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On the Improvement of Support Vector Techniques
for Clustering by Means of Whitening Transform

Stefanos Zafeiriou and Nikolaos Laskaris

Abstract—In this letter, we suggest a novel method for clustering,
based on finding the smallest enclosing hyperellipse in arbitrary
Hilbert spaces. In particular, we show that the one class support
vector method that finds the minimum bounding hypersphere,
under the whitening transform, becomes a method for finding the
minimum bounding hyperellipse. Afterwards, we generalize the
method in order to find the minimum bounding hyperellipse in
arbitrary Hilbert spaces. We illustrate the power of the proposed
methods in clustering applications.

Index Terms—Clustering, kernel principal component analysis,
support vector machines, whitening transform.

I. INTRODUCTION

SUPPORT vector machines (SVMs) [1] have become
synonym to ”good classifiers,” but their potential role in

cluster analysis has been left relatively unexplored. The first
method using SVM for clustering has been proposed in [2].
The so-called one class SVM method is used in order to model
the underlying distribution of the data. The method proceeds
by finding the hypersphere with the minimum radius in Hilbert
spaces (usually using RBF kernels) that encloses all the training
data [3]. The rest of SV clustering algorithms [2], [4], [5] work
similarly and try to model the underlying distribution of the
data in Hilbert spaces using hyperspheres. The hypersphere
approximation in the Hilbert spaces is a valid assumption when
all the features have equal variance in every dimension.

In this letter, we incorporate the statistics of the class distri-
butions in one class SV formulations. To do so, we exploit the
convenience of whitening-transform (WT) in order to build a
new clustering method. The WT is one of the most commonly
used normalizations in signal processing [6], [7] and is often re-
lated to hyperellipse modelling of distributions. With the proper
algorithmic steps, the data, under the WT, are transformed in a
format such that the variance in each dimension to be unity and
their is no correlation between the dimensions (i.e., the covari-
ance matrix of the data is the identity matrix). The goal of WT
is either to decorrelate a data sequence prior to subsequent pro-
cessing, or to control the spectral shape after processing. The
interested reader may refer to [7] and to references therein for
more details on the applicability of the WT.

We show that by incorporating WT in an SV method for
finding the minimum bounding hypersphere of the data, a novel
method emerges that can identify the minimum bounding hy-
perellipse. We propose a novel kernel method for estimating the
underlying distribution of the data by identifying the minimum
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hyperellipse in Hilbert spaces that encloses the training data. We
believe that the hyperellipse model is better suited for modelling
the underlying cluster distribution, since the variance in each di-
mension is usually not the same in the input nor in the feature
space. The hyperellipse modelling has received in the past much
attention for clustering problems [8]–[13] where WT or similar
approaches have been used. The proposed method converges to
the hyperspherical SV methods when the variance is the same in
every dimension in Hilbert space. Similar methods, to the pro-
posed one, that show the benefits of hyperellipse modelling have
been proposed [14]–[16]. Our method is considerably different
from the optimization methods in [14]–[16] since we provide a
robust solution in arbitrary dimensional Hilbert spaces and also
a new clustering framework.

Experiments using synthetic and benchmark data accompany
the theoretical exposition. To help the reader justify our sug-
gestion, the results are presented in direct comparison with the
results from standard SVM-techniques. The remainder of this
letter is organized as follows. In Section II, the SV method for
finding the minimum enclosing hyperellipse is presented. Ex-
perimental results are provided in Section III. Finally, conclu-
sions are drawn in Section IV.

II. HYPERELLIPSE CLUSTERING

A. Whitening Transform

Let a training set with finite number of elements
, . The total scatter matrix of the training

data is

(1)

where is the mean vector of the set . Let also that the mean
vector is zero (i.e., we subtract the mean vector from all the
training vectors). Assuming that the total scatter matrix is
invertible (i.e., the dimensionality of the samples ), the
standard WT is a linear transform that takes the form

(2)

and , since and are positive definite
matrices. It can be easily verified that the total scatter matrix of
vectors is the identity matrix .

B. Finding the Minimum Bounding Hyperellipsoid

In [2], an SV method has been proposed for finding the
minimum bounding hypersphere. For the whitened vectors ,
given in (2), the optimization problem that finds the minimum
bounding hypersphere is calculated by searching for the center

and the radius derived from the following optimization
problem:

(3)
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Fig. 1. Finding the minimum bounding circle and minimum bounding ellipse.

subject to the constraints

(4)

Now, substituting the whitened vectors from (2)–(4), we take

(5)

where . This is equivalent to the problem of
finding the minimum bounding hyperellipse.1 Fig. 1 shows the
minimum bounding sphere and the minimum bounding ellipse
found using the proposed optimization problem (3) subject to
the constraints (5). As can be seen, the WT leads to a better
representation of the data than the representation based on the
minimum bounding hypersphere.

Now we will generalize the optimization problem (3) subject
to the (5) in arbitrary Hilbert spaces build using Mercer’s kernels
(especially using RBF kernels used in our experiments). To do
so, let us define the nonlinear mapping that
maps the training samples to the arbitrary dimensionally feature
space. In this letter, we will restrict ourselves to the cases that the
mapping satisfies the Mercer’s condition [1]. The followings
also hold for the linear case, and the simplistic choice .
In all methods that will be described, the explicit closed form of
the function is not needed, since for all the calculations, the
dot products in are employed using the so-called kernel trick
as follows:

(6)

The typical kernels that used in our experiments were RBF ker-
nels

(7)

where controls the spread of the Gaussian kernel.

1To be strict, in this letter, we define the hyperellipses using the total scatter
matrix, which is an approximation of finding the true minimum volume hyper-
ellipse. For finding the "true" hyperellipse, one should initially solve an opti-
mization problem for finding the actual covariance problem.

Following the formulation of finding the smallest enclosing
hypersphere in feature space [2], [17], the smallest enclosing
hyperellipsoidal in feature space is defined by optimizing (3)
subject to the constraints

(8)

where is the covariance matrix defined in arbitrary Hilbert
spaces as

(9)

There is a major difficulty in finding the minimum bounding
hyperellipsoidal in Hilbert spaces. The difficulty is that we could
not satisfy the invertibility of (the rank of is smaller
than ) in arbitrary dimensional Hilbert spaces, and we need
a closed form solution for the matrix . That is, we need
to calculate an approximation matrix of the matrix . The
properties of the matrix are listed below.

• It keeps the principal structure of the covariance matrix ,
so as the dominant eigenvalues and eigenvectors of and

remain the same.
• It is compact and regularized. The compactness is inspired

by the fact that the smallest eigenvalues of the covariance
matrix are very close to zero. The regularity is always de-
sirable in the approximation theory.

• It is easy to invert analytically. This is especially impor-
tant in our case since we want a closed form expression of

.
Such a solution has been given in [18] as

(10)

where , is the identity ma-
trix in the feature space, is a -dimensional vector of ones,

, and is a constant used for regular-
ization (i.e., the typical value is ). In order to define , we
have first to define the centralized Gram matrix as

(11)

the Gram matrix is . Thus, it is computational feasible
to perform eigenanalysis to and let be the corre-
sponding set of eigenvalues and eigenvectors, respectively. The
previous procedure for finding the top eigenvectors that cor-
respond to non-zero eigenvalues of the matrix is the KPCA
transform [19]. The matrix is given by

(12)

where is a diagonal matrix with ele-
ments the non-null eigenvalues of , and is
the matrix with columns the corresponding eigenvectors.

Now the closed form for is given by the Woodbury
formula [18] as

(13)

where

(14)
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and the matrix can be thought of as a ”reciprocal” matrix of

(15)

Having found an approximation of the matrix , the ma-
trix , that meets all the necessary requirements mentioned
above, we can proceed in solving the quadratic optimization
problem that will give us the center and radius . In case that
we take into consideration the presence of outliers, the optimiza-
tion problem (3) subject to the constraints (8) is reformulated in
its soft form as

(16)

subject to

(17)

with slack variables , . We solve the
problem of finding the smallest bounding hyperellipse by
founding the saddle point of the Lagrangian

(18)

where and for are the La-
grange multipliers associated to the constraints (18), and

is the vector of slack variables. The conditions that
should be met for the saddle point are

(19)

substituting the above conditions to (18), the Wolfe dual form
of the constraint optimization problem is the maximization of

(20)

subject to the constraints

and (21)

The way the term is calculated using
the so-called kernel trick is shown in the Appendix. The
Karush–Kuhn–Tucker (KKT) conditions of the optimization
problem (16) subject to the constraints (17) yield

(22)

From the KKT conditions, it is clear that only the vectors
with are needed for defining the center of the hyper-
ellipsoidal in (support vectors). We can further compute the
distance between input pattern and the center using the distance

(23)

which is actually the Mahalanobis distance in Hilbert space .
The best is the one

is an SV (24)

The point is outside the minimum bounding hyper-
ellipse if the corresponding slack variable . From the
KKT conditions, we know that . These vectors are the
outer vectors. These vectors do not exist when . Further-
more, the point is located in the hyperellipsoidal surface when

. The points lie inside the hyperellipse when
. The method for finding the minimum bounding hy-

perellipse can be converted to a clustering method using one of
the methods [2], [4], [5]. We applied the proposed method in the
framework proposed [5]. This clustering framework is described
in more detail in [20]. This method can be interpreted as an ex-
tension of -means clustering in Hilbert spaces (using Mercer’s
kernels). That is, the data are clustered in hyperspheres (in our
method, these are hyperellipses) in feature space. The center and
the shape of each cluster is defined by each of the hyperspheres.
In our case, the shape and the center of the cluster is defined
by each hyperellipse. All the SV-based clustering approaches
[2], [4], [5] use hyperspheres in order to model the underlying
distribution of the data (or the distribution of each cluster). The
hypersphere distribution approximation in the feature and in the
input space is a valid assumption when all the features are of
equal variance. We believe that the hyperellipse approximation
for each cluster is more valid due to the fact that it allows the
data to have different variances in every dimension.

III. CLUSTERING EXPERIMENTS IN VARIOUS DATASETS

Our algorithm of hyperellipsoidal clustering has been tried
on three data sets, that is, the IRIS Database [21], the Spam
data set [22], and the Wisconsin’s breast cancer database [23].
We have compared the proposed clustering scheme in terms
of performance with an implementation of the hyperspherical
SVM-based clustering scheme in [5]. The proposed scheme has
all the advantages of SVM-based implementation proposed in
[5]. Thus, we have not conducted experiments with other clus-
tering schemes like K-Means, Neural Gas, SOM, and Ng-Jordan
algorithm [24] since, in [5], it has been shown that these al-
gorithms are constantly outperformed by the SVM-based clus-
tering algorithm in [5]. Nevertheless, we have performed exper-
iments using an implementation of the hyperellipse clustering
in [11].

We tested our method on the IRIS data using one center for
each of the three classes. The results obtained using the hyper-
spherical SVM clustering [5] and the proposed hyperellipsoidal
SVM clustering for the IRIS database (150 samples) are sum-
marized in column 2 of Table I (correctly classified samples).
The Spam database collects 1534 samples from two different
classes, spam and not-spam. Each sample is represented by a
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TABLE I
HYPERSPHERICAL SV CLUSTERING VERSUS HYPERELLIPSOIDAL SV

CLUSTERING IN IRIS, SPAM, AND WISCONSIN DATABASE

57-dimensional feature vector. The third column of Table I dis-
plays the average performances on 20 runs obtained on Spam
database for different initializations and parameters for both the
hyperspherical and hyperellipsoidal clustering. Last, we have
experimented with the Wisconsin’s breast cancer database [23].
This database contains 683 nine-dimensional samples. The
clustering results obtained in this database are summarized in
column 4 of Table I. We have compared the proposed clustering
model with the model proposed hyperspherical model in [5] and
with an implementation of the hyperellipse clustering in [11].
In Table I, we have included the clustering results from [5],
since in our experiments, the hyperspherical algorithm showed
slightly different performance. It can be seen that our method
obtains consistently better results than the hyperspherical SVM
clustering and the an implementation of the clustering in [11].

In the experiments presented, typical eigenanalysis routines
have been used. Since, the eigenanalysis of the total scatter ma-
trix is one of the steps of the proposed approach that may re-
quire extra care in order to avoid numerical instability and the
effect of outliers. Some methods that can be used for such pur-
poses can be found in [25] and more recently in [26]. From our
experience, the performance can be increased when, apart from
the eigenvectors that correspond to null eigenvalues, some of the
eigenvectors that correspond to small eigenvalues are discarded,
as well.

IV. CONCLUSIONS

In this letter, we have shown how SV methods for clustering
are transformed under the whitening normalization. That is, we
have developed a method for finding the minimum bounding hy-
perellipse. Experimental results proved that the whitening nor-
malization may serve in improving the performance of the SV
method. A possible disadvantage of the proposed method is that
it requires an initial eigenanalysis of the total scatter matrix. Fur-
ther research on the topic for a practitioner’s perspective is the
incorporation of robust statistics [27], [28] for the calculation
of the total scatter matrix in order to cope with the presence of
possible outliers in the class distributions.

APPENDIX

CALCULATING

The term can be represented in terms
of vector dot products (kernel-trick) in the Hilbert space as
follows:

(25)
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