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Abstract— Automatic recognition of facial expressions of
emotions, and detection of facial action units (AUs), from
videos depends critically on modeling of their dynamics. These
dynamics are characterized by changes in temporal phases
(onset-apex-offset) and intensity of emotion/AUs, the appear-
ance of which vary considerably among subjects, making the
recognition/detection task very challenging. While state-of-the-
art Latent Conditional Random Fields (LCRF) allow one to
efficiently encode these dynamics via modeling of structural
information (e.g., temporal consistency and ordinal constraints),
their latent states are restricted to either unordered (nominal)
or fully ordered (ordinal). However, such an approach is often
too restrictive since, for instance, in the case of AU detection,
the sequences of an active AU may better be described using
ordinal latent states (corresponding to the AU intensity levels),
while the sequences of this AU not being active may better be
described using unordered (nominal) latent states. To this end,
we propose the Variable-state LCRF model that automatically
selects the optimal latent states (nominal or ordinal) for each
sequence from each target class. This unsupervised adaptation
of the model to individual sequence or subject contexts opens
the possibility for improved model fitting and, subsequently,
enhanced predictive performance. Our experiments on four
public expression databases (CK+, AFEW, MMI and GEMEP-
FERA) show that the proposed model consistently outperforms
the state-of-the-art methods for both facial expression recogni-
tion and action unit detection from image sequences.

I. INTRODUCTION

Facial behavior is believed to be the most important source
of information when it comes to affect, attitude, intentions,
and social signals interpretation. Automatic facial expression
recognition has, therefore, been an active research topic for
more than two decades [1]. Facial expressions are typically
described at two levels: the facial affect (emotion) and facial
muscle actions (AUs), which stem directly from the message
and sign judgment approaches for facial expression measure-
ment [2]. The message judgment aims to directly decode the
meaning conveyed by a facial display (e.g., in terms of the
six basic emotions), while the sign judgment instead aims to
study the physical signal used to transmit the message (such
as raised cheeks or depressed lips). The Facial Action Coding
System (FACS) [3] is the most comprehensive, anatomically-
based system for encoding expression by describing facial
activity on the basis of 33 unique AUs, as well as several
categories of head and eye positions and other movements
[4].

Early research on facial expression analysis focused
mainly on recognition of prototypic facial expressions of
six basic emotions (anger, happiness, fear, surprise, sadness,

(a) H-CRF[5]/H-CORF[6] (b) VSL-CRF

Fig. 1: The graph structure of the (a) traditional Latent
CRF models H-CRF/H-CORF, and (b) proposed VSL-CRF
model. In H-CRF/H-CORF, the latent states h, relating the
observation sequence x = {x1, . . . , xT } to the target label
y (e.g., emotion or AU activation). are allowed to be either
nominal or ordinal, while in VSL-CRF the latent variable
ν = {nominal, ordinal} performs automatic selection of
the optimal latent states for each sequence from each class.

and disgust) and detection of AUs from static facial images
[1]. However, recognizing facial expressions from videos
(i.e., image sequences) is more natural and has proved to be
more effective [7]. These is motivated by the fact that facial
expressions can better be described as a dynamic process
that evolves over time. For instance, the facial expression
of Happiness is usually characterized by its temporal phases
(onset-apex-offset). Similarly, the activation of AUs spans
different time intervals that reflect variation in their temporal
phases and intensity (which can also be described using
FACS).

Most state-of-the-art approaches for facial expression anal-
ysis [6, 7, 8, 9] focus on modeling of the spatio-temporal
dynamics of facial expressions in order to improve their
recognition. These methods can be cast as variants of
the class of conditional models called Latent Conditional
Random Fields (LCRF) [5], which have also been applied
successfully in other domains (e.g. gesture recognition [5]
and human motion estimation [10]) to encode the dynamics
of the target tasks. In the context of facial expressions,
LCRFs have been used to model temporal dynamics of facial
expressions as a sequence of latent states, relating the image
features to the class label (e.g., the emotion category). A
typical representative of these models is the Hidden CRF (H-
CRF) [5, 11, 12, 13], used for facial expression recognition of



six basic emotions. However, apart from temporal constraints
imposed on its latent states, this model does not assume
any other structure in the data. On the other hand, the
recently proposed Hidden Conditional Ordinal Random Field
(H-CORF) model [6, 8] imposes additional constraints on
the latent states of emotions by exploiting their ordinal
relationships. This model attempts to correlate the latent
states of emotions with their temporal phases (or intensity) by
representing them on an ordinal scale. This, in turn, results in
the model with fewer parameters that is able to discriminate
better between facial expressions of different emotions.

However, in the LCRF models such as H-CRF and H-
CORF, and their variants, the latent states are assumed to
be either nominal or ordinal for each and every class. This
representation can be too restrictive since for some classes
modeling the latent states as ordinal may help to better cap-
ture the structure of the states, i.e., their ordinal relationships,
allowing the model to better fit the data. By contrast, it would
be wrong to impose ordinal constraints on latent states of
the classes that do not exhibit ordinal structure. In this case,
the more flexible nominal model will better fit the data. For
example, we expect the latent states of the emotion class
Happiness to be correlated with its temporal phases defined
on an ordinal scale (neutral<onset<apex). On the other hand,
facial expressions of neutral or a mix of sequence of other
emotions are not expected to have ordered latent states, so
fitting nominal model is a more natural choice. Similarly, for
the task of AU detection, attempting to represent its temporal
phases or intensity levels via ordinal states seems natural;
however, modeling the latent states of the negative class (all
other sequences not containing the target AU) is expected to
be more effective when nominal states are used due to the
lack of the ordinal structure as well as high variability in
such data. The duality of nominal and ordinal representation
can exist even within a single emotion or AU class. This
can occur due to the difference in the facial expressiveness
of different subjects, or due to the clustering effects of the
features caused by the subject-specific variation dominating
that related to the facial expressions. Thus, the model should
be able to automatically select which type of the latent states
is optimal for modeling individual sequences from each of
target classes.

In this paper, we generalize the LCRF models by relaxing
their assumption that the latent states within target classes
need only be nominal or ordinal. We do so by allowing
the model to use both types of latent states for modeling
sequences within and across the classes, in order to improve
their classification. To this end, we introduce the Variable-
state LCRF (VSL-CRF) model that can automatically select
the optimal model family for each sequence from each
class. This is achieved by means of the newly introduced
latent variable ν in the graph structure of LCRFs, which
performs selection of the optimal feature functions in the
model (nominal or ordinal) on the sequence level (see Fig.1).
The selection of the latent states is attained in a fully unsuper-
vised manner via a max-pooling of the nominal/ordinal node
potentials during learning and inference in the VSL-CRF

model. In contrast to H-CRF/H-CORF models, this makes
the objective function of our model non-smooth, thus the
standard gradient-based optimization methods for parameter
learning can not directly be applied. For this, we propose a
learning approach based on the notion of the function sub-
gradients [14], which allows us to efficiently learn the model
parameters. We show on four publicly available datasets that
the proposed VSL-CRF model outperforms existing LCRF-
based models, and other state-of-the-art models for the target
tasks.

II. RELATED WORK

In this section, we briefly review the most recent works on
facial expression recognition and facial action unit detection.

A. Facial Expression Recognition

Facial expression recognition methods can be categorized
into frame-based and sequence-based (see [15] for a detailed
overview). Frame-based methods attempt the expression
recognition from a single image (typically, the apex of the
expression) [16, 17, 18]. However, a natural facial event
is dynamic, which evolves over time from the onset, the
apex, to the offset. Therefore, recognizing facial expressions
from videos is more natural. Although some of the frame-
based methods use the features extracted from several frames
in order to encode dynamics of facial expressions, models
for dynamic classification provide a more principled way
of doing so. With a few exceptions, most of the dynamic
approaches to classification of facial expressions are based on
variants of Dynamic Bayesian Networks (DBN) (e.g., Hid-
den Markov Models (HMM) [19] and Conditional Random
Fields (CRF) [20]). For example, [21] trained independent
HMMs for each emotion category, and then performed
emotion classification by comparing the likelihoods of the
HMMs. However, discriminative models based on CRFs
have been shown to be more effective for the expression
classification [12, 13, 22]. For instance, [12, 22] used a
generalization of the linear-chain CRF model, a Hidden Con-
ditional Random Field (H-CRF) [5], where additional layer
of (hidden) variables is used to model temporal dynamics of
facial expressions. The training of the model was performed
using image sequences, but classification of the expressions
was done by selecting the most likely class (i.e., emotion
category) at each time instance. The authors showed that:
(i) having the additional layer of hidden variables results
in the model being more discriminative than the standard
linear-chain CRF, and (ii) that modeling of the temporal
unfolding of the facial shapes is more important than their
spatial variation for discriminating between different facial
expressions (based on comparisons with SVMs). Another
modification of H-CRF, named partially-observed H-CRF,
was proposed in [13], where additional hidden variables are
added to the model to encode the occurrence of subsets
of AU combinations in each image frame, and which are
assumed to be known during learning. This method out-
performed the standard H-CRF, which does not use a prior
information about the AU co-currencies. In contrast to these



models, [6, 8] proposed the Hidden Conditional Ordinal
Random Field (H-CORF) models, which encode ordinal
relationships between the temporal phases of emotion. These
models outperformed the nominal H-CRF models, which
fail to impose the order constraints on their latent states.
Nevertheless, the main limitation of the models mentioned
above is that they restrict their latent states to be either
nominal or ordinal, but not both.

B. Facial AU Detection

As for facial expression recognition, two main approaches
have been proposed for AU detection: static and temporal
modeling. In the former, image features are extracted from
each frame and then fed into a static classifiers such as SVM
or AdaBoost [23]. More recently, [4] proposed a method
based on static SVMs, named Selective Transfer Machine
(STM), which personalizes the generic SVM classifier by
learning the classifier and re-weighting the training samples
that are most relevant to the test subject during inference.
The resulting method achieves the state-of-the-art results on
the AU detection task, considerably outperforming generic
SVMs. However, this comes at the cost of transductive learn-
ing of this approach. Temporal modeling for AU detection
has been attempted using either temporal image features
[24, 25] or DBN-based models such as HMMs [26] and
CRFs [27]. All these methods perform the frame-based AU
detection despite the fact that an AU activation typically
ranges over several or more image frames. To the best
of our knowledge, the works that attempted the sequence-
based AU detection perform either majority voting using
the frame-based detection [23], or detection of the temporal
phases of AUs followed by the rule-based classification of the
sequences (by detecting the onset-apex-offset sequence of an
AU) [26, 28]. Other temporal models based on Ordinal CRFs
have been proposed for modeling of AU temporal phases
[29], and their intensity [9], however, they do not perform
AU detection.

Common to the approaches for facial expression recog-
nition and AU detection mentioned above is that they all
use either static/dynamic classifiers which are designed for
either nominal or ordinal data. While the former imposes
no spatial constraints on target classes, the latter does so
for all classes (e.g., all emotions are modeled by imposing
ordinal constraints). In the context of the temporal models
based on CRFs, this results in the models that are either
underconstrained (e.g., H-CRF[5]) or overconstrained (H-
CORF[6]), which limits their representational power. To
mitigate this, the proposed VSL-CRF model allows different
classes to be of the nominal or ordinal type, which is inferred
from target data. In what follows, we first introduce the
proposed method. We then show our experimental evaluation
and conclude the paper.

III. METHODOLOGY

We consider a K-class classification problem, where we
let y ∈ {1, ...,K} be the class label (e.g., emotion category).
Each class y is further represented with a sequence of (latent)

states denoted as consecutive integers h ∈ {1, . . . , C}, where
C is the number of possible states (e.g., temporal phases
such as neutral-onset-apex of emotion). The sequence of the
corresponding image features, denoted by x = {x1 . . . xT } ∈
T × D, serves as input covariates for predicting y and
h = (h1, . . . , hT ). The length of sequences T can vary from
instance to instance, while the input feature dimension D
is constant. If not said otherwise, we assume a supervised
setting where we are given a training set of N data pairs D =
{(yi,xi)}Ni=1, which are i.i.d. samples from an underlying
but unknown distribution.

A. Conditional Random Fields (CRF)

CRFs [30] are a class of log-linear models that repre-
sent the conditional distribution P (h|x) as the Gibbs form
clamped on the observation x:

P (h|x,θ) =
1

Z(x;θ)
es(x,h;θ). (1)

Here, Z(x;θ) =
∑

h∈H e
s(x,h;θ) is the normalizing partition

function (H is a set of all possible output configurations), and
θ are the parameters1 of the score function (or the negative
energy) s(x,h;θ). Note that in this model, the states h are
observed and they represent the frame labels.

We further assume the linear-chain graph structure G =
(V,E) in the model, described by the node (r ∈ V ) and edge
(e = (r, s) ∈ E) potentials. We denote the node features by
Ψ(V )
r (x, hr) and the edge features by Ψ(E)

e (x, hr, hs). By
letting θ = {v,u} be the parameters of the node and edge
potentials, respectively, s(x,h;θ) can then be written as the
sum:∑
r∈V

v>Ψ(V )
r (x, hr) +

∑
e=(r,s)∈E

u>Ψ(E)
e (x, hr, hs). (2)

Although the representation in (2) is so general that it can
subsume nearly arbitrary forms of features, the node/edge
features are often defined depending on target task. We
limit our consideration to two commonly used types of the
node features (nominal/ordinal), which can be represented
using a general probabilistic model for static modeling of
nominal/ordinal classes. This is achieved by setting the
potential at node r as v>Ψ(V )

r (x, hr) −→ Γ(V )
r (x, hr),

where

Γ(V )
r (x, hr) =

C∑
c=1

I(hr = c) · logP (hr = c|f(x)). (3)

The nominal node potential is then obtained by using the
multinomial logistic regression (MLR) model [5]:

P (hnr = c|fn(x, c)) =
exp(fn(x, c))∑C
l=1 exp(fn(x, l))

, (4)

where fn(x, c) = βTc · [1, x], for c = 1, ..., C, and βc is
the separating hyperplane for the c-th nominal state of the
target class. By plugging the likelihood function in (4) into

1For simplicity, we often drop the dependency on θ in notations.



the node potential in (3), we obtain the node features of the
standard CRF model.

Recently, several authors proposed using the ranking like-
lihood to define the ordinal node potentials. This likelihood
is derived from the threshold model for (static) ordinal
regression [31], and has the form:

P (hor = c|fo(x, c)) = Φ(
bc − fo(x)

σ
)− Φ(

bc−1 − fo(x)

σ
),

(5)
where Φ(·) is the standard normal cumulative density func-
tion (c.d.f.), and fo(x) = aT (x). The parameter vector a is
used to project the input features onto an ordinal line divided
by the model thresholds or cut-off points b0 = −∞ ≤ · · · ≤
bC =∞, with each bin corresponding to one of the ordinal
states c = 1, ..., C in the model. The ranking likelihood in
(5) is constructed by contaminating the ideal model (see [32]
for details) with Gaussian noise with standard deviation σ.
Again, by plugging the likelihood function in (5) into the
node potential in (3), we obtain the node features of the
Ordinal CRF (CORF) model [32].

In both models defined above (the standard CRF and
CORF), the edge potentials Ψ(E)

e (x, hr, hs) are defined in
the same way and have the form:[

I(hr = c ∧ hs = l)
]
C×C

×
∣∣xr − xs∣∣, (6)

where I(·) is the indicator function that returns 1 (0) if the
argument is true (false). The role of the edge potentials is to
assure the temporal consistency of the nominal/ordinal states
within a sequence.

B. Latent Conditional Random Fields (LCRFs)

While the CRFs introduced in the previous section aim
at modeling/decoding of the state-sequence within a single
class, the framework of LCRFs [5, 33] aims at the sequence
level multi-class classification. This is attained by introduc-
ing additional node in the graph structure of CRF/CORFs
(see Fig.1) representing the class label, where the latent
states h are now treated as unknown. Formally, LCRFs
combine the score functions of K CRFs, one for each class
y = {1, . . . ,K}, within the following score function:

s(y,x,h; Ω) =

K∑
k=1

I(k = y) · s(x,h; θy), (7)

where s(x,h; θy) is the y-th CRF score function, defined
as in (2), and Ω = {θk}Kk=1 denotes the model parameters.
With such score function, the joint conditional distribution
of the class and state-sequence is defined as:

P (y,h|x) =
exp(s(y,x,h))

Z(x)
. (8)

The sequence of the states h = (h1, . . . , hT ) is unknown,
and they are integrated out by directly modeling the class
conditional distribution:

P (y|x) =
∑
h

P (y,h|x) =

∑
h exp(s(y,x,h))

Z(x)
. (9)

Evaluation of the class-conditional P (y|x) depends
on the partition function Z(x) =

∑
k

Zk(x) =∑
k

∑
h

exp(s(k,x,h)), and the class-latent joint posteriors

P (k, hr, hs|x) = P (hr, hs|x, k) · P (k|x). Both can be
computed from independent consideration of K individual
CRFs. The model with the nominal node potentials in the
score function in (9) is termed Hidden CRF (H-CRF) [5].
Likewise, the model with the ordinal node potentials is
termed Hidden CORF (H-CORF) [6].

C. Variable-state Latent Conditional Random Fields (VSL-
CRF)

In this section, we generalize the H-CRF/H-CORF models
by allowing their latent states to be modeled using either
nominal or ordinal potentials within each class. In this way,
we allow the model to select in an unsupervised manner
the optimal feature functions for representing the target
sequences. In what follows, we provide a formal definition
of the model, and then explain its learning and inference.

VSL-CRF Model

Definition (Variable-state Latent CRF) Let ν =
(ν1, . . . , νK) be a vector of symbolic states or labels encod-
ing the nature of the latent states hν of the i-th sequence,
i = 1, . . . , Ny from class y = (1, ...,K), either as nominal
(νy = 0) or ordinal (νy = 1). The score function for class y
in the VSL-CRF model is then defined as:

s(y,x,h, ν; Ω) =


K∑
k=1

I(k = y) · s(x,h; θny ), if νy = 0

K∑
k=1

I(k = y) · s(x,h; θoy), if νy = 1

(10)
where the nominal (s(x,h; θny )) / ordinal (s(x,h; θoy)) score
functions represent the sum of the node and edge potentials
in (3) and (6), respectively. The class conditional distribution
is then defined as:

P (y|x) =

max(
ν

∑
h

exp(s(y,x,h, ν)))

Z(x)
, (11)

where Z(x) =
∑
k

Zk(x) =
∑
k

max(
ν

∑
h

exp(s(k,x,h, ν)))

and Ω = {θnk , θok}Kk=1.
We make a few remarks about the model defined above.

The sequences from class y are modeled using either the
nominal or ordinal latent states. The assignment of target
sequences to nominal/ordinal models is therefore performed
automatically, i.e., without need for any prior knowledge
(supervision) about the underlying structure of the latent
states capturing the dynamics of each sequence in the target
class. Furthermore, since we use the max-pooling strategy
in the class conditional distribution, we restrict the model to
representing each sequence using either nominal or ordinal
states. This prevents the redundancy in the representation
of each sequence, which would otherwise occur if we per-
formed the standard integration over the indicator variables



ν. However, in contrast to the objective functions of the H-
CRF and H-CORF models, this results in the non-smooth
objective function of the model.

VSL-CRF Learning and Inference

The parameter optimization in the H-CRF/H-CORF mod-
els is carried out by maximizing the (regularized) negative
log-likelihood of the class conditional distribution in (9).
Furthermore, to avoid the constrained optimization in H-
CORF (due to the order constraints in parameters b of
the ordinal node potentials), the displacement variables γc,
where bj = b1 +

∑j−1
k=1 γ

2
k for j = 2, . . . , C − 1 are intro-

duced. So, b is replaced by the unconstrained parameters
{b1, γ1, . . . , γC−2}. Similarly, the positivity of the ordinal
scale parameter is ensured by setting σ = σ2

0 . Although
both the objectives of H-CRF/H-CORF are non-convex be-
cause of the logpartition function (log-sum-exp of nonlinear
concave functions). However, their log-likelihood objective
is bounded below by 0 and are both smooth functions, so
standard quasi-Newton (such as Limited-memory BFGS) or
the stochastic gradient descent algorithms can be used to
estimate the model parameters (we use the former). Unfortu-
nately, the objective function of the VSL-CRF model is both
non-convex and non-smooth because of the max function in
its class conditional distribution. Therefore, the gradients of
the objective w.r.t. the (unconstrained) model parameters Ω
cannot be directly computed. Yet, the nominal/ordinal score
functions are both subdifferentiable. We use this property to
construct the subgradient [14] of the VSL-CRF objective at
Ω = {θnk , θok}Kk=1. Formally, the VSL-CRF objective is given
by:

RLL(Ω) = −
N∑
i=1

logP (yi|xi; Ω) + λn(o)||θ
n(o)
k=1..K ||

2,

(12)
where we introduce L-2 regulizers over the parameters of
the nominal/ordinal score functions, the effect of which is
controlled by λn/λo (set using a validation procedure).

The most critical factor that differentiates the minimization
of the objective in (12) and that of the H-CRF/H-CORF mod-
els is the need to compute the subgradients g ∈ ∂RLL(Ω)
of the objective function. Practically, this boils down to
computing the following subgradients:

∇max(
ν

∑
h

exp(s(k,x,h, ν))), k = 1, . . . ,K,

which are further given by
∇
∑
h

exp(s(x,h, θnk )),

if
∑
h

exp(s(x,h, θnk )) >
∑
h

exp(s(x,h, θok))

∇
∑
h

exp(s(x,h, θ0k)), otherwise.

Thus, at a point Ω∗ where one of the score functions, say
nominal, gives a higher score than the ordinal for the given
sequence, max(

ν

∑
h

exp(s(k,x,h, ν))) is differentiable and

has the gradient ∂θnk = ∇
∑
h

exp(s(x,h; θnk )), while ∂θok =

Method (6 basic emotions) F-1 [%] Accuracy [%]
Bartlett et al. [38] — 87.5
PO-HCRF9 [13] — 92.9
TMS [12] — 91.2
SVM-SB 89.8 91.3
H-CRF 91.2 93.2
H-CORF 90.4 92.3
VSL-CRF 94.5 96.7
Method (7 emotions) F-1 [%] Accuracy [%]
ITBN [39] — 86.3
STM-ExpLet [7] — 94.2
SVM-SB 89.5 91.1
H-CRF 85.0 89.1
H-CORF 91.7 93.5
VSL-CRF 93.9 95.8

TABLE I: CK+ dataset. The upper part of the table shows
the average results obtained on the 6 basic emotions, while
the lower shows the results obtained on 6 basic emotions +
contempt. We used these two sets of emotions to have direct
comparisons with the state-of-the-art methods, which were
evaluated on the same emotion sets.

0. In other words, to find a subgradient of the maximum
of the score functions, we choose the score functions that
achieves the maximum for the target sequence at the current
parameters, and compute the gradient of that score function
only. Once this is performed, the gradient derivation is the
same as in the H-CRF/H-CORF models (see [6] for more
details). Finally, the assignment of a test sequence to the
particular class, such as the facial action or emotion, is
accomplished by the MAP rule y∗ = argmaxyP (y|x∗).

IV. EXPERIMENTS

We evaluated the proposed model on four publicly
available facial expression datasets: Extended Cohn-Kanade
(CK+) [34], AFEW Database [35], MMI Database [36] and
GEMEP-FERA [37]. From CK+, we used 327 sequences
labeled as Anger, Contempt, Disgust, Fear, Happiness, Sad-
ness, Surprise or Neutral. For this dataset, we performed
10-fold subject-independent cross-validation. The AFEW
dataset has been collected from the movie videos showing
close-to-real-world conditions, comprising video clips that
have been labeled in terms of six basic emotions and neu-
tral. To perform direct comparisons with the state-of-the-art
method [7] for this dataset, we used the same experimental
setting. For AU detection, we used the MMI dataset, where
we chose five most frequent AUs from the upper face
(1, 2, 4, 6, 7). We created 4 folds for the training/test in a
subject-independent manner. For each AU, the image se-
quences containing target AU were used as the positive class,
while the remaining sequences were used as the negative
class. We also used the GEMEP-FERA challenge dataset for
AU detection. As in [4], we performed the leave-one-subject-
out cross validation of the models for the AU detection task,
where, again, we show the models’ performance on the upper
face AUs (1, 2, 4, 6, 7). To form the positive and negative
class for each AU, we adopted the same approach as for the
MMI dataset.

As input features from the CK+ and AFEW datasets, we
used the locations of 49 facial points, and for the MMI



dataset we used the locations of 20 facial points, all provided
by the database creators. For the GEMEP-FERA, we used
the locations of 49 facial points extracted from target images
sequences using the appearance-based facial tracker in [40].
Fig.2 depicts the used facial points from each dataset. The
pre-processing of the input features (i.e., the facial points)
was performed by first applying Procrustes analysis to align
the facial points to the mean faces of the datasets. This is
important in order to reduce the effects of head-pose and
subject-specific variation. We then applied PCA to reduce
the feature size, retaining 97% of energy, resulting in 26,
18, 20 and 20 dimensional feature vectors for the CK+,
AFEW, MMI and GEMEP-FERA datasets, respectively. The
obtained features were used as inputs to tested models. We
set in all our experiments the number of hidden states C = 3
for both ordinal and nominal classes. This number of states
corresponds to the temporal phases of expression develop-
ment (neutral-onset/offset-apex). As evaluation measures, we
report the F-1 score and the average classification accuracy.

The learning of the VSL-CRF model parameters was per-
formed by randomly initializing the parameters of the nomi-
nal/ordinal score functions. In order to avoid the subgradients
falling into a local minimum (by diverging to either nominal
or ordinal models), we performed random assignments of the
training sequences to either nominal or ordinal classes during
the first 10 iterations of the LBFGS optimization (see Sec.III-
C). After this, we applied the max-pooling of the models with
the proposed subgradient approach until the convergence of
the objective function. The regularization parameters λn(o)
were set using a grid-search validation procedure on the
training set. For the competing models, H-CRF and H-
CORF, we used our own implementation. The initial model
parameters were set using the same approach as in the VSL-
CRF. As the baseline for the sequence classification we also
include the results obtained by first applying SVMs (with
the RBF kernel), trained/evaluated per frame, followed by
the majority voting. We refer to this approach as SVM-
SB. To compare the performance of target models with
the state-of-the-art models for each of target tasks (emotion
recognition and AU detection), we report the results from
the original papers, as detailed below. Although these are
not directly comparable, as they used different settings (per-
frame/sequence and number of folds, as well as different
features), we show these results for completeness. However,
our main goal is to demonstrate the benefits of using the
variable latent states (VSL-CRF) compared to when only
nominal (H-CRF) or ordinal (H-CORF) states are used.

(a) CK+ [34] (b) AFEW [35] (c) MMI [36] (d) FERA [37]

Fig. 2: Sample images with the used facial points from four
different datasets.

Method (7 emotions) F-1 [%] Accuracy [%]
EmotiW [41] — 27.3
STM-ExpLet [7] — 31.7
SVM-SB 26.3 31.2
H-CRF 19.7 22.6
H-CORF 22.4 27.4
VSL-CRF 28.1 32.2

TABLE II: AFEW dataset.

These three models were all evaluated using exactly the same
setting.

Table I shows the results for facial expression recognition
from the CK+ dataset. Note that some of the methods com-
pared use different number of folds. Specifically, Bartlet et al.
[38] applied the SVM classifier to each image frame, and the
label of a sequence is decided by a majority vote using a 4
fold cross validation. ITBN [39] performed a 15-fold cross
validation. This method is based on the Interval Temporal
Bayesian Network, which models spatial and temporal rela-
tions of facial expressions. TMS [12] applied a 4-fold cross
validation. This approach uses Latent-Dynamic CRFs [22],
where the emotion recognition is performed per-frame. PO-
HCRF9 (partially observed H-CRF) [13] used a 5-fold cross-
validation. Note that in this method, some states are observed
during training and represent activations of AUs. Lastly, we
compare our method to the state-of-the-art method for target
task, STM-ExpLet [7], where the same experimental setting
is used as in our experiments. We see from Table I that
the proposed method outperforms the other methods. Similar
observations can be made from Table II, which shows the
results for the AFEW dataset. EmotiW [41] is the baseline,
obtained using SVMs, from the dataset paper. Note that here
all the methods achieve low recognition results, as the target
dataset is very challenging, and, also, the emotion labels were
obtained in a semi-automatic way. Still, the proposed VSL-
CRF largely outperforms H-CRF/H-CORF. Interestingly, the
baseline SVM-SB approach achieves similar results to our
method. This is mainly because of the lack of temporal
structure in the used data (some parts of the videos contained
the target-expression-unrelated content), as well as because
of the uncertainty in the emotion labels.

Table III shows results for AU detection from the GEMEP-
FERA and MMI datasets. The STM [4] is a transductive
learning method, which personalizes the SVM classifier by
re-learning its parameters for each test person. Despite this
adaptation, it still fails to reach the full performance of
the VSL-CRF model. This is attributed to the fact that the
STM does not model the temporal dynamics. However, H-
CRF/H-CORF models do not outperform STM on all AUs.
Hence, the assignment of both types of latent states, as done
in the VSL-CRF model is critical for achieving superior
performance on this task. This is also reflected in results
obtained on the MMI dataset. Specifically, the sequence
based methods (SVM-SB, H-CRF, H-CORF and VLS-CRF)
models largely outperform the existing frame-based methods
(PFFL [26] and FFD [24] on the AU detection task. Yet,
the proposed VSL-CRF outperforms these models on both
datasets. LPQ-TOP [42] is also a frame-based model that fo-
cuses on novel feature definition for AU detection. Although



GEMEP-FERA MMI
AU STM [4] SVM-SB H-CRF H-CORF VSL-CRF PFFL [26] FFD [24] LPQ-TOP [42] SVM-SB H-CRF H-CORF VSL-CRF
1 68.1 (—) 69.4 (63.8) 70.0 (70.1) 70.0 (66.6) 72.9 (73.1) 70.0 (—) 72.7 (—) 85.6 (—) 81.8 (85.9) 87.4 (87.5) 87.5 (87.5) 91.7 (91.2)
2 65.5 (—) 69.7 (65.1) 70.5 (74.3) 73.5 (74.3) 85.9 (85.6) 62.3 (—) 72.7 (—) 79.4 (—) 79.6 (79.8) 87.4 (87.5) 78.5 (78.4) 87.5 (87.8)
4 43.3 (—) 58.8 (56.7) 61.2 (61.4) 61.3 (61.4) 70.0 (70.6) 64.0 (—) 67.3 (—) 81.2 (—) 58.8 (61.6) 57.0 (57.1) 63.8 (64.4) 69.5 (70.7)
6 71.6 (—) 76.9 (63.1) 63.7 (63.7) 70.1 (70.8) 79.1 (79.1) 63.4 (—) 73.7 (—) 87.2 (—) 63.9 (68.2) 67.0 (67.3) 63.3 (63.5) 78.7 (78.8)
7 66.2 (—) 60.3 (63.1) 55.8 (55.7) 58.1 (58.1) 74.3 (74.4) 39.2 (—) 36.4 (—) 80.9 (—) 77.9 (84.0) 66.1 (66.6) 86.7 (86.6) 87.7 (87.6)

AVG 62.9 (—) 67.0 (66.1) 64.2 (65.0) 66.6 (66.2) 76.4 (76.6) 59.8 (—) 64.6 (—) 82.6 (—) 72.4 (75.9) 73.0 (73.2) 76.0 (76.1) 83.0 (83.2)

TABLE III: AU detection from the GEMEP-FERA and MMI datasets. The numbers shown represent the F-1 (Accuracy)
scores in % for each method.
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Fig. 3: AU7 (lid tightener) from the GEMEP-FERA dataset.
The figures show the number of training sequences from
the AU7 active class (upper) and AU7 not active class
(lower) being assigned nominal/ordinal latents states during
the model learning.

the average results are slightly worse than those achieved by
the proposed VSL-CRF, they are not directly comparable.
While the work in [42] is based on a static per-frame
classification, the proposed work focuses on modeling spatio-
temporal dynamics of sequence data. The high F-1 score
achieved by both methods demonstrates the importance of
both tasks, modeling the dynamics and the features of facial
expressions. Nevertheless, we applied the same validation
setting for the sequence-based methods. Hence, the results
by these methods are directly comparable and show that the
proposed VSL-CRF outperforms the other methods on all
used datasets. This is mainly because of its ability to select
the optimal latent states (nominal or ordinal) for representing
the target sequences.

We also inspect how the assignment of the nominal/ordinal
states is attained during learning and inference in the pro-
posed VSL-CRF model. For this, we show the model’s
behavior in the task of detection of AU7 (lid tightener)
from the GEMEP-FERA dataset. Fig.3 depicts the model’s
selection of ordinal/nominal states for the target sequences
being labeled as AU7 active or not active. At the beginning
(iteration 0), the model is initialized by random assignment
of sequences to either nominal or ordinal states (see Sec.III-
C). As can be seen, for this fold, the model converges by
assigning to the majority sequences of the positive class
(AU7 active) the ordinal states, and the nominal states to the
negative class (AU7 not active). It is important to mention
that during its learning, the model does not disregard neither
nominal nor ordinal node potentials for each class, but rather
selects the optimal parameters for the score functions of both.
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Fig. 4: The proportion of the training/test sequences being as-
signed ordinal (nominal) states (depicted by different color)
in the learned VSL-CRF model for detection of AU7 from
the GEMEP-FERA dataset. The numbers shown represent
the true positives (TP) and true negatives (TN) in %, and are
computed per fold.

This is further illustrated in Fig.4, showing the model’s selec-
tion of the type of the latent states per fold (each training fold
containing sequences of 6 subjects, and test fold containing
sequences of 1 test subject). From the colors depicting the
proportion of the nominal/ordinal sequences, we conclude
that this choice depends largely on the training/test subjects
in each fold. For instance, in the case of fold 1, the learning
of which is also depicted in Fig.3, although the negative
class is mainly nominal on the training set, this is not the
case on the test set. For the negative test class, the ordinal
latent states are predominant, with the true negatives (the
depicted numbers in Fig.4) being relatively high (90.9%).
Thus, the model employs ordinal states for this class as they
turn out to fit better the negative class of this test subject. On
the other hand, for fold 2, both classes are mainly ordinal
on the training set, while both exhibiting nominal type on
the test set. From the true positives for both the training
and test sets, we observe that in the case of this fold, the
model failed to fit the positive class well, and consequently,
poorly performed inference of the test data. We attribute this
to the model falling into local minimum during parameter
optimization, which adversely affected its generalization to
the positive class of the test set. Note also that for fold 2,
the negative test class is mainly nominal, despite the fact that
the corresponding training class is ordinal. A possible reason
for this is the large difference in facial features between the
training and test subjects, as well as disbalance in examples
of the positive/negative class. The remaining folds can be
analyzed in a similar manner. We plan to investigate such
behavior of the VSL-CRF model in more detail in our future
work.



V. CONCLUSIONS

In this paper, we proposed a novel Latent Conditional
Random Field model for dynamic facial expression recog-
nition and AU detection. By allowing the structure of the
latent states of target classes to vary for each target sequence,
we obtained the model that can better discriminate between
different facial expressions than the existing models that
restrict their latent states to have the same and pre-defined
structure for all classes (nominal or ordinal). We showed
on four facial expression datasets that the proposed model
outperforms the state-of-the-art sequence- and frame-based
methods for facial expression recognition and AU detection.
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