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Abstract— This paper attempts to recognize spontaneous
agreement and disagreement based only on nonverbal multi-
modal cues. Related work has mainly used verbal and prosodic
cues. We demonstrate that it is possible to correctly recognize
agreement and disagreement without the use of verbal context
(i.e. words, syntax). We propose to explicitly model the complex
hidden dynamics of the multimodal cues using a sequential
discriminative model, the Hidden Conditional Random Field
(HCRF). In this paper, we show that the HCRF model is able
to capture what makes each of these social attitudes unique. We
present an efficient technique to analyze the concepts learned
by the HCRF model and show that these coincide with the
findings from social psychology regarding which cues are most
prevalent in agreement and disagreement. Our experiments are
performed on a spontaneous dataset of real televised debates.
The HCRF model outperforms conventional approaches such
as Hidden Markov Models and Support Vector Machines.

I. INTRODUCTION

We have recently witnessed significant advances not only

in the machine analysis of nonverbal cues, such as head

and hand gestures, facial expressions, auditory cues, but also

in the field of affect recognition [1]. However, only few

works have so far attempted to recognize social attitudes like

interest, politeness and flirting [2]. This is partly so because

relevant research in social psychology, which would help

identify discriminative combinations of multimodal cues, is

at best scarce, and because of the fact that there is a gap of

relevant annotated data that can be used for such analyses.

Despite these difficulties, achieving such a goal is very im-

portant if we are to move towards a more naturalistic human–

computer–interaction; machines who are able to detect social

attitudes and react according to the needs of their user will be

more efficient and welcomed for the rather more naturalistic

experience they are bound to offer.

Such social attitudes are those of agreement and disagree-
ment, which are inevitable in daily human–human interac-

tions, from finding a location to dine, to discussions on no-

toriously controversial topics like politics. Existing work on

the automatic recognition of agreement and/or disagreement

(see Table I) has mainly used verbal and prosodic cues, e.g.

pitch and energy. To the best of our knowledge, no work has

managed to successfully recognize spontaneous agreement

and disagreement based solely on nonverbal multimodal
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Fig. 1: HCRF for spontaneous agreement/disagreement

recognition. hi represents the hidden state that captures the

underlying dynamics between features and labels at a given

timestamp i. The HCRF model is able to capture fine–grain

hidden multimodal dynamics better than other models by

learning these hidden states and their relation to each class.

Consequently, the HCRF model is able to learn a more

suitable mapping between the observations x and each class

label y ∈ Y .

cues. However, although agreements and disagreements are

frequently expressed verbally, the nonverbal behavioral cues

that occur during their manifestation play a crucial role in

their interpretation. Bousmalis et al. [3] have surveyed and

identified such cues that seem to be relevant, as those are

evident in social psychology literature (see Tables II and III

for a summary). According to this survey, it is the temporal

underlying dynamics of multimodal cues that will allow us

to recognize agreement and disagreement.

This calls for a model capable of capturing these complex

dynamics and, based on them, distinguishing these social

attitudes from each other. A Hidden Conditional Random

Field (HCRF) [4], originally proposed for object recognition,

is a model capable of not only capturing the underlying

structure of events, but also of learning the combinations

of features that are shared by each class and the ones that

make each of them unique. Hence, HCRFs could be a good

candidate for modeling agreement and disagreement.

This paper will show that (i) it is possible to recognize

spontaneous agreement and disagreement without the use



Method Features Classifier Data Spontaneous
Hillard et al. [5] (2003) Verbal, pause, fundamental frequency(F0),

duration
Decision Tree ICSI [6]

√

Galley et al. [7] (2004) Verbal Bayesian Network ICSI [6]
√

el Kaliouby et al. [8] (2004) head nod, head shake, head turn, head tilt,
AU1, AU2, AU12, AU16, AU19, AU20,

AU25, AU26, AU27

HMM, DBN Mind Reading DVD [9] —

Hahn et al. [10] (2006) Verbal Contrast Classifier, SVM ICSI [6]
√

Sheerman–Chase et al. [11] (2009) head yaw, head pitch, head roll, AU1,
AU2, AU12, AU18, AU20, AU25, Gaze,

head pose

AdaBoost own
√

Germesin and Wilson [12] (2009) Verbal, pitch, energy, duration, pauses,
speech rate

Decision Tree, CRF AMI [13]
√

TABLE I: Summary of the existing systems that have attempted agreement/disagreement classification.

of verbal cues (e.g. spoken words); (ii) HCRFs are indeed

able to capture the underlying dynamics of multimodal cues

and perform better than conventional models in this task

(figure 1); and (iii) HCRFs are able to automatically identify

groups of features specific to each attitude in a way that

confirms the findings in social psychology literature regard-

ing which cues are most prevalent during the expression of

agreement and disagreement.

In the following section, we discuss agreement, disagree-

ment and related work on their automatic recognition. In

Section III we present Hidden Conditional Random Fields

(HCRFs) and our technique to analyze the concepts learned

by the HCRF. In Section IV we explain how our data was

collected and what experiments we have conducted. Finally,

in Section V, we present and discuss our results.

II. AGREEMENT AND DISAGREEMENT

A. Definitions and Associated Cues

Distinguishing between different kinds of agreement and

disagreement is difficult, mainly because of the lack of

widely accepted definitions of agreement and disagreement

[3]. We can distinguish among at least three ways one could

express agreement and disagreement with:

• Direct Speaker’s Agreement and Disagreement: A

speaker directly expresses his/her agreement or dis-

agreement, e.g. “I (dis)agree with you”.

• Indirect Speaker’s Agreement and Disagreement:
A speaker does not explicitly state her agreement and

disagreement, but expresses an opinion that is congru-

ent (agreement) or contradictory (disagreement) to an

opinion that was expressed earlier in the conversation.

• Nonverbal Listener’s Agreement and Disagreement:
A listener nonverbally expresses her agreement or dis-

agreement to an opinion that is currently or was just

expressed. This could be via auditory cues like “mm

hmm” or visual cues like a head nod or a smile.

It is important to mention at this point that in sponta-

neous direct and indirect speaker’s agreement/disagreement,

the speaker also exhibits nonverbal behavior which could

perhaps be different than the one exhibited during nonverbal

listener’s agreement/disagreement.

Tables II and III present a full list of the nonverbal

cues that can be displayed during agreement and disagree-

CUE KIND
Head Nod Head Gesture
Listener Smile (AU12, AU13) Facial Action
Eyebrow Raise (AU1+AU2)+Head Nod Facial Action, Head Gesture
AU1 + AU2 + Smile (AU12, AU13) Facial Action
Sideways Leaning Body Posture
Laughter Audiovisual Cue
Mimicry Second–order Cue

TABLE II: Cues of Agreement. For relevant descriptions of

AUs, see FACS [16].

ment [3]1. The most prevalent and straightforward cues seem

to be the Head Nod and the Head Shake for agreement

and disagreement respectively, with nods intuitively convey-

ing affirmation and shakes negation. However, simply the

presence of these or any of the other cues alone cannot be

discriminative enough, since they could have many other in-

terpretations, as studied by Poggi et al. [14] and Kendon [15].

B. Related Work on Automatic Recognition

There is no work, to the best of our knowledge, that has

attempted agreement/disagreement classification on audiovi-

sual spontaneous data. Table I summarizes the existing sys-

tems that have attempted classification of agreement and/or

disagreement in one way or another. However, none of these

systems is directly comparable with ours.

Hillard et al. [5] attempted speaker agreement and dis-

agreement classification on pre–segmented ‘spurts’, speech

segments by one speaker with pauses not greater than

500ms. The authors used a combination of word–based and

prosodic cues to classify each spurt as ‘positive–agreement’,

‘negative–disagreement’, ‘backchannel’, or ‘other’. Most of

the results reported included word–based cues, however an

overall classification accuracy of 62% was reported for a

17% confusion rate between the agreement and disagreement

classes. Similar works by Galley et al. [7] and Hahn et

al. [10] also deal with classifying spurts as disagreement and

agreement, with [7] also dealing with finding the addressee

of the action. Germesin and Wilson [12] also deal with these

issues. However, the features used by these works included

1Our discussion of cues for agreement and disagreement is mostly
relevant for cultures in Western Europe and North America. Further work
might be needed to develop a similar system that targets other cultures.



CUE KIND
Head Shake Head Gesture
Head Roll Head Gesture
Cut Off Head Gesture

Clenched Fist Hand Action
Forefinger Raise Hand Action
Forefinger Wag Hand Action
Hand Chop Hand Action
Hand Cross Hand Action
Hand Wag Hand Action
Hands Scissor Hand Action

Ironic Smile/Smirking [AU12 L/R(+AU14)] Facial Action
Barely noticeable lip–clenching (AU23, AU24) Facial Action
Cheek Crease (AU14) Facial Action
Lowered Eyebrow/Frowning (AU4) Facial Action
Lip Pucker (AU18) Facial Action
Slightly Parted Lips (AU25) Facial Action
Mouth Movement (AU25/AU26) Facial Action
Nose Flare (AU38) Facial Action
Nose Twist (AU9 L/R, AU10 L/R, AU11 L/R) Facial Action
Tongue Show (AU19) Facial Action
Suddenly Narrowed/Slitted Eyes (fast AU7) Facial Action
Eye Roll Facial Action/Gaze
Gaze Aversion Gaze

Arm Folding Body Posture
Large Body Shift Body Action
Leg Clamp Body Posture
Head/Chin Support on Hand Body/Head Posture
Neck Clamp Hand/Head Action
Head Scratch Head/Hand Action
Self–manipulation Hand/Facial Action
Feet Pointing Away Feet Posture

Sighing Auditory Cue
Throat Clearing Auditory Cue
Delays Auditory Cue
Utterance Length Auditory Cue
Interruption Auditory Cue

TABLE III: Cues for Disagreement. For relevant descriptions

of AUs, see FACS [16]

lexical, structural and durational cues and are not comparable

with other systems based on nonverbal cues.

The first such system is that by el Kaliouby and Robin-

son [8], which attempted agreement/disagreement classifi-

cation of acted behavioural displays based on head and

facial movements. They used 6 classes: ‘agreeing’, ‘disagree-

ing’, ‘concentrating’, ‘interested’, ‘thinking’, and ‘unsure’.

They tracked 25 fiducial facial points, out of which they

extrapolated rigid head motion (yaw, pitch, and roll), and

facial action units (eyebrow raise, lip pull, lip pucker), but

also utilized appearance–based features to summarise mouth

actions (mouth stretch, jaw drop, and lips parting). They used

Hidden Markov Models (HMMs) to detect each head and

facial action, and a Dynamic Bayesian Network (DBN) per

class was trained to perform the higher–level inference of

each of the ‘mental states’ mentioned above, allowing for

the co–occurrence of states.

Sheerman–Chase et al. [11] are, to our knowledge, the only

research group who have attempted recognition of agreement

based on non–verbal cues in spontaneous data. However, they

did not include disagreement as a class, because of the lack of

data. They instead distinguished between ‘thinking’, ‘under-

standing’, ‘agreeing’ and ‘questioning’. Their spontaneous

data was obtained by capturing the four 12–minute dyadic

conversations of 6 males and 2 females. 21 annotators rated

the clips with each clip getting on average around 4 ratings

that were combined to obtain the ground truth label. For the

automatic recognition, they used no auditory features and the

tracking of 46 fiducial facial points was used. The output of

the tracker was then processed to obtain a number of static

and dynamic features to be used for classification. Principal

Component Analysis (PCA) was performed on the tracked

points in each video frame, and the PCA eigenvalues were

used as features. Similarly to el Kaliouby and Robinson [8],

the head yaw, pitch and roll, the eyebrow raise, lip pucker

and lip parting were calculated as functions of these tracked

facial points. Gaze was also estimated in a similar fashion

—the eye pupils were among the points tracked.

III. HCRFS FOR MULTIMODAL GESTURE RECOGNITION

Hidden Conditional Random Fields —discriminative mod-

els that contain hidden states— are well–suited to the prob-

lem of multimodal cue modeling for agreement/disagreement

recognition. Quattoni et al. [4] presented and used HCRFs to

capture the spatial dependencies between hidden object parts.

Wang et al. [17] used them to capture temporal dependencies

across frames and recognize different gesture classes. They

did so successfully by learning a state distribution among

the different gesture classes in a discriminative manner,

allowing them to not only uncover the distinctive config-

urations that uniquely identifies each class, but also to learn

a shared common structure among the classes. Moreover, as

a discriminative model, HCRFs require a fewer number of

observations than a generative model like a Hidden–Markov

Model (HMM). These were all qualities that prompted us to

select HCRFs, as a model to experiment with, in our attempt

to recognize agreement and disagreement.

A. Model

Following the notation of Quattoni et al. [4], [17],

we represent m local observations by a vector x =
{x1, x2, . . . , xm}. Each local observation xj is represented

by a feature vector φ(xj) ∈ �d which includes all input

features (e.g., the presence of a head nod or the value

of F0-pitch). We wish to learn a mapping between the

observations x and the class label y ∈ Y . The class label

can be ‘agreement’ or ‘disagreement’. An HCRF models the

conditional probability of a class label given an observation

sequence by:

P (y | x, θ) =
∑

h

P (y, h | x, θ) =
∑

h e
Ψ(y,h,x;θ)

∑
y′∈Y,h e

Ψ(y′,h,x;θ) .

(1)

where h = {h1, h2, . . . , hm}, each hi ∈ H captures certain

underlying structure of each class and H is the set of hidden

states in the model. The potential function Ψ(y, h,x; θ) ∈ �
is an energy function, parameterized by θ, which measures

the compatibility between a label, a sequence of observations

and a configuration of the hidden states.



Ψ(y, h,x; θ) =
∑

j

φ(x, j) · θh(hj) +
∑

j

θy(y, hj)

+
∑

(j,k)∈E

θe(y, hj , hk) (2)

The graph E is a chain where each node corresponds to

a hidden state variable at time t. The paremeter vector θ is

made up of three components: θ = [θe θy θh]. We use the

notation θh[hj ] to refer to the parameters θh that correspond

to state hj ∈ H . Similarly, θy[y, hj ] stands for parameters

that correspond to class y and state hj and θe[y, hj , hk]
measures the compatibility between pairs of consecutive

states j and k and the gesture y.

B. Training

Given a new test sequence x, and parameter values θ∗

induced from training examples, we will take the label for

the sequence to be:

argmax
y∈Y

P (y | x, θ∗). (3)

The following objective function is used in training the

parameters:

L(θ) =
∑

i

logP (yi | xi, θ)− 1

2σ2
||θ||2 (4)

The first term in Eq. 4 is the log-likelihood of the

data. The second term is the log of a Gaussian prior with

variance σ2, i.e., P (θ) ∼ exp
(

1
2σ2 ||θ||2

)
. We use gradient

ascent to search for the optimal parameter values, θ∗ =
argmaxθ L(θ), under this criterion. For our experiments we

used a Quasi-Newton optimization technique to minimize the

negative log–likelihood of the data.

C. Analysis

The HCRF model is a powerful sequential discriminative

model. It can learn the hidden dynamic of a signal using

the latent variable hj . For multimodal gesture recognition,

this hidden dynamic is usually related to the synchrony and

asynchrony between speech and gestures. While previous

work has shown the efficiency of HCRF for learning visual

gestures [4], [17], none of them described or analysed what

the HCRF model learned. In this paper we are presenting an

efficient approach to analyze the concepts learned by the

HCRF model. This analysis tool enables a new direction

of research where machine learning is not simply used as

a black box but instead is there to help understand human

interactions.

To analyze the HCRF model, one has to understand the

optimized parameters [θh θe θy]:

• θh models the relationship between observations xj and

hidden states hj . If the HCRF model has 10 input

features and 3 hidden states, then the θh parameter will

be of length 30 (10x3). By analysing the amplitude of

each weights in θh, it is possible to learn the relative

importance of each input feature for each hidden state.

(a) Forefinger Raise (b) Forefinger Wag

(c) Hand Wag (d) Hands Scissors

Fig. 2: Some of the gestures used as cues for the experiments.

• The parameter θy models the relationship of the hidden

states hj and the label y. If the model contains 3 hidden

states and 2 labels, then the θy will be of length 6 (3x2).

By analyzing the weights of θy , it is possible to see

which hidden states are shared and which ones are not.

• The parameter θe represents the links between hidden

states. It is similar to the transition matrix in a Hidden

Markov Model. An important difference is that the

HCRF model keeps a transition matrix for each label. If

the HCRF model contains 3 hidden states and 2 labels,

then the θe parameter will be of length 18 (3x3x2).

The procedure for analyzing the HCRF model contains

three steps: (1) identify the relevant features for each hidden

state using θh, (2) determine which hidden states are shared

and which ones are not using θy , and (3) analyze the

possible transitions between hidden states using θe. In our

experiments (see Figure 5), we apply this procedure to

identify the relevant concepts learned by the HCRF model

to recognize agreement and disgreement behaviors.

IV. EXPERIMENTS

A. Dataset and Cues

Our dataset originated from the Canal 9 Database of
Political Debates [18], one that comprises of 43 hours and

10 minutes of 72 real televised debates on Canal 9, a local

Swiss television station. The debates are moderated by a

presenter, and there are two sides that argue around a central

issue, with one or more participants on each side. Hence, the

database is rather rich in episodes of spontaneous agreement

and disagreement.

The dataset we used comprises of 53 episodes of agree-

ment and 94 episodes of disagreement, which occur over

a total of 11 debates. These episodes were selected on the



basis of verbal content, and thus, only episodes of direct and

indirect agreement/disagreement were included (see Section

II-A). As the debates were filmed with multiple cameras, and

edited live to one feed, the episodes selected for the dataset

were only the ones that were contained within one personal,

close–up shot of the speaker.

We automatically extracted nonverbal auditory features

used in related work, specifically the fundamental frequency

(F0) and energy, by using a freely–available tool, Open-
Ear[19]. Since our main goal is to analyze dynamics of

nonverbal cues during agreement/disagreement recognition,

our dataset was manuallly annotated to gather as accurate

temporal information about the gestures as possible. Based

on the results presented in this paper, our future work will

evaluate the recognition performance using our automatic

nonverbal gesture annotation [20], [21]. The hand and head

gestures we included were based off the relevant list of

cues from the Social Psychology literature (see Section II-

A), with the exception of a number of head and hand

gestures that never appeared in the dataset, and the addition

of the ’Shoulder Shrug’ and the ‘Forefinger Raise-Like’

gestures. The latter is a ‘Forefinger Raise’ without an erect

index finger. The cues we finally extracted and used in our

experiments are listed in Table IV; the visual cues that may

not be self–explanatory from their title are depicted in figure

2.

CUE KIND
Head Nod Head Gesture
Head Shake Head Gesture
Forefinger Raise Hand Action
‘Forefinger Raise’–Like Hand Action
Forefinger Wag Hand Action
Hand Wag Hand Action
Hands Scissor Hand Action
Shoulder Shrug Body Gesture
Fundamental Frequency (F0) Auditory Cue
Energy Auditory Cue

TABLE IV: The list of features we used in our experiments.

B. Methodology

We conducted experiments with Support Vector Ma-

chines (SVMs), as our baseline static classifiers, Hidden–

Markov Models (HMMs), the most–commonly used dynamic

generative model, and Hidden Conditional Random Fields

(HCRFs), the dynamic discriminative model we believe is

most appropriate for such a task. We conducted different

experiments for three groups of cues: only auditory, only

visual, and both auditory and visual ones.

Our cues were encoded differently for our static and

dynamic classifiers, but the same information was available

to all classifiers. For SVMs, the features of each gesture were

the start frame and the duration (total number of frames) of

the gesture within the segment of interest. For the auditory

features we used the mean, standard deviation, and the first,

second(median), and third quartiles of each. The later values

did not take into account the undefined areas of F0, and

Fig. 3: Comparisons of recognition performance (total accu-

racy) by the classification methods we explored on the three

different groups of features used.

all values were scaled from -1 to 1. For the experiments

with HMMs and HCRFs, we encoded each gesture in a

binary manner (1 if the gesture is activated in a certain

frame, 0 otherwise), and used the raw values of our auditory

features, normalized per subject. Figure 1 allows the reader

to visualize the process of reaching a classification decision

from our data by using an HCRF.

All our experiments were run in a leave–one–debate–out

fashion, i.e. the testing set always comprised of examples

from the one debate which was not included in the training

and validation sets. The optimal model parameters for each

test set were chosen by a three–fold validation on the

remaining debates. Those were cost and gamma for SVMs,

number of mixtures of Gaussians for HMMs, regularization

factor for HCRFs and number of hidden states for both

HMMs and HCRFs. The HMM and HCRF experiments were

run with 10 different random initializations, the best of which

was chosen each time during the validation phase (i.e., based

on performance on the validation sets). The evaluation metric

that we used for all the experiments was the total accuracy

in a balanced dataset, i.e. percentage of sequences for which

the correct label was predicted in a test set that contains an

equal number of agreement and disagreement examples.

V. RESULTS AND DISCUSSION

Figure 3 summarizes the results of the experiments on

spontaneous agreement and disagreement classification using

auditory, gestural and both auditory and gestural features. It

is clear that:

(a) It is possible to perform the task of spontaneous agree-

ment and disagreement classification without the use of

any verbal features.

(b) The temporal dynamics of the cues are vital to the task,

as it is evident that SVMs are not able to perform well

by using static information alone.

(c) HCRFs outperform SVMs and HMMs, especially when

the cues used are multimodal and the underlying dy-

namics of the different modalities need to be learned.



Fig. 4: The performance (total accuracy) of HCRFs increases

proportionally to the sampling rate of the multimodal data.

Figure 4 demonstrates the complexity of the task at hand,

and the importance of fine–grain multimodal dynamics to

its solution, by summarizing the accuracies achieved with

HCRF models when sampling our data at different rates. The

fact that the higher the sampling rate, the higher the accuracy

achieved by the HCRF models, also demonstrates the ability

of the HCRFs to cope with such fine–grain dynamics.

We applied our model analysis technique described in

Section III-C to the optimal HCRF selected during our

experiments. By examination of the weights learned by

the HCRF for each of its cues θh, hidden states θy , and

transitions θe, we were able to rank, according to importance,

the information that the model used. Figure 5 shows the

automatically learned concepts of the optimal HCRF model

In Figure 5, each hidden state (represented by the white

circles) is linked to its highest ranked observed features in a

descending order of importance. The relationships between

these observed features and the hidden states were identified

using the parameter θh. The highest ranked features in these

hidden states show that the Head Nod and the Head Shake,

which are considered, by social psychologists, the most

prevalent cues in agreement and disagreement respectively

(see Section II-A), are also the most discriminative cues here.

It could be the case that ‘Forefinger Raise-Like’ gestures

might in fact play no role in discriminating between the two

attitudes.

By analyzing the parameter θy , we can see that the HCRF

model assigned one state as prevalent for each of the two

class labels, and one state as shared between them. The

analysis of the transition parameter θe shows that different

transitions are learned for each class label. The Figure 5

marked the most likely transitions associated to each attitude

(class label): green for agreement and red for disagreement.

Disagreement will usually end with hidden state h = 2
(middle circle) while the agreement can transition directly

to a head shake (hidden state h = 1 depicted on the left).

VI. CONCLUSION AND FUTURE WORK

Related work on spontaneous agreement/disagreement

classification has used verbal (e.g. spoken words) and

prosodic features. We have shown, in this work, that the task

h = 1 h = 3h = 2

y = DISAGREEMENT

Head Shake

Forefinger Raise-Like

Hand Wag
Head Nod

F0
Forefinger Raise

Head Nod

Forefinger Raise-Like

y = AGREEMENT

Disagreement Transitions Agreement Transitions

Fig. 5: The features learned for each state by a three-state

HCRF model. The green and red connections correspond to

the highest–ranked transition from each state in the cases of

agreement and disagreement respectively. The middle state

is shared among the two classes.

is possible without the use of verbal features. Furthermore,

we have shown that HCRFs are a good choice for this task,

as they outperform SVMs and HMMs, demonstrating the

advantages of joint discriminative learning and their ability

to model the hidden fine–grain dynamics of the multimodal

cues related to agreement and disagreement. Finally, we have

shown that HCRFs can be automatically analysed to identify

what groups of features are the most discriminative in each

class.

The next step is to evaluate our recognition algorithm

using automatically annotated head and hand gestures[20],

[21]. Furthermore, a rating study, which is already under-

way, will exhibit how human raters perform at classifying

these clips. Finally, another possible research avenue is the

inclusion of other groups of cues associated with agree-

ment/disagreement (see Tables II and III), especially facial

actions.
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