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ABSTRACT

In this paper, we investigate the use of discriminant tech-

niques in the elastic graph matching (EGM) algorithm. First

we use discriminant analysis in the feature vectors of the

nodes in order to find the most discriminant features. The

similarity measure for discriminant feature vectors and the

node deformation are combined in a discriminant manner

in order to form a local similarity measure between nodes.

Moreover, the local similarity values at the nodes of the

elastic graph, are weighted by coefficients that are also de-

rived by some discriminant analysis in order to form a to-

tal similarity measure between faces. We illustrate the im-

provements in performance in frontal face verification using

a modified multiscale morphological analysis.

1. INTRODUCTION

A popular class of techniques used for frontal face recogni-

tion/verification is EGM [1]. In EGM the reference object

graph is created by projecting the object’s image onto a rect-

angular elastic sparse graph where a Gabor wavelet bank

response is measured at each node. The graph matching

procedure is implemented by a coarse-to-fine stochastic op-

timization of a cost function which takes into account both

jet similarities and node deformation [1].

A variant of the standard EGM, the so-called morpho-

logical elastic graph matching (MEGM), has been proposed

for frontal face verification [2]. In MEGM the Gabor analy-

sis has been superseded by multiscale morphological dilation-

erosion by a scaled structuring function [2].

Discriminant techniques have been employed in order

to enhance the recognition and verification performance of

the EGM. The use of linear discriminant techniques at the

feature vectors for selecting the most discriminant features

has been proposed in [1, 2]. Several schemes that aim at

weighting the graph nodes according to their discriminatory

power have been proposed [2, 3]. In [3] it has been shown
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that the verification performance of the EGM can be highly

improved by proper node weighting strategies.

In this paper we illustrate where and how discriminant

techniques can be employed in the EGM. More precisely,

each node is considered as a local expert and discriminant

feature selection techniques are employed for enhancing its

recognition/verification performance. The deformation of

each node is considered as a second local similarity met-

ric that can quantify the relationships with its neighboring

nodes. The new local similarity value at each node is pro-

duced by discriminant weighting of both the feature vector

similarity measure and the node deformation. As a final

discriminant step the local similarity measures at grid nodes

are weighted by coefficients according to their discriminant

power. The problem of frontal face verification is used in

the following of the paper in order to describe in detail the

different discriminant steps.

2. ELASTIC GRAPH MATCHING

In this Section we will briefly outline the problem of frontal

face verification and the framework under which EGM per-

forms face verification. Let U be a facial image database

and each facial image u ∈ U belongs to one of the C per-

son classes {U1,U2, . . . ,UC} with U =
⋃C

i=1 Ui. For a

face verification system that uses the database U a genuine

(or client) claim is performed when a person t provides its

facial image, u, claiming that u ∈ Ur and t = r. When

a person t provides its facial image u while claiming that

u ∈ Ur, with t 6= r, an impostor claim occurs. The scope of

a face verification system is to handle properly these claims

by accepting the genuine claims and rejecting the impostor

ones.

The first step of EGM is to analyze the facial image re-

gion of the image u. Then, a set of local descriptors is ex-

tracted at each graph node. In the standard EGM a 2D Ga-

bor based filter bank has been used for image analysis. The

output of multiscale morphological dilation-erosion opera-

tions is a nonlinear alternative of the Gabor filters for multi-

scale analysis and has been successfully used for facial im-

age analysis [2]. At each graph node that is located at image
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coordinates x a jet j(x) is formed as:

j(x) = (f1(x), . . . , fS(x)), (1)

where fi(x) denotes the output of a local operator applied

to the image f at the ith scale or at the ith pair (scale, orien-

tation) and S is the dimensionality of the jet.

The next step of the EGM is to translate and deform the

reference graph on the test image in order to find the corre-

spondences of the reference graph nodes on the test image.

This is accomplished by minimizing a cost function that em-

ploys node jet similarities and in the same time preserves

the node relationships. Let the superscripts t and r denote

a test and a reference person (or graph), respectively. The

L2 norm between the feature vectors at the l-th graph node

of the reference and the test graph is used as a similarity

measure between jets, i.e.:

Cf (j(xl
t), j(x

l
r)) = ||j(xl

r) − j(xl
t)||. (2)

Let V be the set of graph vertices. Let also H(l) be the

four-connected neighborhood of node l. In order to quan-

tify the node neighborhood relationships using a metric, the

local node deformation is used:

Cd(x
l
t,x

l
r) =

∑

ξ∈H(l)

||(xl
t − xl

r) − (xξ
t − xξ

r)||, ξ ∈ H(l).

(3)

The objective is to find a set of vertices {xl
t(r), l ∈ V}

in the test image that minimize the cost function:

C({xl
t(r)}) =

∑

l∈V

{Cf (j(xl
t), j(x

l
r))+λCd(x

l
t,x

l
r)}. (4)

The jet of the l-th node that has been produced after the

matching procedure of the graph of the reference person r

in the image of the test person t is denoted as j(xl
t(r)). The

optimization of (4) has been interpreted in [2] as a simulated

annealing with additional penalties imposed by the graph

deformations. Accordingly, (4) can be simplified to:

Dt(r) =
∑

l∈V {Cf (j(xl
t), j(x

l
r))} subject to

xl
t = xl

r + s + δl, ||δl|| ≤ δmax,
(5)

where s is a global translation of the graph and δl denotes a

local perturbation of the graph nodes. The choices of δmax
in (5) and of λ in (4) control the rigidity/plasticity of the

graph [1],[2]. Obviously, both functions (4) and (5) define a

similarity measure between two faces.

3. FEATURE VECTOR DISCRIMINANT ANALYSIS

It is obvious that the standard EGM treats uniformly all the

different features that form the jets. Thus, it sounds rea-

sonable to use discriminant techniques in order to find the

most discriminant features. In other words, we should learn

a person and node specific discriminant function gl
r, for the

l-th node of the reference person r, that transforms the jets

j(xl
t(r)):

j́(xl
t(r)) = gl

r(j(x
l
t(r))). (6)

We will use linear techniques for finding the transform

gl
r but non-linear techniques can be also used. Before cal-

culating the linear projections we normalize all the jets that

have been produced during the match of the graphs of the

reference person r to all other facial images in the train-

ing set in order to have zero mean and unit magnitude. Let

ĵ(xl
t(r)) be the normalized jet at l-th node. Let F l

C(r) and

F l
I(r) be the sets of the normalized jets of the l-th node that

correspond to genuine claims and impostor claims related

to person r, respectively.
We use the same criterion as [1],[2] that can give more

than one discriminant directions. Let Wl(r) and Bl(r) be
the matrices:

W
l(r) =

∑

Fl

I
(r)

(̂j(xl

t(r)) − m(F l

C(r))(̂j(xl

t(r)) − m(F l

C(r))T

(7)

and

B
l(r) =

∑

Fl

C
(r)

(̂j(xl

t(r)) − m(F l

C(r))(̂j(xl

t(r)) − m(F l

C(r))T
.

(8)

The optimal discriminative directions Ψ́l(r) are given by

maximizing the criterion:

J(Ψl(r)) =
tr[Ψl(r)

T
Wl(r)Ψl(r)]

tr[Ψl(r)
T
Bl(r)Ψl(r)]

(9)

where tr[R] is the trace of the matrix R. This criterion is

well suited for the face verification problem due to the fact

that it tries to find the feature projections that maximize the

distance of impostor jets from the genuine class center while

minimizing the distance of genuine jets from genuine class

center. If Bl(r) is not singular then (9) is maximized when

the column vectors of the projection matrix, Ψ́l(r), are the

eigenvectors of Bl(r)
−1

Wl(r).
In order to proceed to feature dimensionality reduction

in M < S dimensions the matrix Ψ́l(r) should be com-

prised by the eigenvectors of Bl(r)
−1

Wl(r) that correspond

to the M greatest eigenvalues. The feature vector after dis-

criminant dimensionality reduction is:

j́(xl
t(r)) = gl

r (̂j(x
l
t(r))) = Ψ́l(r)

T
ĵ(xl

t(r)), (10)

The similarity measure of the new feature vectors can

be given by a simple distance metric. We have used the L2

norm for forming the new feature vector similarity measure

in the final multidimensional space:

Cf (́j(xl
t(r)), j́(x

l
r)) = ||́j(xl

t(r)) − j́(xl
r)||. (11)



4. LOCAL SIMILARITY MEASURE

DISCRIMINANT WEIGHTING

In [1, 2] only the jet similarity measure has been consid-

ered when forming the total similarity measure between two

graph nodes. The node deformation was only employed im-

plicitly in the matching stage by imposing additional rigid-

ity/plasticity penalties. We propose to combine the feature

vector similarity distance and the node deformation in a dis-

criminant manner in order to form the new local similarity

measure. The node feature similarity measure between the

reference person r and the test person t for the l-th node is

f l
t(r) = Cf (́j(xl

t(r)), j́(x
l
r)) and the node deformation is

dl
t(r) = Cd(x

l
t(r),x

l
r). Let dl

t(r) ∈ ℜ2 be a column vec-

tor that is comprised by the two similarity measures for the

node l between the test person t and the reference person r,

i.e.:

dl
t(r) =

[
f l

t(r)
dl

t(r)

]
(12)

According to the standard EGM [1] the node similarity value

after the matching procedure is be given by:

cl
t(r) = f l

t(r) + λdl
t(r) =

[
1 λ

]
dl

t(r) = eT dl
t(r)

(13)

where λ is the constant that controls the rigidity/plasticity of

the graph [1]. In general eT does not contain any discrim-

inant information. Thus, when forming the local similarity

measure the vector eT should be superseded by a discrimi-

nant function µr
l that is person and node specific. The new

local similarity measure is:

cl
t(r) = µl

r(d
l
t(r)). (14)

The discriminant transforms can be constructed by using

linear or non-linear methods for building discriminant func-

tion. We have used LDA in order to find the discriminant

transform µl
r.

Let Ll
C(r) and Ll

I(r) be the sets of local similarity vec-

tors dl
t(r) that correspond to genuine and impostor claims,

respectively. In order to form the optimization criterion, the

between class scatter matrix, Dl
S(r), and the within class

scatter matrix, Dl
W (r), of the local similarity vectors dl

t(r)
are employed. The optimization criterion used for finding

the discriminant weighting vector q́l(r) :

J(ql(r)) =
ql(r)

T
Dl

S(r)ql(r)

ql(r)
T
Dl

W (r)ql(r)
. (15)

The optimal weighting coefficients are given by [4]:

q́l(r) =
Dl

W (r)−1(m(Ll
I(r)) − m(Ll

C(r)))

||Dl
W (r)−1(m(Ll

I(r)) − m(Ll
C(r)))||

. (16)

The new similarity value between the l-th node of the refer-

ence graph and the same node of the test graph is now:

cl
t(r) = µl

r(d
l
t(r)) = q́l(r)

T
dl

t(r). (17)

5. DISCRIMINANT NODE WEIGHTING

In the standard EGM all nodes are treated uniformly when

forming the final similarity measure between faces. Thus,

it sounds reasonable to weight the similarity measures of

nodes that correspond to different fiducial points with weights

that correspond to their discriminant power. The weights

should be person specific due to the fact that different per-

sons have different discriminant fiducial points. Let ct(r) ∈
ℜL be a column vector comprised by the new local similar-

ity values at every node:

ct(r) =
[
c1
t (r) c2

t (r) . . . cL
t (r)

]T
(18)

where L is the number of graph nodes. The vector ct(r) is

the total similarity vector between the reference face r and a

test face t. The standard EGM algorithm approach [1] treats

uniformly all the similarity values cl
t(r). That is, the total

similarity measure between a reference person r and a test

person t is simple the sum of all node similarity measures:

Dt(r) =

L∑

i=1

ci
t(r) = 1T ct(r), (19)

where 1 is an L × 1 vector of ones. The algorithm should

learn a discriminant function βr that is person specific and

form the total similarity measure between faces:

D́t(r) = βr(ct(r)). (20)

The transform βr could be just a weighting vector or a

more complicated nonlinear support vector machine [3]. We

will use LDA to create a total similarity measure between

the reference person r and a test person t.

Let TC(r) and TI(r) be the sets of the total similarity

vectors for the genuine and impostor claims of the refer-

ence person r, respectively. Let the within-class scatter ma-

trix and and the between-class scatter for the total similarity

vectors ct(r) be VW (r) and VB(r), respectively. The op-

timal weighting coefficients that are derived from the maxi-

mization of:

J(w(r)) =
w(r)

T
VB(r)w(r)

w(r)
T
VW (r)w(r)

(21)

are the elements of the vector ẃ(r) [4]:

ẃ(r) =
VW (r)

−1
(m(TI(r)) − m(TC(r)))

||VW (r)
−1

(m(TI(r)) − m(TC(r)))||
. (22)

The similarity distance between the reference person r and

the test person t, after all the successively discriminant steps,

is given by:

D́t(r) = βr(ct(r)) = ẃ(r)
T
ct(r). (23)



Algorithm

Configuration I

Evaluation set Test set

FAE=FRE FAE(FRE=0) FRE(FAE=0)
FAE=FRE FRE=0 FAE=0 Total Error Rate(TER)

FA FR FA FR FA FR FAE=FRE FRE=0 FAE=0

EGM 9.2 98.2 65.0 7.9 5.0 98.8 0.0 0.0 61.0 12.9 98.8 61.0

EGM-ND 6.3 62.8 56.3 6.7 4.2 63.8 0.0 0.0 61.0 10.7 63.8 61.0

EGM-LD 5.2 45.5 20.0 5.2 4.0 45.0 0.5 0.0 17.0 9.2 45.5 17.0

EGM-FD 2.5 29.9 55.3 2.5 3.2 11.2 0.2 0.2 14.7 5.7 11.4 14.9

DEGM 0.2 0.7 6.5 1.6 1.2 10.2 0.0 0.0 13.1 2.8 10.2 13.1

Table 1. Error Rates for XM2VTS Configuration I

6. EXPERIMENTAL RESULTS

The experiments were conducted in the XM2VTS database

using the protocol described in [5]. The images were aligned

using an automatic alignment method. A 8×8 graph and a

modified morphological analysis was used. The training set

is used for calculating for each reference person r and for

each node l a matrix Ψ́l(r) for feature selection. A PCA

step is used prior to discriminant analysis in order to ob-

tain the invertibility of Bl(r). The evaluation set is used for

learning the discriminant vector q́l(r) for weighting the lo-

cal similarity vector and the vector, ẃ(r), that weights the

total similarity vector of the graph nodes. The evaluation

set is also used for learning the thresholds.

The EGM using no discriminant step has given an TER

equal to 12.9% in the test set of Configuration I. The best

TER achieved, using only feature vector discriminant analy-

sis, was 5.7% and was achieved when we kept the first 3 dis-

criminant projections. The step of the discriminant feature

selection using the EGM will denoted as EGM-FD (feature

discriminant).

We also investigated the contribution of the discriminant

weighting of the local similarity vector. This was conducted

by using no feature projections and by treating uniformly

all the local similarity measures. That way we achieved an

TER equal to 9.2%. When only discrimination between lo-

cal similarity distances is considered we will use the acronym

EGM-LD (local discriminant).

The contribution of weighting the local similarity mea-

sure with coefficients that are derived by LDA without other

discriminant steps was also investigated. To do so, we ap-

plied only discriminant weighting in the graph level by cal-

culating, ẃr, without applying prior discriminant analysis.

The TER obtained was 10.7%. EGM-ND (node discrimi-

nant) will denote the EGM when only discriminant weight-

ing of the total similarity vector is performed. The best TER

achieved was 2.8% using successively all the discriminant

steps. The acronym discriminant EGM (DEGM) will be

used when all the discriminant steps were used. Table 1

shows the error rates according to the protocol described in

[5].

These results are the best that have been reported using an

automatic alignment method [6].

7. CONCLUSIONS

The use of discriminant techniques in the EGM framework

is explored. The different phases of EGM that discriminant

information can be used are indicated. The successively dis-

criminant steps are applied in a morphological EGM algo-

rithm.
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