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ABSTRACT occurs. The scope of a face verification system is to handle prop-
erly these claims by accepting the genuine claims and rejecting the

In this paper, we investigate the use of discriminant feature selectioil;Lnpostor ones

techniques in thelastic graph matching (EGM) algorithm. State of The first step of EGM is to analyze the facial image region of
the art and novel discriminant dimensionality reduction technique e imageu. Then, a set of local descriptors is extracted at each

?retused I\r/]\/th% nc>tdetfeta1r]tu(e vectors in ?rqler to fextract d's.cr'fm'n?a%lraph node. In the standard EGM a 2D Gabor based filter bank has
eatures. Vve liustrate the improvements in periormance in frontape o seq for image analysis [1]. The output of multiscale mor-

face verification using a modified multiscale morphological anal hological dilation-erosion operations is a nonlinear alternative of

ysis dfort fcc)irrni?hg tQ‘EA g\c;gr% Leaitut:e vectors. All experiments Wer€y, o Ganor filters for multiscale analysis and have been successfully
conducted in the atabase. used for facial image analysis [3]. At each graph node that is located
at image coordinates a jetj(x) is formed as:

j(x) = (f,(x),..., fa(x)), 1

A popular class of techniques used for frontal face recogni- 360) = (.60, (), @)
tion/verification is EGM. EGM is a practical implementation of the where f,(x) denotes the output of a local operator applied to the
dynamic link architecture (DLA) [1]. In EGM the reference object imagef at theith scale or at théh pair (scale, orientation) ariiis
graph is created by projecting the object’s image onto a rectangulahe dimensionality of the jet.
elastic sparse graph where a Gabor wavelet bank response is mea- The next step of the EGM is to translate and deform the refer-
sured at each node. The graph matching procedure is implementegice graph on the test image in order to find the correspondence of
by a coarse-to-fine stochastic optimization of a cost function whichhe reference graph nodes on the test image. This is accomplished
takes into account both jet similarities and node deformation [1]. by minimizing a cost function that employs node jet similarities

In [2] EGM has been proposed and tested for frontal face verifiand in the same time preserves the node relationships. Let the su-
cation. A variant of the standard EGM, the so-caldatphological perscriptst andr denote a test and a reference person (or graph),
Elastic Graph Matching (MEGM), has been proposed for frontal respectively. The, norm between the feature vectors at tkia
face verification [3]. In MEGM the Gabor analysis has been supergraph node of the reference and the test graph is used as a similarity
seded by multiscale morphological dilation-erosion using a scaletheasure between jets, i.e.:
structuring function.

The use of linear discriminant techniques at the feature vectors Cr ((xt).3(x1)) = [[i(xt) — 3 x)II- (2)
for selecting the most discriminant features has been proposed in
order to enhance the recognition and verification performance of the  The objective is to find a set of verticés! (r),| € V} that min-
EGM [2, 3]. Several schemes that aim at weighting the graph nodemize the cost function:
according to their discriminatory power have been proposed [3, 4].

1. INTRODUCTION

_ . t . .
In [4] it has been shown that the verification performance of the D(t,r) = 3oy {Culi(x}).i(x]))} subject to
EGM can be highly improved by proper node weighting strategies. t ' @)
In this paper we investigate the use of well known techniques x| =x| +s+qp, [lql < amax

and novel discriminant analysis techniques in the feature vectors %heres is a global translation of the graph ang denotes a local
the graph nodes. Each graph node is considered as a local exp Brturbation of the grid nodes

and discriminant feature selection techniques are employed for en-""rpo ¢qjice ofyy,qx controls the rigidity/plasticity of the graph.
hancing its recognition/verification performance. EXperiments Wergp e iet'of thel-th node that has been produced after the matching
conducted in the XM2VTS database using a modified mumscal%rocedure of the graph in the image of the test petsedenoted as

morphological analysis. j(x}(r)). Obviously, the cost function given by (3) defines the sim-

ilarity measure between two persons, in the morphological elastic
2. ELASTIC GRAPH MATCHING graph matching.

In this Section we will briefly outline the problem of frontal face
verification and the framework under which EGM performs face 3. FEATURE VECTOR DISCRIMINANT ANALY SIS

verification. LetU be a facial image database and each facial im4t js obvious that the standard EGM treats uniformly all the different
ageu € U belongs to one of th€ person classedU,;, U,,...,Uc}  features that form the jets. Thus, itis reasonable to use discriminant
with U = US, U,. For a face verification system that uses thetechniques in order to find the most discriminant features. In detail,
databasdJ a genuine (or client) claim is performed when a per-we should learn a person and node specific discriminant function
sont provides its facial imagey, claiming thatu € U; andt =r. g}, for thel-th node of the reference personthat transforms the
When a personclaims thatu € Uy, with t 7 r, an impostor claim  jets;j(x!(r)):

s (|
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(Biometric Security, http://Awww.biosec.org), under Infaation Society We will use linear discriminant techniques for obtaining the
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ropean Community. nant transform can be used as well. Before calculating the linear




transforms we normalize all the jets that have been produced duone discriminant directions. L&' (r) be the matrix:
ing the match of the graphs of the reference pensem all other

facial images in the training set in order to have zero mean and unit w!(r) = Z (j(xl () — m(FE(f)))(E(X{(r)) _ m(F'C(r)))T

magnitude. Lef(x{( r)) be the normalized jet at tHeth node. Let FI(r)

FL(r) andF|(r) be the sets of the normalized jets of fhth node (12)
that correspond to genuine claims and impostor claims related tBhe optimal discriminative directiond’' (r) are given by maximiz-
persorr, respectively. ing the criterion:

3.1 Fisher LDA for Two Class Problem | tr[ @' (r)TW' (N ()]

In the standard linear discriminant analysis the within-class and I () = tr[\Il'(r)TB'(r)\Il'(r)] (13)

between-class scatter matrices are used to formulate criteria of class

separability [S]. For a two class problem the within class scatter 10, o tfR] is the trace of the matriR. This criterion is well suited

J(x(r)) is defined as: for the face verification problem due to the fact that it tries to find the
1 1 feature projections that maximize the distance of impostor jets from
F\'N(r) _ PC—B'(r) +P | (r) () Fhe genuine clgss center while m|r|1|m|;|ng the.dlstance of genuine
Ng N, jets from genuine class center. B (r) is not singular then (13)

is maximized when the column vectors of the projection matrix,
whereB'(r) andT'(r) are the genuine and impostor class scatterg! (1), are the eigenvectors cB'(r)_lW' (r). It is obvious that
matrices, respectivelyR. andR are the a priori probability esti-  the invertibility of B'(r) cannot be satisfied always due to the fact

mates for the genuine and impostor class, respectitglyandN,  that it is required by the training set to provide as many samples
are the samples in the genuine and impostor class, respectively. as the feature vector dimension. In [3] in order to solve the small

The genuine class scatter matrix is given by: size problem it was proposed to use PCA before searching for linear
| . | o~ | T discriminative projections. ~
B'(r) = Z()(J(Xt(r)) —m(F¢(r)))(§(x¢(r)) —m(Fc(r)))" (6) The total scatter matrix of the jejéx! (r)) is defined as:
JON(
Fh(r) = Fiy(r) + Fy(r) (14)

~ ~ The PCA dimensionality reduction matriﬁ{' (r), is chosen as the
ey S _ | | -~ I T

T = Z (0a(r)) —m(F1 (1)) G [) —mE )" () 5ne that maximizes the determinant of the total scatter miBlyix)
of the projected samples, i.e.:

The between-class scatter is:

. T
P!(r) =argmaxP' (r)’ Fi(r)P'(r)]. (15)

Fy(r) = PPy (nmy ()T ®) P

By solving this optimization problem, the dimensionality reduction

I | . - . AR b .
whereml( ) =m(F|(r)) —_m_(Fc(r))- o transform inL dimensions is given by the eigenvectors that corre-
The most common criterion used for transforming Ilnearly theséponds to thé largest eigenvalue d'" (r L (r).

feature vectors is the one that projects the feature vectors in th U Pl the di f feat tors is reduced to:
direction ofal (r) so that: singP’' (r) the dimension of feature vectors is reduced to:

i Z T3
2l () = al (N Fh(nal (r) o () =P () j6x(r). (16)
al (r)TF\'N(r)a' (r) Then for the jet§(x{(r)), we find linear discriminant projections
_ o _ o o using the criterion (13). The matriB' (r) for thej(x}(r)) is now
is maximized [5]. The optimal prolectload (r) is given by [5]: invertible. The final discriminant transform is :
()~ (0 () O CIGIES MOR CIOIES TOR SCICIINNNCY
[}y (1)l (1)

where\il'd(r) is the optimal projections provided by (13) for the

o
It is assumed thaFl,(r) is invertible, which is true in most VeCtorsi(xt(r)).

implementations of EGM [2, 3] where the feature vectors hawv . .

less than 20 dimensions and most databases provide a relative‘? Direct L DA for feature selection

large number of impostor claims. Equation (10) indicates that, foAnother alternative is to search for discriminative information in-

the face verification problem the original multidimensional featureside the null space dB' (r) without using a PCA step. The null

space is projected to a one dimensional feature space. The jepace is defined by the eigenvectors that correspond to eigenvalues

J(x{( r)), is projected to one dimension by: having zero or near zero value. The use of the null space in the

final discriminant transformation can be accomplished by using di-

I Y > rect optimization of (13). The steps of the direct optimization of
J(xi(r)) =a(r) j(x(r)). (11)  (13) are similar to the ones used in [7]:

32 Multidimensional two class L DA . Perfolrm eigenalnalyis to matr®! (r). That is, find the matri-

cesV'(r)andA'(r) so that:

It is obvious that the one dimensional feature space derived by (11)
is a limitation to the search for discriminative projections in a mul- | | | |
tidimensional feature space. Recently, it was shown [6] that al- V(IOW ()Vi(r) =A(r) (18)
ternative LDA schemes that give more than one discriminative di- -

mensions, in a two class problem, have better classification perfor- whereV!(r)V'(r)’ = 1. The A'(r) is a diagonal matrix that
mance. We use the same criterion as [2],[3] that can give more than has its elements sorted in decreasing order. One can proceed to



a first dimensionality reduction here by discarding those eigen- 4. EXPERIMENTAL RESULTS

vectors and eigenvalues that correspond to some of the smalle% . ; ducted in the XM2VTS datab .
eigenvalues oW! (r). It is of course necessary to discard zero € expenments were congucted In the atabase using

eigenvalues and their corresponding eigenvectors due to the fame protocol described in [11]. For the experiments a typical graph

that they do not carry any discriminant information. setup was used [2,h3]AMor§_fpr§C|selly, th‘f graphﬁ/v?s s_el?ctedl to be
LetY! (r) be the firsk columns ofV' (r), now a 8x 8 sparse graph. A modified multiscale morphological analysis
' similar to the one that has been presented in [3] was used and the
. jet dimension has been set to 19. Only the luminance information at
Y'ioOow' oy m' = A, 19 a resolution of 72 576 has been considered in our experiments.
(MW NY(1) (r) (19) Instead of a face detection procedure [3] the images were aligned
12 automatically according to the eyes position of each facial image
o LetZ'(r) =Y'(n)Aa!(r) 2. Itis obvious thatZ! (r) unitizes  using the eye coordinates that have been derived by the method re-
W!(r) while reducing the dimensionality fromto N. Diago- portéed Im [1?1]- No chelr_ lmﬁge preprochessmg k:echfnlﬂue has been
nalize the matri®R' (r) = Z' (B! ()Z' ()" by eigen-analysis: \lljvséere.Corrllsci)(rje?ééciosrlr;r;fgrstoﬁsapproac » graphs of the same size
The XM2VTS database provides two experimental setups
U' (r)R'(r)U' (r)T — Al (r). (20)  namely, Configuration | and Configuration Il [11]. Each configura-
tion is divided in three different sets; the training set, the evaluation
LT ~set and the test set. The training set is used to create client and im-
where U'(r) U'(r) = 1. In order to proceed to further di- postor models for each person. The evaluation is used to learn the
mensionality reduction we discard some eigenvectors that corrghresholds.

spond to the greatest eigenvaluesné(r). As itis stated in [7] The training set of the Configuration | contains 200 persons
it is important to keep the dimensions with the smallest eigenwith 3 images per person. The evaluation set contains 3 images
values, especially those with zero value. per client for genuine claims and 25 evaluation impostors with 8
e The LDA matrix used for transforming linear the data is: images per impostor. Thus, evaluation set gives a totabo2@0=
600 client claims and 2% 8 x 200= 40.000 impostor claims. The
| Lo1/2 4 Tl T test set has 2 images per client and 70 impostors with 8 images per
T(r)=A(r) "U(r)Z() . (21)  impostor and gives 2 200= 400 client claims and 7@ 8 x 200=

112000 impostor claims. The training set is used for calculating for
In case some diagonal elementsMdf(r) are zero a small num- €ach reference persorand for each nodethe linear discriminant
bere close to zero should be used instead. tran_T_fhorm .forlfe.ature Se|ECt'0”f- culated i both
. ) N ) e similarity measures for every person calculated in bot
WhenB! (1) is full ranked then the proposed diagonalization giveseyaiuation and training set form the distance veeton). The el-
the same result as some standard diagonalization procedures for Qinents of the vectoo(r) are sorted in ascending order and are
timizing (13) like [8]. . o used for the person specific thresholds on the distance measure. Let
In order to robustify the last step of the diagonilization, whereT (r) denote th&-th order statistic of the vector of distanceg).
zero eigenvalues appear in (21) a new criterion is proposed as: The threshold of the persaris chosen to be equal Wb(r)' Letr,,
r, andr, be the 3 instances of the persoin the training set. A
LT w! [ 2778 . . S

W (1) = (& (r) Wi(r) @ (r)] . (22) claim of a persort is considered valid if mip{Dy(r})} < To(r)
tr[ @ (1) B (D)W (1) + ' (r) W () (r)] whereDt(rj) is the distance between the graph of test petsamd
the reference grapt]. Obviously when varying), different pairs

The modified criterion (22) can be proven to be equivalent to (13)bf False Acceptance Rate (FAR) andFalse Rejection Rate (FRR)
and gives no zero eigenvalues in (21). A similar approach was useghn be created and that wayRaceiver Operating Characteristics

alsoin[9, 10]. o _ (ROC) curve is produced.

The vectors contained in the null space of the mam(r) In the training set 3 reference graphs per person are created.
maximize the criterion (13). That is, all the projectidm's(r) that The 3x2=6 graphs that c_omprise_the genuine class are cre_ated by
have the properts! (r)hl (n=o0 andwW! (r)h' (r) # 0 maximize applying elastic graph having one image as reference (i.e., in order
the criterion (13). It is obvious that projections liké(r) perform tohcrf_eate the grflaph) and the other 2 images are user(]j as tﬁSt Images.
perfect classification in the training set. The impostor class containsx33 x 199= 1797 graphs. The jet

The feature vector after discriminant dimensionality reduction(]“me_ns"?n 's 19 and thus, for a reference pensand a nodé the
matrix B'(r) has only 5 non null dimensions and 4 null dimension.
o LA T However the matrisY, (r) is full ranked.
J(x¢(r)) = gr((x¢(r)) =¥ (r) Jj(x(r)), (23) The class of genuine claims is very small in relation to the im-
o _ postor class and this may affect the training procedure. In fact, the
The similarity measure of the new feature vectors can be give@ntire null space oB!(r) that has been produced according to the
by a simple distance metric. We have usedlth@orm for forming  giagonalization method in [7] has lead to overtraining. As over-
the new feature vector similarity measure in the final multidimen-raining we mean perfect classification (zero error rate) in the train-

is:

sional space: ing set and very poor generalization (large error rate) in the test set.
] i ] i We avoid overtraining by excluding the null spacé®{r) using an
Ce (i (r)),3(x)) = 115(x (r)) = 5] . (24)  initial PCA step. Afterwards, the presented diagonalization method

was used for finding discriminant directions.

The EGM using no discriminant feature selection has given an
Equal Error Rate (EER)=57% in the test set of Configuration I.
“he best EER achieved, using feature vector discriminant analysis,
was 20% and has been achieved when we kept the first 3 discrimi-
i . . nant projections. The projection to the one dimensional space using
Dy(r) = Z/Cf Gt (1), 30xr)- (25)  a(r) has not lead to some significant improvements in the perfor-

I€ mance and has given an EER.3%. The performance could have

Other choices for the distance metric are thenorm, the normal-
ized correlation and the Mahalanobis distances. The new distan
between faces, after discriminant analysis, is given by:



been further improved if additional samples of the genuine class[5] K. FukunagaSatistical Pattern Recognition, CA: Academic,
were available in the training set. o

The ROC curves for the different discriminant approaches pre-1g] ¢. Songcan and Y. Xubing, “Alternative linear discriminant
sented in this paper are pictorially depicted in Figure 1. The ROC
curves have been calculated in the test set of the Configuration I.

The
was

best performance has been achieved when an initial PCA ste
used prior to discriminant analysis. MEGM is an acronym for

the modified morphological elastic graph matching using no dis-
criminant features. MEGM-F is a notation for MEGM when the one
dimension discriminant transform of the criterion in (9) was used. [8] D. L. Swets and J. Weng, “Using discriminant eigenfeatures
MEGM-D is used as a notation for the MEGM with the three most
discriminant features of the multidimensional LDA. The depicted

ROC curves illustrate that the performance of the EGM algorithm [g]

is highly improved by using proper linear discriminant analysis al-
gorithms.

0.1

0.09

0.08

(10]

“ -+« MEGM
\ - = MEGM-F
s : — MEGM-D H
N, ¢ EER

I
0 0.01
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Figure 1: ROC curves for the different discriminant variants of
NMEGM in test set of the Configuration | experimental protocol
of the XM2VTS database.

5. CONCLUSIONS

The use of linear discriminant techniques in the feature vectors of
the elastic graph has been investigated for frontal face verification.

One

dimensional and multidimensional linear projections have been

used in order to form the discriminant transforms for a two class
problem. All experiments have been conducted in XM2VTS where
a major improvement in performance has been achieved.
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