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Abstract

In this paper, we propose novel algorithms for
low dimensionality nonnegative embedding of vectorial
and/or relational data, as well as nonnegative projec-
tions for dimensionality reduction. We start by intro-
ducing a novel algorithm for Metric Multidimensional
Scaling (MMS). We propose algorithms for Nonnega-
tive Locally Linear Embedding (NLLE) and Nonnega-
tive Laplacian Eigenmaps (NLE). By reformulating the
problem of MMS, NLLE and NLE for finding projec-
tions we propose algorithms for Nonnegative Principal
Component Analysis (NPCA), for Nonnegative Orthog-
onal Neighbourhood Preserving Projections (NONPP)
and Nonnegative Orthogonal Locality Preserving Pro-
jections (NOLPP). We demonstrate some first prelimi-
nary results of the proposed methods in data visualiza-
tion.

1 Introduction
Machine learning, pattern recognition and data min-

ing constitute areas of great development during the
past decade. One of the primary goals of many data
mining and machine learning systems is dimensionality
reduction. The goal of dimensionality reduction is to
reduce the number of features of data in order to per-
form tasks like clustering and/or training a classifier.
The motivation behind data dimensionality reduction is
to reduce the cost and the number of parameters of the
classifier. In some cases of learning algorithms (like
Linear Discriminant Analysis (LDA) [2]) and for Small
Sample Size (SSS) problems (where N � F , N is the
number of samples and F is the feature dimensionality)
it is crucial to performdimensionality reduction in order
perform invertion of matrices and eigenanalysis. To that
end, a lot of methods were proposed [2, 7, 1, 11, 3, 4, 6].
Metric Multidimension Scaling [5] (MMS) and Princi-

pal ComponentAnalysis (PCA) [2] were among the first
methods proposed for dimensionality reduction. LDA
was one of the most popular method for feature ex-
traction especially for face recognition [2]. Nonlinear
and linear dimensionality reduction methods based on
preserving local structure of data were also proposed
[7, 1, 11, 3, 4, 6]. Another group of methods created
having the same aim was the one based on Nonnegative
Matrix Factorization [9, 6, 8].
In this paper we enrich the arsenal of dimensionality

reduction algorithms by applying methods proposed in
[6] in order to perform Nonnegative MMS (NMMS),
Nonnegative Locally Linear Embedding (NLLE) as
well as to find Nonnegative Laplacian Eigenmaps
(NLE). Subsequently, we reformulate the problem and
instead of finding directly the data embedding we ap-
proximate it trying to find projections based on Non-
negative Principal Component Analysis (NPCA), Non-
negative OrthogonalNeighbourhoodPreserving Projec-
tions (NONPP) and Nonnegative Orthogonal Locallity
Preserving Projections (NOLPP). We present some ini-
tial results of the proposedmethods using artificial data.

2 Nonnegative Embedding Algorithms

Let a set of original samples xi ∈ �
F be represented

by a matrixX = [x1| · · · |xN ] andm =
∑N

i=1 xi be the
center of samples. Let also X̄ = [x1−m| · · · |xN −m]
be the centered data matrix. All the algorithms that will
be described below aim at finding a low dimensional
embeddingY = [y1| · · · |yN ] with yi ∈ �

P with P <

F such that a particular criterion is satisfied.

2.1 Nonnegative Metric Multidimensional
Scaling

The aim of MMS [5] is to find an embeddingY such
that the distances of the low dimensional embedded data
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||yi−yj ||
2 approximatelly preserve the distances of the

original data ||xi − xj ||
2. In MMS the problem is re-

formulated into an equivalent problem of preserving the
inner products in the embedded space. Let that we de-
fine the centered inner product matrix in the original
space K = [x̄T

i x̄j ], where x̄i = xi −m are the cen-
tered data. Let thatD =

[
||xi − xj ||

2
]
be the distance

matrix. Then, the centered dot product matrix is defined
as K = −(I − 1

N
E)D(I − 1

N
E), where E is a matrix

of ones. The optimization problem of MMS is:

Yo = arg min
Y

||K−YT Y||2F . (1)

The solution is provided by the eigendecomposition of
K = UΛUT and for a P dimensional reduction we
select Yo = Λ

1
2

PUT
P . A natural generalization of the

above procedure is the ISOMAP [1]. In this case we use
the geodesic distance instead of the typical L2 norm.
By observing that UT

P UP = IP we reformulate
the above optimization problem so as to enforce non-
negativity constrains for the resulted embedding Y =
S

1
2 HT :

Ho = argminH ||K−HSHT ||2F
s.t. H ≥ 0, S ≥ 0, HHT = I

(2)

which is the proposed nonnegative MMS (NMMS).
Using similar reasoning as the one developed in [6]

in order to find nonnegative decompositions under or-
thogonality constraints, we can prove that the following
update rules converge to a local minimum of optimiza-
tion problem (2):

H ← H ∗
√

K+HS+HHT K−HS

K−HS+HHT K+HS

s ← s ∗
√

(H�H)vec(K+)
(H�H)(H�H)′s+(H�H)vec(K−)

(3)

where S = diag(s), ∗ is the Hadamard product,� is the
Khatri-Rao product, vec(A) ∈ �NM is the vectorized
matrix A ∈ �N×M and for a matrix G we define the
matricesG+ andG− as G

+

ij
�

j
Gij if Gij ≥ 0

0 otherwise. and

G
−

ij
�

j
|Gij | if Gij ≤ 0

0 otherwise.

2.2 Nonnegative Locally Linear Embedding

In LLE [10, 11], instead of preserving the global dis-
tances ||xi − xj ||

2, as in MMS, an embedding is found
that preserves the neighbourhoods of the original sam-
ples xi. LLE works under the assumption that the orig-
inal space lie on some high dimensional manifold, thus
every sample can be faithfully reconstructed using only
a few neighbors. The reconstruction error is defined as:

E(W = [wij ]) =

N∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣xi −

N∑
j=1

wijxj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (4)

The weights wij for a sample xi are equal to zero if
xj does not belong in the neighbourhood of this sam-
ple. Moreover,

∑N

j=1 wij = 1 and wii = 0. A lot of
methods and optimization problems were proposed for
finding the weights matrixW [11]. Afterwards, having
found the optimal weights matrixW we want to find a
low dimensional embeddingY by optimizing:

Yo = arg minY

∑N

i=1

∣∣∣∣∣∣yi −
∑N

j=1 wijyj

∣∣∣∣∣∣2
= arg minY tr

[
Y(I −W)(I−W)T YT

]
s.t. YYT = I

(5)
As in the NMMS we enforce nonnegativity con-

straints in the embeddingY and propose the following
optimization problem:

Yo = argminY tr
[
YMYT

]
s.t.Y ≥ 0, YYT = I.

(6)

where M = (I −W)(I −W)T . In a similar manner
as above we can prove that the following update rules
converge to a local minimum:

Y ← Y ∗

√
YM− + YM+YTY

YM+ + YM−YTY
(7)

2.3 Nonnegative Laplacian EigenMaps

LE [3] follows similar reasoning as LLE. The main
difference is in the way the weights are chosen to repre-
sent locality. The heat kernelwij = e

−
||xi−xj ||2

γ or con-
stant weights (wij = 1 if the i-th and the j-th vectors
are adjacent andwij = 0 otherwise) constitute common
choices for the weights. They also have a slightly differ-
ent objective function [3]. LE finds a low dimensional
embeddingY by minimizing the following:

Yo = arg minY
1
2

∑N

i=1

∑N

j=1 wij ||yi − yj ||
2
2

= arg minY tr
(
YLYT

)
s.t. YDYT = I

(8)
where L = D − W where D = diag(W1) (where
diag(a) is the diagonal matrix having as main diago-
nal vector a). The objective function with the chosen
weights wij results in a heavy penalty if the neighbor-
ing points xi and xj are mapped far apart. Therefore,
its minimization ensures that if xi and xj are ”near”,
then yi and yj are ”near”, as well.
Following the same reasoning as above we propose

a nonnegative embedding Ỹ = YD
1
2 and solve the fol-

lowing optimization problem as:

argminY tr
(
ỸD−

1
2 LD−

1
2 ỸT

)
s.t. ỸỸT = I, Ỹ ≥ 0.

(9)
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The update rules for Ỹ are the same as the ones given
in (7) but instead ofM we use the matrixD−

1
2 LD−

1
2 .

3 From Nonnegative Embeddings to Non-
negative Projections

In this section we confine ourselves to finding a pro-
jection matrix U, in order to find the desired embed-
ding. That is, the embeddingY is given byY = UT X.

3.1 Nonnegative Principal Component Analy-
sis

We can prove that by substituting Y = UT X̄ into
the MMS problem we can derive the well-known PCA
optimization problem:

Uo = arg maxU tr
[
UT X̄X̄TU

]
s.t. UT U = I

(10)

The corresponding NPCA problem is given by:

Uo = arg maxU tr
[
UT X̄X̄TU

]
s.t. U ≥ 0, UT U = I.

(11)

By letting C = X̄X̄T we can guarantee that the op-
timization problem will reach a local maximum, given
by:

U← U ∗

√
C+U + UUT C−U

C−U + UUT C+U
. (12)

3.2 Orthogonal Nonnegative Neighbourhood
Preserving Projections and Orthogonal
Nonnegative Locallity Preserving Projec-
tions

The Neighbourhood preserving projections (NPP)
[7] method is similar to the LLE method but instead of
seeking for a general mappingY it seeks for particular
projection matrix U. That is, Y is now Y = UT X.
Then, optimization problem (5) is reformulated as:

Uo = arg minU tr
[
UT XMXTV

]
s.t. UT XXT U = I

(13)

A variation of this method is the orthogonal NPP
(ONNP) where the projectionU is considered orthogo-
nal [7]

Uo = arg minU tr
[
UT XMXTU

]
s.t. UT U = I.

(14)

The proposed optimization problem for finding nonneg-
ative ONNP is given by:

Uo = arg minU tr
[
UT XMXTU

]
s.t. U ≥ 0, UTU = I.

(15)

Let that P = XMXT , then the update rules that guar-
antee that the above optimization problem will lead to a
local minimum are given by:

U← U ∗

√
P−U + UUT P+U

P+U + UUT P−U
. (16)
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Figure 1. Random Sampled Swiss Roll.

The merit of the using orthogonal projections were
also discussed in [4] where orthogonal LLP (OLLP)
were proposed (the counterpart of Laplacian eigenmaps
in case that we seek for projections). In OLLP the opti-
mization problem (8) was reformulated in:

Uo = arg minU tr
[
UTXLXT U

]
s.t. UT U = I.

(17)

in order to find a set of orthogonal projections.
As in NONPP we can define the nonnegative OLPP

(NOLPP) by solving the following optimization prob-
lem:

Uo = arg minU tr
[
UTXLXT U

]
s.t. U ≥ 0, UT U = I.

(18)

The update rules are the same as (16) but instead of us-
ing matrix P we use matrixXLXT .

4 Experimental Results
The proposed emdedding and projectionmethods are

tested using simulated data (Randomly Sampled Swiss
Roll Figure 1 ). The low dimension visualization us-
ing LE and the proposed NLE are depicted in Figures
2 (a) and (b), respectively. Visualization of the projec-
tions of the first two principal components is depicted in
Figure 2 (c) and the corresponding visualization using
two nonnegative principal components from the pro-
posed method are depicted in Figure 2 (d). As can be
seen the proposed methods resulted in very rich low-
dimensional embedding. Finally, the convergence of
two of the proposed methods (NLME and NPCA) are
depicted in Figures 2 (e) and (f).
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Figure 2. (a) The embedding or the random sampled Swiss Roll using LE; (b) the embedding
using NLE; (c) the embedding using the first two principal components; (d) the embedding
using the first two nonnegative principal components; (e) objective function value versus the
number of iterations for the NLE method; (f) objective function value versus the number of
iterations for the NPCA method

5 Conclusions
Novel algorithms for nonnegative embedding of high

dimensional data were proposed. We have reformulated
algorithms like MMS, LLE and LE by incorporating
nonnegativity constraints. Moreover, by requiring the
embedding to be a result of a projection of the original
we proposed algorithms for performingNPCA, NONPP
and NOLPP. We demonstrated the usefullness of the
proposed algorithms in low dimensional visualization
of prototypical manifolds. We believe that the proposed
methods would be useful in a variety of dimensionality
reduction problems (like face recognition).

6 Acknowlegdment
This work was partial funded by a postdoctoral fel-

lowship of Stefanos Zafeiriou by the Greek State Schol-
arships Foundation.

References

[1] M. Balasubramanian, E. Schwartz, J. Tenenbaum,
V. de Silva, and J. Langford. The isomap algorithm and
topological stability. Science, 295(5552):7, 2002.

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Krieg-
man. Eigenfaces vs. Fisherfaces: Recognition using
class specific linear projection. IEEE Transactions on
Pattern Analysis and Machine Intelligences, 19(7):711–
720, 1997.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for di-
mensionality reduction and data representation. Neural
computation, 15(6):1373–1396, 2003.

[4] D. Cai, X. He, J. Han, and H. Zhang. Orthogonal lapla-
cianfaces for face recognition. IEEE transactions on
image processing, 15(11):3608, 2006.

[5] M. Cox. Multidimensional scaling. CRC Press, 2000.
[6] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal non-

negative matrix t-factorizations for clustering. In Pro-
ceedings of the 12th ACM SIGKDD, page 135, 2006.

[7] E. Kokiopoulou and Y. Saad. Orthogonal neighborhood
preserving projections: A projection-based dimension-
ality reduction technique. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(12):2143, 2007.

[8] I. Kotsia, S. Zafeiriou, and I. Pitas. A novel discriminant
nonnegative matrix factorization method with applica-
tion to facial image characterization problems. IEEE
Trans. Information Forensics and Security, 2(3):588–
595, 2007.

[9] D. Lee and H. Seung. Learning the parts of ob-
jects by non-negative matrix factorization. Nature,
401(6755):788–791, 1999.

[10] S. Roweis and L. Saul. Nonlinear dimensional-
ity reduction by locally linear embedding. Science,
290(5500):2323, 2000.

[11] L. Saul and S. Roweis. Think globally, fit locally:
unsupervised learning of low dimensional manifolds.
The Journal of Machine Learning Research, 4:119–155,
2003.

733733729729729


