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ABSTRACT

In this paper we motivate the use of class-specific non-
linear subspace methods for face verification. The problem of
face verification is considered as a two-class problem (gen-
uine versus impostor class). The typicalFisher’s Linear Dis-
criminant Analysis(FLDA) gives only one or two projections
in a two-class problem. This is a very strict limitation to the
search of discriminant dimensions. As for the FLDA forN
class problems (N > 2) the transformation is not person spe-
cific. In order to remedy these limitations of FLDA, exploit
the individuality of human faces and take into consideration
the fact that the distribution of facial images, under differ-
ent viewpoints, illumination variations and facial expression
is highly complex and non-linear, novel kernel discriminant
algorithms are used. The new method is tested in the face
verification problem using various datasets where it is verified
that it outperforms other commonly used kernel approaches

Index Terms— Face verification, two-class problems, ker-
nel techniques, Fisher’s linear discriminant analysis.

1. INTRODUCTION

It is widely accepted that the distribution of facial images,
under different viewpoints, illumination variations and facial
expression is highly complex and non-linear [1, 2, 3]. Thus, a
variety of nonlinear techniques has been developed in order to
successfully capture the underlying nonlinearity of data and
the most popular have been the so-called kernel techniques
[1, 2, 3]. The two problems of face verification and recogni-
tion are conceptual different and should be treated differently
when extracting discriminant features for treating them. On
one hand face recognition is treated as a multiclass problem,
where the space is separated to various face classes. On the
other hand the strategy for face verification is to find class-
specific projections that separate the genuine (client) class
from the impostor class.

Moreover, there differences in the measures that are used
for evaluating the performance of both face verification and
recognition. In many cases for evaluating the performance
of a face recognition system, only the percentage of correctly
identified faces within a number of matches is adequate (recog-
nition rate) [1, 2]. On the other hand the performance of face
verification systems is measured in terms of theFalse Rejec-

tion Rate(FRR) achieved at a fixedFalse Acceptance Rate
(FAR) [4]. There the trade-off between FAR and FRR creates
a curve where FRR is plotted as a function of FAR. The per-
formance of a verification system is often quoted by a partic-
ular operating point of this curve where FAR=FRR [4]. This
operating point is calledEqual Error Rate(EER). The EER
will be used to quantify the performance of the tested meth-
ods, in the experimental results section.

2. NONLINEAR CLASS-SPECIFIC DISCRIMINANT
FEATURE EXTRACTION

In order to make use of kernel techniques the original input
space is projected to an arbitrary-dimensional spaceF (the
spaceF usually has the structure of a Hilbert space [2]). To
do so, letφ : z ∈ <M −→ φ(z) ∈ F be a nonlinear mapping
from the input space<M to the Hilbert spaceF .

Let r be the reference person that will be used for defining
the person specific algorithms. The genuine vectorszi ∈ <M

of the personr will be denoted asρi = zi (zi ∈ Ur), while
the impostor imageszi of the personr will be denoted as
κi = zi (zi ∈ Ir). Let alsoρ̄, κ̄ andm̄ be the mean vectors
of the genuine class, the impostor class and total mean of the
facial vectors in the Hilbert spaceF . Any functionk satisfy-
ing the Mercer’s condition can be used as a kernel. The dot
product ofφ(zi) andφ(zj) in the Hilbert space can be calcu-
lated without having to evaluate explicitly the mappingφ(·)
ask(zi, zj) = φ(zi)T φ(zj) (this is also known as the ker-
nel trick). The typical kernels that have been used have been
polynomial and Radial Basis Functions (RBF). Kernels that
do not satisfy the Mercer’s condition have been successfully
applied for face recognition [3] [i.e., Fractional Polynomial
Models (FPM)] and have been considered in the experiments.

The criterion that is used in this paper, will be formed
using a simple similarity measure in the Hilbert spaceF . This
measure quantifies the similarity of a given feature vectorz
to the reference facial classr in the subspace spanned by the
columns of the matrixΨ = [ψ1 . . . ψK ], with ψi ∈ F . The
L2 norm in the reduced space spanned by the columns ofΨ,
is used as similarity measure:

dr(z) = ||ΨT (φ(z)− ρ̄)||2
= tr[ΨT (φ(z)− ρ̄)(φ(z)− ρ̄)T Ψ]
=

∑K
i=1 tr[ψT

i (φ(z)− ρ̄)(φ(z)− ρ̄)T ψi]
(1)
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Fig. 1. a) Multiclass face recognition modelling; b) two Class face verification modelling; c) the distribution of the first
two features projected to the first two principal components; d) a simulation distribution derived from two bivariate normal
distributions for impostors and clients

(a) (b)

(c) (d)

Fig. 2. Histograms of sample distances with: a)kernel Fisher’s discriminant analysis; b)kernel Fisher’s discriminant analysis
with more than one dimensions by adding the a small noisy diagonal matrix to the between class scatter matrix; c) proposed
kernel discriminant analysis with only the first dimension; d) proposed kernel discriminant analysis with 100 dimensions.



which is actually the Euclidean distance of a projected sam-
ple to the projected mean of the reference class and is one of
most usually employed measures in pattern recognition ap-
plications (i.e, distance from the center of the class). This
distance should be low for the samples of the genuine class
and should be high for the samples of the impostor class.

Now, in order to find a discriminant linear transformation
inF we demand that the sum of the similarity measuresdr(z)
for all z ∈ Ir (impostor similarity measures) to be maximized
while minimizing the sum of the similarity measuresdr(z) for
all z ∈ Ur (client similarity measures). Thus, the discriminant
projectionsψi ∈ F are found in the training set as the ones
that maximize the ratio:

DΦ(Ψ) =
P

z∈Ir
dr(z)P

z∈Ur
dr(z)

=
P

z∈Ir

PK
i=1 tr[ψT

i (φ(z)−ρ̄)(φ(z)−ρ̄)T ψi]P
z∈Ur

PK
i=1 tr[ψT

i (φ(z)−ρ̄)(φ(z)−ρ̄)T ψi]

=
PK

i=1 tr[ψT

i [
P

z∈Ir
(φ(z)−ρ̄)(φ(z)−ρ̄)T ]ψi]PK

i=1 tr[ψT

i [
P

z∈Ur
(φ(z)−ρ̄)(φ(z)−ρ̄)T ]ψi]

=
PK

i=1 tr[ψT

i WΦψi]PK
i=1 tr[ψT

i BΦψi]

= tr[ΨT WΦΨ]
tr[ΨT BΦΨ]

.

(2)
whereWΦ =

∑
z∈Ir

(φ(z)−ρ̄)(φ(z)−ρ̄)T , BΦ =
∑

z∈Ur
(φ(z)−

ρ̄)(φ(z)− ρ̄)T and tr[M] is the trace of matrixM. Direct op-
timization ofDΦ(Ψ) inF is an intractable problem due to the
fact that bothWΦ andBΦ are matrices with arbitrary dimen-
sions. Thus, in order to extract features by the above criterion
methods similar to [1, 2] have been used. The propose dis-
criminant analysis will be called Class-Specific Kernel Dis-
criminant Analysis (CSKDA) in the rest of the paper.

3. MULTICLASS VERSUS TWO-CLASS
MODELLING

In Figures 1a and b the two different modelings (i.e, face
recognition and face verification) can be seen. An example
of two class face verification problem for 39 persons from
the XM2VTS database, is illustrated in Figure 1c. For every
person the first two features, derived from the projection to
the two dominant eigenvectors of PCA (Principal Component
Analysis), are depicted.

A simulation example can be found in Figure 1d where
two classes have been created using bivariate normal distri-
butions. The first class represents the client class, having
50 samples, while the second one models the impostor class,
containing 2000 samples. It is obvious that non-linear meth-
ods should be applied in order to capture the distribution of
the data. In order to provide some first insights of the bene-
fits of CSKDA, we have applied non-linear modelling using
RBF kernels in the artificial data of Figure 1d. The kernel
Fisher discriminant alternatives give a very limited subspace
of one dimension [1, 2, 5]. On the other hand Kernel PCA
[1, 2, 5] provides a set of features, but has the disadvantage

that does not consider class distribution characteristics. For
the simulation example in Figure 1d the KPCA resulted in an
100 dimensional space. The proposed approach has resulted
in an 100 dimensional space, as well.

Let that the similarity between a data sample, in the new
space, and the genuine class, be measured using the Euclidean
distance to center of the genuine class. The distribution of
the client and impostor similarities, after applying KFDA and
CSKDA, with the client class can be found in Figure 2. The
zoomed area represents the distribution of the client distances.
As can be seen, in Figure 2a, when using the one dimensional
space of KFDA the data are somewhat well separable. When
more dimensions are kept by adding an diagonal matrix with
small noisy elements to the between-class scatter matrix, the
two classes are heavily confused (see Figure 2b).

In many cases, in approximation and regularization the-
ory [5, 3], a scaled version of the identity matrix is added to a
matrix in order to become invertible [5, 3]. The scaled version
of the identity matrix is a simplified version of the noisy diag-
onal matrix that we have used in the experiments. Using this
fact, we provide a theoretical indication concerning why the
use of additional dimensions of between class scatter matrix
deteriorates the performance. As can be proven the matrix (in
the two class case) [2] has only one eigenvector that corre-
sponds to non null eigenvector. Let that we diminish the null
eigenvalues ofSΦ

b by adding the scaled version of the identity
matrix as:

SΦ
b ζ = 0 ⇔ SΦ

b ζ + σζ = ζ ⇔ (SΦ
b + σI)ζ = σζ, (3)

whereσ > 0. Thus, the eigenvectors ofSΦ
b that correspond to

null eigenvalues are the same ones that correspond to eigen-
values equal toσ for the matrixSΦ

b + σI. The property of the
projection to the null eigenvectors ofSΦ

b , that may indicates
poor classification performance is that if for someζ ∈ H,
ζT SΦ

b ζ = 0 then under the projectionζ, for the two training
mean vectors (genuine and impostor) in feature spaceH, it is
valid that,ζT ρ̄ = ζT κ̄. In other words under the projection
ζ the two centers,̄ρ, κ̄ fall in the same point, which means
that this projection does not help in separating the two classes
(is not optimal in sense of FLDA, where this projection make
the criterion equals to zero).

On the other hand the samples of the two classes are not
well separated using only the first dimension of the proposed
method, but they become fully separated when using 100 di-
mensions. Let that the maximum distance of the client sam-
ples be considered as a threshold for accepting or rejecting a
claim (this means that false rejection equals to zero). Using
this threshold, in Figure 3, a comparison of false acceptances
introduced from KFDA, KPCA and the proposed techniques
for various kept dimensions, is shown. As can be seen when
more than one dimensions are kept for KFDA, by adding the
identity matrix to the between class scatter matrix, the per-
formance deteriorates and more false acceptances are intro-
duced. On the other hand the performance of KPCA and the



Table 1. A Comparison of the best EERs measured using Gabor feature vectors and fractional polynomial models at various
feature extraction methods

Algorithm EER%-XM2VTS EER%-ORL EER%-Yale
Gabor + KPCA with Fractional Polynomial Models 10.2 5.3 7

Gabor + Best of Multiclass KFDA [1, 2, 3] with Fractional Polynomial Models 6.8 4.2 3.4
Gabor + CSKDA with Fractional Polynomial Models 3.3 3.2 1.6

proposed kernel technique increases with the number of kept
dimensions.
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Fig. 3. Number of false acceptances versus the dimensional-
ity.

4. EXPERIMENTS WITH REAL DATA

The databases that have been used in our experiments have
been ORL, Yale and the XM2VTS databases. For these databases
in order to make maximal use of the data we have consider-
ing a circular protocol. In order to implement this protocol,
we have combined principles of the leave one out strategy and
the rotation estimates, i.e., a variant of the jack-knife method
[4]. In each circle of the protocol one of the persons become
the impostor and its images are used for impostor claims (not
seen in the training phase). Then, the80% of the data of
the remaining persons are used for training and the remain-
ing 20% serve for client claims.

Gabor-based facial features combined with kernel meth-
ods (e.g., KPCA and variants of multiclass kernel Fisher’s dis-
criminant analysis [3]) and with fractional polynomial models
are among the state-of-the-art face verification and recogni-
tion systems in the literature. We have conducted experiments
using the augmented Gabor features proposed in [3]. More-
over, we have applied the proposed method using these Ga-
bor features and we have verified that it has superior perfor-
mance and outperforms Gabor-KPCA and multiclass Gabor-
KFDA with FPM models. The best EERs in the various tested
databases are summarized in Table 1.

5. CONCLUSION

Face verification has been modelled as a nonlinear two class
problem (clients vs impostors). The majority of discriminant
feature extraction methods that are used for face recognition,
are based on Fisher’s discriminant analysis. The analysis in
this paper indicates that: 1)the one dimensional space of two
class KFDA may be insufficient for correctly representing
data in two class cases, 2) simple tricks, like adding noisy
diagonal matrices to the between class scatter matrix, in or-
der to have larger KFDA spaces, deteriorate the performance
and 3) the proposed criterion provides a multidimensional
space where the data can be well represented. Moreover our
method has been tested in face verification using various face
databases, where they show to outperform many other popu-
lar kernel methods.
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