RCKNMF
CSM 89.2/1.5 | 88.8/1.6 | 90.3/1.7 | 87.6/1.9 | 87.6/1.6 | 90.1/1.7 | 89.2/2.0 91.5/1.5 89.7/1.7 89.7/1.7
RBFNN 92.6/2.0 | 92.6/2.0 9324 91.3/1.7 | 90.3/1.8 | 93.4/1.8 | 93.4/1.8 93.6/1.7 92.9/1.8 93.6/2.0
SVM 94.0/1.2 | 94.0/1.2 | 94.8/1.1 | 93.8/1.1 93.1/1 94.5/1 94.8/1.0 94.7/1.2 93.9/1.2 94.0/1.2
TABLE VIII
BEST EER (%) FOR THE XM2VTS DATABASE
NMF | LNMF | PNMF | ICA | PCA | KICA | KPCA | PGKNMF | KNMF-RBF | RCKNMF
EER% 8.5 8.2 5.4 4.1 4.3 3.5 3.4 34 2.9 32
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Fig. 3. (a) Recognition rate of the grayscale albedo image; (b) Recognition rate of the depth images.

The XM2VTS database contains 295 subjects, four recording
sessions, and two shots (repetitions) per recording session. It
provides two strict experimental setups, namely, Configuration
I and Configuration II [52]. Each configuration is divided into
three different sets: the training set, the validation (in [52] the
set was named evaluation set) and the test set. The training set is
used to create client and impostor models for each person. The
evaluation set is used to learn the verification decision thresh-
olds. In both the original and the revised manuscript the evalua-
tion set was used in order to learn the parameters of the various
methods. That is, the feature dimensionality, kernel parameter
and the thresholds were learned using the evaluation set and then
the ones which lead to the best EER for every tested method
were applied afterwards to the test set. For both configurations,
the training set had 200 clients, 25 evaluation impostors and 70
test impostors. The two configurations differed in the distribu-
tion of client training and client evaluation data. For additional
details concerning the XM2VTS database an interested reader
is referred to [52].

The procedure followed in the experiments was the one also
used in [16] and [53]. For comparison reasons the same method-
ology, using Configuration I of the XM2VTS database, was
used. The performance of the algorithms is quoted for the equal
error rate (EER) which is the scalar figure of merit that is often
used to judge the performance of a verification algorithm. An in-
terested reader is referred to [16], [53], and [52] for more details
concerning the XM2VTS protocol and the experimental proce-
dure followed. The best EER achieved for the XM2VTS data-
base can be found in Table VIII.

G. Face Recognition Using Photometric Stereo

In this section, we describe experiments of face recognition
using photometric stereo. We collected a database of faces by

setting a device for proper capture of four images under four
different lighting directions.

The four intensity images were processed using a standard
photometric stereo method [54]-[56]. This resulted in a dense
field of surface normals, which we then integrated to form height
maps using the well-known Frankot and Chellappa method [57].
The albedo and the depth images were manually aligned ac-
cording to the eye coordinates and were scaled to resolution
90 x 100.

The device was installed in the General Dynamics. Staff and
visitors were kindly asked to use it. After a period of more than
six months more than 250 persons used it. For 113 persons we
collected images that were taken with more than a week’s in-
terval. For the majority of them (about 90) we collected sam-
ples with more than one month interval. For the experiments
presented here we have a very challenging experimental proce-
dure using only one grayscale albedo image for training and one
grayscale albedo image for testing. Moreover, one depth image
is used for training and one for testing.

As we have already mentioned, most of the training and
testing images were captured with more than one month’s
interval and most of the training and testing images display a
different facial expression.

The recognition rate versus the dimensionality for the
grayscale albedo is plotted in Fig. 3(a), while the recognition
rate for the depth images is plotted in Fig. 3(b). As it can be
seen, the proposed approach achieved the best recognition
rates, as well.

VI. CONCLUSION

In this paper, we proposed a method for nonlinear non-nega-
tive matrix factorization using projected gradients. Unlike other
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methods for this purpose, the proposed method allows the use of
a wide variety of kernels, in addition to the polynomial kernels
considered in [19]. Moreover, usage of projected gradient proce-
dure [30] guarantees that the limit point of the algorithm is a sta-
tionary point of the optimization procedure. For the special case
of Gaussian RBF kernels, fixed point algorithms were proposed
for non-negative nonlinear component analysis. In the particular
setup proposed in this paper, we applied only Gaussian RBF ker-
nels in order to calculate the basis. The method can be extended
to other types of kernel as long as these kernels are positive def-
inite. This constitutes a subject of further research on the topic.
Moreover, further research on the topic includes the adaptation
of indefinite kernels [33]—[35]. The experimental results have
shown that the proposed methods can be successfully used for
feature extraction and recognition and can lead to better classi-
fication rates when compared with well-known and widely used
nonlinear feature extraction techniques (like KPCA and KICA).

APPENDIX A
DERIVATION OF (5)

Since, h,; = 1 only if ¢(x;) belongs to C,,, else hy; = 0, we
have

M K
|IX® - Z?H|? = Z llo(x;) — Z hpid)(zj)”z
i=1 p=1

K
> hpi(p(xi) = $(2y))
p=1
K M
= 3N hyillo(x:) - ¢(z,)I1?
p=1:i=1
K
= Z S lletxi) = ¢zl (63)
p=1¢(x;)€C,
APPENDIX B

CALCULATION OF V fy1(Z) FOR POLYNOMIAL KERNELS

For the polynomial kernel the partial derivatives in terms of
Zap are (for the case j # b)

N d
8 ( Z ijzmb>

8k(Zj,Zb) _ m=1
azab a2/’(1()
N d—1
= dz(l] <Z Zm,jzmb)
m=1
= dZaj(Z?Zb)d_l. (64)

Accordingly, the first partial derivative 0fu(Z)/0zaqp is ex-
tracted from (64) as

ZhbtxaL X; Zb) -1
+ Z Z hbihlid(lezb)d_lzal.

i=1 =1

9 ful(
82@1)

(65)
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In matrix form, V fy1(Z) may be written as

Viu(Z) = -XHoK.,)T +ZHHT 0 K..) (66)

where © represents the elementwise multiplication between ma-
trices of the same size. The matrices K. , and K(z, z) are de-
fined as

[Kz,w]ij 2 d(zij)d_lv [Kz Z]z = d(z; Z])d_l' (67)
APPENDIX C
CALCULATION OF V fy(Z) FOR GAUSSIAN RBF KERNEL
The Gaussian Radial Basis Kernel is defined as k(x,y) =
e~ "Ix=¥I" with ~ being related to the spread of the Gaussian

function. For the polynomial kernel the partial derivatives in
terms of z,; are (for the case j # b)

ak(zj ) Zb) _
8,2@1, -

de—llz—= I

8zab
= 29(—Zap + 24 )e“/llzj—zbll

:2’}/(—2(1[, +Zaj)k(Zj7Zb). (68)

Accordingly, the first partial derivative O f(Z)/0zqp is ex-
tracted using (68) as

ofu(Z) <
Tab = - ; hbi27(_zab + xaz)k(x1 Zb)
0D hibui2y(—zab + za)k(z1, 7). (69)
=1 =1

In matrix form, V fy(Z) may be written as

Vfu(Z)=-XHo 29K, .)" +Z o(1}diag(2yHK, .))
+Z(2yHH" 0K. .)-Z © (1" diag(2yHH"K. .))
(70)

where 17 is an F'-dimensional vector of ones.

APPENDIX D
COMPUTATIONAL COMPLEXITY OF THE PGKNMF

The computational complexity of the NMF using multiplica-
tive updatings is r x O(FM P)[7], where r is the number
of iterations of the algorithm. For the NMF using the alter-
native projected gradient approach in [30] the complexity is

X (O(FMP)+7 x (O(tFP?%) 4+ O(tM P?)) where 7 is the
number of iterations of the whole procedure, r; is the number
of iterations of the two partial minimization problems (i.e.,
minimizing H when keeping Z constant and vice versa) and
t is the mean number of iterations for finding a proper a;. A
direct projected gradient approach for NMF has a computa-
tional complexity of » X O(tF M P) [30]. As we have already
mentioned, the complexity of the PNMF [19] is » x O(F M Pd)
for d-degree polynomial kernels.

We shall try now to calculate the complexity of the proposed
projected gradient approach. Problem (4) may be expressed as

min f5(H) = X - Z°H]}
subject to hy; >0, VEk,j (71)
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keeping Z® and X?® constant. Thus, as in [30], we may write

the cost fz(H) by representing H as a vector (i.e., vec(H)) as
fz(H) =||X* - 2°H|%
K..
=vec(H)” vec(H)
K..
+O(H) (72)
where O(H) are terms linear in the elements of H.

Thus, the above problem has been reformulated to a quadratic
optimization problem with linear constraints. The Hessian ma-
trix (i.e., the second derivative of fz(H)) is block diagonal and
moreover each block K., . is a P x P positive semi-definite
matrix when we deal with positive kernels. As P < M, the
Hessian matrix (which is a Gram matrix as well [24]) tends to
be well conditioned, which is a good property for optimization.
Thus, for this problem, gradient-based methods may converge
fast enough.

For this subproblem, when Algorithm 4 of [30] is used to
solve (71), we should calculate Vfz(H) = K. .H — K. ,.
The constant Gram matrix K . can be computed in O(FdP?)
time for polynomial kernels, while it takes O(Ft.P?) time
for Gaussian RBF kernels (Z. is the time needed to calculate
the exponential e®). The calculation of matrix K , requires
O(FdMP) in case of polynomial kernels and O(Ft.M P)
in case of Gaussian RBF kernels. Thus, the cost per iteration
depends on product K, .H which is an O(M P?) operation.
Hence, the cost for obtaining the gradients is

O(FMPd) 4 r, x O(MP?) (73)
where 71 is the number of subiterations.

The most time consuming part is to find an «; such that

H = P[HY — o,V fz(HOD))]. (74)
In order to calculate the proper H®), using (74), we should cal-
culate fz(H®) at every iteration. This needs O(FM Pd) it-
erations (or O(F' M Pt. ) for Gaussian RBF kernels). However,
since the cost is quadratic in H, we may substitute the checking
of inequality (25) with checking inequality (28), which requires
the calculation of K, (H®) — H(*~1)), which takes O(P?M).
Thus, the cost of O(¢F M Pd) of checking (25) is reduced to
O(tP2M). This way, the complexity of using the algorithm to
solve (16) is

O(FMPd) +r1 x O(tP*M). (75)
The second problem
win fua(2) = [X* - Z°H]}
subject toz;, >0, Vi, k (76)
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is nonlinear with more than quadratic dependency on Z.! Thus,
for this problem, we cannot use the trick of substituting the
checking of condition (20) with an equivalent one of smaller
computational cost.

As shown in Appendix II, V fig(Z) can be written as

Viu(Z) =

The most expensive procedure is the calculation of XH e
K. .7, which needs O(F M Pd) calculations. As for the case
of Gauss1an RBF kernels, we have (see Appendix III)

~XHOK.,)"+ZHH" 0 K..). (77

Via(Z) = -X(HoK,.)" +Z o (1}diag(2yHK, .))
+Z©(2yHH" 0K. .)-Z® (1pdiag2yHH K. .)) (78)

where 17 is an F'-dimensional vector of ones. The calculation
of fu(Z) needs O(M F Pd) and O(M F Pt.), for a polynomial
of degree d and Gaussian RBF kernels, respectively.

Thus, the overall cost of solving (4) with polynomial kernels
is

x (O(MFPd)+7y x O(tP*M)+1y x O(tMFPd)) (79)
where r is total number of iterations of the algorithm, r; and
ro are the number of subiterations for solving subproblems (71)
and (76), respectively, and ¢ is the mean number of iterations for
finding a proper «;. In the same manner, the complexity, when
using Gaussian RBF kernels, is

x (O(MFPt.)+r1 xO(tP>M)+7ry x O(tMFPt,.)). (80)

We can apply directly Algorithm 4 of [30] in order to solve
(4). That is, from a solution pair (Z*~Y, H*=1D) we may
directly obtain an updating (Z®), H®) as (81), shown at the
bottom of the page. Now f(Z*~1 H{¢-1) is not quadratic;
thus, we need to calculate f(Z®, H(t)) at every iteration. This
takes O(F M Pd) or O(F M Pt.) for polynomial and Gaussian
RBF kernels, respectively. The total computational cost is now

r X O(tFMPd), rx O(tFMPt,) (82)
for polynomial degree d kernels and Gaussian RBF kernels,
respectively.

Summarizing, we expect that the proposed algorithm has
smaller computational cost than the direct application of pro-
jected gradients (81), since in the proposed procedure we take
advantage of the fact that subproblem (71) is quadratic in terms
of H. Moreover, since in [19] the cost has been approximated
by a quadratic function with respect to Z, we anticipate that the
proposed method will lead to a better minimum. In the experi-
mental results section, we shall use the abbreviation PGKNMF
(Projected Gradient Kernel non-negative Matrix Factorization)
for referring to the proposed method.

IExcept the case of the linear kernel, i.e., k(x, z) = xT'z which corresponds
to the projected gradients NMF [30]

(Z(t)7 H(t))

= P[(Z*"Y HY) — (Vg f(Z,H), Ve f(Z, H))]

1)



1064

APPENDIX E
AUXILIARY FUNCTIONS

Let us define the following auxiliary functions [see (83) and
(84), shown at the bottom of the page].

It is straightforward to show that G{(M, M) = || X% —
X*MH]||% and Go(M,M) = || X® — X*MH]||%. By fol-
lowing similar lines to [8], [16] we have to prove that

M P P M M
530S 3 bl )
=1 j=11=1 k=1n=1
L (t—1) T M(Z)2
<3S M M
1=1 k=1 ik

T

N
&Y MK, . MYHHT); ;
=1
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M(t)
)

By assuming that MY = M"Y g.. (85) becomes (87),
shown at the bottom of the page. Relation (86) holds from the
fact that

(t) M(t)
Jk J
>1+1In (88)
t—1 t—1
M (-

since M;tk) > 0 and Mgfk_l) > 0. The updating rules (53) and
(54) can be found by setting
Vo G (M®, ME—1) = 0 or

M P M(t)Z Vo) G2(M(t>7 M(tfl)) = 0.
< Z[Kx,xM(t_l)HHT]ik (7tk— S (85) Finally, for deriving the updating rules (56) we should define
i=1 k=1 M, for every column h; of matrix H the following auxiliary func-
and that tion [see (89), shown at the top of the following page], where 7
is the set of all variables, i.e., see (90), shown at the top of the
following page. D77 is the submatrix of the diagonal matrix
ZZthmm X, X;) K. M
MTK, Mhb;)i+6 .
i= 1] 1 D”é hij l , iflel ©n
(t) 0, ifl #7.
> 2K, ,HT Lkm(t D + In ik
; ; (K. b 5? and a7 is the subvector of vector a with indices in 7.
)
G (M® Mt Z Z 2[K, .H” ]ka 1+ log (t”fl)
i=1 k=1 Mg,
M P m(t)2 M
+y Y Koo MOVHE | —E s+ (Kool (83)
=1 k=1 Mg, i=1
M P
Go(M® M) = - SN 9K, H ey
i=1 k=1
M P
+3 Y K, MOEDHET), (t 5+ Z[Km alii (84)
i=1 k=1
Z Z Z Z[Km z]uM(t 1)[Kz mHT] lM(t 1)(q12k - qqu]l)
=3 Z Z Z Z K. o] My VK, oH MG ™ (g — g0)> > 0 (87)
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GY3(h§'t)7 h;,t—l)) = Dd)(h;t—l)) + (h(f) _ h(t—l))?VD¢(h§t_l))I
+ (h® — h*=D)TD; (h® — h(-D); .

T 2 {l|h; > 0,[VDy(h;)]x # 0 or hyj = 0,[VDy(h;)]x < 0}

= {llhk; > 0,[VDy (h;)]x # 0}

(90)
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