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ABSTRACT

In this paper, we investigate the use of discriminant feature selection
techniques in theelastic graph matching (EGM) algorithm. State of
the art and novel discriminant dimensionality reduction techniques
are used in the node feature vectors in order to extract discriminant
features. We illustrate the improvements in performance in frontal
face verification using a modified multiscale morphological anal-
ysis for forming the node feature vectors. All experiments were
conducted in the XM2VTS database.

1. INTRODUCTION

A popular class of techniques used for frontal face recogni-
tion/verification is EGM. EGM is a practical implementation of the
dynamic link architecture (DLA) [1]. In EGM the reference object
graph is created by projecting the object’s image onto a rectangular
elastic sparse graph where a Gabor wavelet bank response is mea-
sured at each node. The graph matching procedure is implemented
by a coarse-to-fine stochastic optimization of a cost function which
takes into account both jet similarities and node deformation [1].

In [2] EGM has been proposed and tested for frontal face verifi-
cation. A variant of the standard EGM, the so-calledMorphological
Elastic Graph Matching (MEGM), has been proposed for frontal
face verification [3]. In MEGM the Gabor analysis has been super-
seded by multiscale morphological dilation-erosion using a scaled
structuring function.

The use of linear discriminant techniques at the feature vectors
for selecting the most discriminant features has been proposed in
order to enhance the recognition and verification performance of the
EGM [2, 3]. Several schemes that aim at weighting the graph nodes
according to their discriminatory power have been proposed [3, 4].
In [4] it has been shown that the verification performance of the
EGM can be highly improved by proper node weighting strategies.

In this paper we investigate the use of well known techniques
and novel discriminant analysis techniques in the feature vectors of
the graph nodes. Each graph node is considered as a local expert
and discriminant feature selection techniques are employed for en-
hancing its recognition/verification performance. Experiments were
conducted in the XM2VTS database using a modified multiscale
morphological analysis.

2. ELASTIC GRAPH MATCHING

In this Section we will briefly outline the problem of frontal face
verification and the framework under which EGM performs face
verification. LetU be a facial image database and each facial im-
ageu∈U belongs to one of theC person classes{U1,U2, . . . ,UC}

with U =
⋃C

i=1Ui. For a face verification system that uses the
databaseU a genuine (or client) claim is performed when a per-
sont provides its facial image,u, claiming thatu ∈ Ur andt = r.
When a persont claims thatu ∈ Ur, with t 6= r, an impostor claim
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occurs. The scope of a face verification system is to handle prop-
erly these claims by accepting the genuine claims and rejecting the
impostor ones.

The first step of EGM is to analyze the facial image region of
the imageu. Then, a set of local descriptors is extracted at each
graph node. In the standard EGM a 2D Gabor based filter bank has
been used for image analysis [1]. The output of multiscale mor-
phological dilation-erosion operations is a nonlinear alternative of
the Gabor filters for multiscale analysis and have been successfully
used for facial image analysis [3]. At each graph node that is located
at image coordinatesx a jetj(x) is formed as:

j(x) = ( f1(x), . . . , fS(x)), (1)

where fi(x) denotes the output of a local operator applied to the
image f at theith scale or at theith pair (scale, orientation) andS is
the dimensionality of the jet.

The next step of the EGM is to translate and deform the refer-
ence graph on the test image in order to find the correspondence of
the reference graph nodes on the test image. This is accomplished
by minimizing a cost function that employs node jet similarities
and in the same time preserves the node relationships. Let the su-
perscriptst andr denote a test and a reference person (or graph),
respectively. TheL2 norm between the feature vectors at thel-th
graph node of the reference and the test graph is used as a similarity
measure between jets, i.e.:

C f (j(x
l
t), j(x

l
r)) = ||j(xl

r)− j(xl
t)||. (2)

The objective is to find a set of vertices{xl
t(r), l ∈V} that min-

imize the cost function:

D(t,r) = ∑l∈V {Cu(j(x
t
l), j(x

r
l ))} subject to

xt
l = xr

l +s+ql , ||ql || ≤ qmax,
(3)

wheres is a global translation of the graph andql denotes a local
perturbation of the grid nodes.

The choice ofqmaxcontrols the rigidity/plasticity of the graph.
The jet of thel-th node that has been produced after the matching
procedure of the graph in the image of the test persont is denoted as
j(xl

t(r)). Obviously, the cost function given by (3) defines the sim-
ilarity measure between two persons, in the morphological elastic
graph matching.

3. FEATURE VECTOR DISCRIMINANT ANALYSIS

It is obvious that the standard EGM treats uniformly all the different
features that form the jets. Thus, it is reasonable to use discriminant
techniques in order to find the most discriminant features. In detail,
we should learn a person and node specific discriminant function
gl

r, for the l-th node of the reference personr, that transforms the
jetsj(xl

t(r)):
j́(xl

t(r)) = gl
r(j(x

l
t(r))). (4)

We will use linear discriminant techniques for obtaining the
transformgl

r in the rest of the paper but any non-linear discrimi-
nant transform can be used as well. Before calculating the linear



transforms we normalize all the jets that have been produced dur-
ing the match of the graphs of the reference personr to all other
facial images in the training set in order to have zero mean and unit
magnitude. Let̂j(xl

t(r)) be the normalized jet at thel-th node. Let
Fl

C(r) andFl
I(r) be the sets of the normalized jets of thel-th node

that correspond to genuine claims and impostor claims related to
personr, respectively.

3.1 Fisher LDA for Two Class Problem

In the standard linear discriminant analysis the within-class and
between-class scatter matrices are used to formulate criteria of class
separability [5]. For a two class problem the within class scatter for
ĵ(xl

t(r)) is defined as:

Fl
W (r) = P̂C

1
NG

Bl(r)+ P̂I
1
NI

Il(r) (5)

whereBl(r) andIl(r) are the genuine and impostor class scatter
matrices, respectively.̂PC and P̂I are the a priori probability esti-
mates for the genuine and impostor class, respectively.NG andNI
are the samples in the genuine and impostor class, respectively.

The genuine class scatter matrix is given by:

Bl(r) = ∑
Fl

C(r)

(̂j(xl
t(r))−m(Fl

C(r)))(̂j(xl
t(r))−m(Fl

C(r)))T (6)

whereas the impostor class scatter matrix is:

Il(r) = ∑
Fl

I(r)

(̂j(xl
t(r))−m(Fl

I(r)))(̂j(x
l
t(r))−m(Fl

I(r)))
T (7)

The between-class scatter is:

Fl
B(r) = P̂CP̂Im

l
1(r)m

l
1(r)

T (8)

whereml
1(r) = m(Fl

I(r))−m(Fl
C(r)).

The most common criterion used for transforming linearly the
feature vectors is the one that projects the feature vectors in the
direction ofal(r) so that:

J(al(r)) =
al(r)

T
Fl

B(r)al(r)

al(r)T
Fl

W (r)al(r)
(9)

is maximized [5]. The optimal projection ´al(r) is given by [5]:

ál(r) =
Fl

W (r)
−1

ml
1(r)

||Fl
W (r)−1

ml
1(r)||

. (10)

It is assumed thatFl
W (r) is invertible, which is true in most

implementations of EGM [2, 3] where the feature vectors have
less than 20 dimensions and most databases provide a relatively
large number of impostor claims. Equation (10) indicates that, for
the face verification problem the original multidimensional feature
space is projected to a one dimensional feature space. The jet,
ĵ(xl

t(r)), is projected to one dimension by:

j́(xl
t(r)) = ál(r)

T
ĵ(xl

t(r)). (11)

3.2 Multidimensional two class LDA

It is obvious that the one dimensional feature space derived by (11)
is a limitation to the search for discriminative projections in a mul-
tidimensional feature space. Recently, it was shown [6] that al-
ternative LDA schemes that give more than one discriminative di-
mensions, in a two class problem, have better classification perfor-
mance. We use the same criterion as [2],[3] that can give more than

one discriminant directions. LetWl(r) be the matrix:

Wl(r) = ∑
Fl

I(r)

(̂j(xl
t(r))−m(Fl

C(r)))(̂j(xl
t(r))−m(Fl

C(r)))T

(12)
The optimal discriminative directionśΨl(r) are given by maximiz-
ing the criterion:

J(Ψl(r)) =
tr[Ψl(r)

T
Wl(r)Ψl(r)]

tr[Ψl(r)T
Bl(r)Ψl(r)]

(13)

where tr[R] is the trace of the matrixR. This criterion is well suited
for the face verification problem due to the fact that it tries to find the
feature projections that maximize the distance of impostor jets from
the genuine class center while minimizing the distance of genuine
jets from genuine class center. IfBl(r) is not singular then (13)
is maximized when the column vectors of the projection matrix,

Ψ́l(r), are the eigenvectors ofBl(r)
−1

Wl(r). It is obvious that
the invertibility of Bl(r) cannot be satisfied always due to the fact
that it is required by the training set to provide as many samples
as the feature vector dimension. In [3] in order to solve the small
size problem it was proposed to use PCA before searching for linear
discriminative projections.

The total scatter matrix of the jetŝj(xl
t(r)) is defined as:

Fl
T (r) = Fl

W (r)+Fl
B(r) (14)

The PCA dimensionality reduction matrix,Ṕl(r), is chosen as the
one that maximizes the determinant of the total scatter matrixFl

T (r)
of the projected samples, i.e.:

Ṕl(r) = arg max
Pl(r)

|Pl(r)
T
Fl

T (r)Pl(r)|. (15)

By solving this optimization problem, the dimensionality reduction
transform inL dimensions is given by the eigenvectors that corre-
sponds to theL largest eigenvalue ofFl

T (r).
UsingṔl(r) the dimension of feature vectors is reduced to:

j̆(xl
t(r)) = Ṕl(r)

T
ĵ(xl

t(r)). (16)

Then for the jets̆j(xl
t(r)), we find linear discriminant projections

using the criterion (13). The matrixBl(r) for the j̆(xl
t(r)) is now

invertible. The final discriminant transform is :

j́(xl
t(r)) = Ψ́l

d(r)
T
j̆(xl

t(r)) = Ψ́l
d(r)

T
Ṕl(r)

T
ĵ(xl

t(r)), (17)

whereΨ́l
d(r) is the optimal projections provided by (13) for the

vectorsj̆(xl
t(r)).

3.3 Direct LDA for feature selection

Another alternative is to search for discriminative information in-
side the null space ofBl(r) without using a PCA step. The null
space is defined by the eigenvectors that correspond to eigenvalues
having zero or near zero value. The use of the null space in the
final discriminant transformation can be accomplished by using di-
rect optimization of (13). The steps of the direct optimization of
(13) are similar to the ones used in [7]:
• Perform eigenanalyis to matrixWl(r). That is, find the matri-

cesVl(r) andΛl(r) so that:

Vl(r)Wl(r)Vl(r)
T

= Λl(r) (18)

whereVl(r)Vl(r)
T

= I. TheΛl(r) is a diagonal matrix that
has its elements sorted in decreasing order. One can proceed to



a first dimensionality reduction here by discarding those eigen-
vectors and eigenvalues that correspond to some of the smallest
eigenvalues ofWl(r). It is of course necessary to discard zero
eigenvalues and their corresponding eigenvectors due to the fact
that they do not carry any discriminant information.
Let Yl(r) be the firstk columns ofVl(r), now

Yl(r)Wl(r)Yl(r)
T

= ∆l(r). (19)

• Let Zl(r) = Yl(r)∆l(r)
−1/2

. It is obvious thatZl(r) unitizes
Wl(r) while reducing the dimensionality fromS to N. Diago-

nalize the matrixRl(r) = Zl(r)Bl(r)Zl(r)
T

by eigen-analysis:

Ul(r)Rl(r)Ul(r)
T

= Λl(r). (20)

whereUl(r)
T
Ul(r) = I. In order to proceed to further di-

mensionality reduction we discard some eigenvectors that corre-
spond to the greatest eigenvalues ofΛl(r). As it is stated in [7]
it is important to keep the dimensions with the smallest eigen-
values, especially those with zero value.

• The LDA matrix used for transforming linear the data is:

Ψl(r) = Λl(r)
−1/2

Ul(r)T Zl(r)
T
. (21)

In case some diagonal elements ofΛl(r) are zero a small num-
berε close to zero should be used instead.

WhenBl(r) is full ranked then the proposed diagonalization gives
the same result as some standard diagonalization procedures for op-
timizing (13) like [8].

In order to robustify the last step of the diagonilization, where
zero eigenvalues appear in (21) a new criterion is proposed as:

J(Ψl(r)) =
tr[Ψl(r)

T
Wl(r)Ψl(r)]

tr[Ψl(r)T
Bl(r)Ψl(r)+Ψl(r)T

Wl(r)Ψl(r)]
. (22)

The modified criterion (22) can be proven to be equivalent to (13)
and gives no zero eigenvalues in (21). A similar approach was used
also in [9, 10].

The vectors contained in the null space of the matrixBl(r)
maximize the criterion (13). That is, all the projectionshl(r) that
have the propertyBl(r)hl(r) = 0 andWl(r)hl(r) 6= 0 maximize
the criterion (13). It is obvious that projections likehl(r) perform
perfect classification in the training set.

The feature vector after discriminant dimensionality reduction
is:

j́(xl
t(r)) = gl

r (̂j(x
l
t(r))) = Ψ́l(r)

T
ĵ(xl

t(r)), (23)

The similarity measure of the new feature vectors can be given
by a simple distance metric. We have used theL2 norm for forming
the new feature vector similarity measure in the final multidimen-
sional space:

C f (j́(x
l
t(r)), j́(x

l
r)) = ||j́(xl

t(r))− j́(xl
r)||. (24)

Other choices for the distance metric are theL1 norm, the normal-
ized correlation and the Mahalanobis distances. The new distance
between faces, after discriminant analysis, is given by:

D́t(r) = ∑
l∈V

C f (j́(x
l
t(r)), j́(x

l
r)). (25)

4. EXPERIMENTAL RESULTS

The experiments were conducted in the XM2VTS database using
the protocol described in [11]. For the experiments a typical graph
setup was used [2, 3]. More precisely, the graph was selected to be
a 8×8 sparse graph. A modified multiscale morphological analysis
similar to the one that has been presented in [3] was used and the
jet dimension has been set to 19. Only the luminance information at
a resolution of 720×576 has been considered in our experiments.
Instead of a face detection procedure [3] the images were aligned
automatically according to the eyes position of each facial image
using the eye coordinates that have been derived by the method re-
ported in [12]. No other image preprocessing technique has been
used. In order to simplify the approach, graphs of the same size
were considered for all persons.

The XM2VTS database provides two experimental setups
namely, Configuration I and Configuration II [11]. Each configura-
tion is divided in three different sets; the training set, the evaluation
set and the test set. The training set is used to create client and im-
postor models for each person. The evaluation is used to learn the
thresholds.

The training set of the Configuration I contains 200 persons
with 3 images per person. The evaluation set contains 3 images
per client for genuine claims and 25 evaluation impostors with 8
images per impostor. Thus, evaluation set gives a total of 3×200=
600 client claims and 25×8×200= 40.000 impostor claims. The
test set has 2 images per client and 70 impostors with 8 images per
impostor and gives 2×200= 400 client claims and 70×8×200=
112.000 impostor claims. The training set is used for calculating for
each reference personr and for each nodel the linear discriminant
transform for feature selection.

The similarity measures for every person calculated in both
evaluation and training set form the distance vectoro(r). The el-
ements of the vectoro(r) are sorted in ascending order and are
used for the person specific thresholds on the distance measure. Let
TQ(r) denote theQ-th order statistic of the vector of distances,o(r).
The threshold of the personr is chosen to be equal toTQ(r). Let r1,
r2 andr3 be the 3 instances of the personr in the training set. A
claim of a persont is considered valid if minj{D́t(r j)} < TQ(r)

whereD́t(r j) is the distance between the graph of test persont and
the reference graphr j. Obviously when varyingQ, different pairs
of False Acceptance Rate (FAR) andFalse Rejection Rate (FRR)
can be created and that way aReceiver Operating Characteristics
(ROC) curve is produced.

In the training set 3 reference graphs per person are created.
The 3×2= 6 graphs that comprise the genuine class are created by
applying elastic graph having one image as reference (i.e., in order
to create the graph) and the other 2 images are used as test images.
The impostor class contains 3× 3× 199= 1797 graphs. The jet
dimension is 19 and thus, for a reference personr and a nodel the
matrixBl(r) has only 5 non null dimensions and 4 null dimension.
However the matrixFl

W (r) is full ranked.
The class of genuine claims is very small in relation to the im-

postor class and this may affect the training procedure. In fact, the
entire null space ofBl(r) that has been produced according to the
diagonalization method in [7] has lead to overtraining. As over-
training we mean perfect classification (zero error rate) in the train-
ing set and very poor generalization (large error rate) in the test set.
We avoid overtraining by excluding the null space ofBl(r) using an
initial PCA step. Afterwards, the presented diagonalization method
was used for finding discriminant directions.

The EGM using no discriminant feature selection has given an
Equal Error Rate (EER)=5.7% in the test set of Configuration I.
The best EER achieved, using feature vector discriminant analysis,
was 2.0% and has been achieved when we kept the first 3 discrimi-
nant projections. The projection to the one dimensional space using
ál(r) has not lead to some significant improvements in the perfor-
mance and has given an EER= 5.3%. The performance could have



been further improved if additional samples of the genuine class
were available in the training set.

The ROC curves for the different discriminant approaches pre-
sented in this paper are pictorially depicted in Figure 1. The ROC
curves have been calculated in the test set of the Configuration I.
The best performance has been achieved when an initial PCA step
was used prior to discriminant analysis. MEGM is an acronym for
the modified morphological elastic graph matching using no dis-
criminant features. MEGM-F is a notation for MEGM when the one
dimension discriminant transform of the criterion in (9) was used.
MEGM-D is used as a notation for the MEGM with the three most
discriminant features of the multidimensional LDA. The depicted
ROC curves illustrate that the performance of the EGM algorithm
is highly improved by using proper linear discriminant analysis al-
gorithms.

Figure 1: ROC curves for the different discriminant variants of
NMEGM in test set of the Configuration I experimental protocol
of the XM2VTS database.

5. CONCLUSIONS

The use of linear discriminant techniques in the feature vectors of
the elastic graph has been investigated for frontal face verification.
One dimensional and multidimensional linear projections have been
used in order to form the discriminant transforms for a two class
problem. All experiments have been conducted in XM2VTS where
a major improvement in performance has been achieved.
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