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Abstract In this paper we study Nonnegative Tensor Factorization (NTF) based
on the Kullback–Leibler (KL) divergence as an alternative Csiszar–Tusnady proce-
dure. We propose new update rules for the aforementioned divergence that are based
on multiplicative update rules. The proposed algorithms are built on solid theoret-
ical foundations that guarantee that the limit point of the iterative algorithm corre-
sponds to a stationary solution of the optimization procedure. Moreover, we study
the convergence properties of the optimization procedure and we present generalized
pythagorean rules. Furthermore, we provide clear probabilistic interpretations of these
algorithms. Finally, we discuss the connections between generalized Probabilistic
Tensor Latent Variable Models (PTLVM) and NTF, proposing in that way algorithms
for PTLVM for arbitrary multivariate probabilistic mass functions.

Keywords Nonnegative Matrix Factorization · Nonnegative Tensor Factorization ·
Kullback–Leibler divergence · Probabilistic Latent Semantic Analysis

1 Introduction

Nonnegative Matrix Factorization (NMF) has been proposed for the analysis of non-
negative data in Lee and Seung (1999, 2000). In Lee and Seung (1999), NMF was
motivated as a technique for discovering the “parts” of objects. This was shown when
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NMF was applied to the decomposition of facial images. It was demonstrated that the
derived bases of the decomposition intuitively corresponded to “parts” of faces.

The problem of NMF is as follows: consider a nonnegative matrix X ∈ �F×L+
and a prespecified integer constant K , and to find a matrix Z ∈ �F×K+ , which is the
matrix that contains the bases of the decomposition in its columns (Lee and Seung
1999, 2000; Zafeiriou et al. 2006; Kotsia et al. 2007), and a matrix H ∈ �K×L+ , which
contains the weights of the decomposition, such that X ≈ ZH. In order to find the
approximation X ≈ ZH two optimization problems were defined in Lee and Seung
(2000): the first optimization problem minimizes the Frobenius norm between X and
the decomposition ZH and yields a least squares approximation, while the second one
resorts to the minimization of the Kullback–Leibler (KL) divergence between X and
the decomposition. Updating rules of the iterative schemes used to solve these prob-
lems were derived from auxiliary functions. The provided updating rules guaranteed
the non-increasing behavior of the cost functions, but they did not guarantee that the
limit point corresponded to a local minimum or to a stationary limit point (Gonzalez
and Zhang 2005; Lin 2007a,b).

In Gonzalez and Zhang (2005) it was numerically demonstrated that the multipli-
cative update rules in Lee and Seung (1999, 2000) may fail to converge to a stationary
point. Recently, the convergence properties of the NMF update rules were explored in
Lin (2007a,b) and Finesso and Spreij (2006). More precisely, in Lin (2007a) update
rules, which guarantee that the limit point of the Least Squares Error (LSE) optimiza-
tion problem is a stationary point, were proposed. In Lin (2007b) an alternative solution
for the LSE optimization problem was proposed that was based on the Armijo rule.
In both Lin (2007a,b) LSE was used for measuring the error of the approximation.

Another very useful measure for the error of the nonnegative approximation with
many applications is the KL divergence. The first algorithm with the KL divergence
was proposed in Lee and Seung (2000) where both multiplicative and additive update
rules were proposed. In Sra and Dhillon (2006), using the generalized Bregman dis-
tance formulation, an exponential family of update rules was proposed for the KL
divergence. In Finesso and Spreij (2006), a convergence analysis for the multipli-
cative update rules of the KL divergence was provided and NMF was interpreted
within a probabilistic framework. Moreover, in Finesso and Spreij (2006), it was
proven that the proposed set of multiplicative update rules guarantee that the KL
divergence converges to a stationary limit point. Finally, the relation between multi-
plicative update rules for NMF with KL divergence and Probabilistic Latent Semantic
Analysis (PLSA) was explored in Gaussier and Goutte (2005). Recently, the relation-
ship of NMF approaches with various Probabilistic Latent Variable Models (PLVM)
was investigated in Shashanka et al. (2007, 2008) and Smaragdis and Raj (2007).

One disadvantage of NMF is that it cannot describe more than pairwise data rela-
tions. The application of NMF to modelling relations and furthermore to clustering
was initiated in Lee and Seung (1999). In Ding et al. (2005) it was shown that there
is a close relationship between spectral clustering and NMF. In Shashua et al. (2006)
the problem of clustering data, given complex relations (beyond pairwise relations)
between data points, was considered. The n-wise relations between the data points can
be modelled by an n-order tensor, where each entry corresponds to an affinity mea-
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sure (usually nonnegative) over an n-tuple of data points, which are more naturally
described by a n-order tensor. That way, NTF models for clustering n-wise relations
were motivated.

Another example of the advantage of NTF over NMF can be found when these
methods are applied to feature extraction from images. In this case, in order to apply
NMF, the object images should be vectorized in order to find their nonnegative decom-
position. This vectorization leads to information loss, since the local structure of the
images is lost. In order to remedy this drawback of NMF representation, the n-order
and 3-order Nonnegative Tensor Factorization (NTF) schemes were proposed (Hazan
et al. 2005; Friedlander and Hatz 2006; Shashua and Hazan 2005). In Shashua and
Hazan (2005), an n-order tensor factorization method was proposed, based on the
Frobenius norm. In Hazan et al. (2005), an image database was represented as a
3-order tensor, i.e. a 3D cube that has as slices the 2D images. Update rules for the
factors (used in the decomposition), that guarantee a nonincreasing behavior of the
KL divergence, were proposed. The 3D NTF decomposition was proven to be more
suitable for part-based object representation than NMF (Hazan et al. 2005). Examples
[like the decomposition of the Swimmer dataset (Donoho and Stodden 2004)] which
demonstrate the superiority of the 3D NTF over the NMF can be found in Hazan et
al. (2005). A recent overview of NTF algorithms can be found in Zafeiriou (2009b).

Recently, there has been an increasing interest in NTF algorithms (Kim and Choi
2007; Cichocki et al. 2007, 2008; Mørup et al. 2008; Kim et al. 2008; Zafeiriou
2009a,b). In Kim and Choi (2007), Mørup et al. (2008), and Kim et al. (2008)
algorithms for arbitrary order Tucker (1966) factorizations, where data, core and
mode matrices are non-negative, were proposed. Multiplicative update rules for all
the factors were also proposed. In order to reduce further the ambiguities of the
decomposition, updates that can impose sparseness in any combination of modali-
ties were proposed in Mørup et al. (2008). Moreover, the notion of nonsmoothness
(Pascual-Montano et al. 2006) for controlling the sparseness was extended for NTF
algorithms in Kim and Choi (2007). Algorithms for 3D NTF using the PARAFAC2
(Kiers et al. 1999; Bro et al. 1999) decomposition were proposed in Cichocki et al.
(2007, 2008). Finally, in Zafeiriou (2009a) the NMF method, that uses the generalized
Bregman divergence in Sra and Dhillon (2006) and the Discriminant-NMF (DNMF)
method in Zafeiriou et al. (2006), were generalized for arbitrary nonnegative tensor
decomposition.

The tensorization of well-established vector-based algorithms is not an easy pro-
cedure and is a very active research field. For example, in De Lathauwer et al. (2000)
Singular Value Decomposition (SVD) was extended to a multilinear SVD, in Lu et al.
(2008) Principal Component Analysis (PCA) was extended to multilinear PCA, in Yan
et al. (2007) and Tao et al. (2007) Fisher’s Linear Discriminant Analysis (FLDA) was
extended to various multilinear counterparts, Independent Component Analysis (ICA)
was extended to multilinear ICA in Raj and Bovik (2008) and Canonical Correlation
Analysis (CCA) to multilinear CCA in Kim and Cipolla (2008).

In this paper, we study NTF using the KL-divergence. The KL divergence is one
of the most used distances for performing NMF and NTF and is of importance since
it provides factorizations that share a lot of similarities with Expectation Maximi-
zation (EM) approaches. Moreover, such NMF and NTF approaches, in most cases,
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lead to clear probabilistic interpretations. Algorithms for NTF based of KL diver-
gence were recently proposed in Zafeiriou (2009a). In Zafeiriou (2009a) generaliza-
tion of the NTF algorithms in Shashua and Hazan (2005) and of the NMF algorithms
in Zafeiriou et al. (2006) and Sra and Dhillon (2006) were proposed. In Zafeiriou
(2009a) no probabilistic interpretation for the NTF algorithm have been given and
the properties of the algorithms have not been studied. In this paper, we interpret the
NTF algorithm as an alternative Csiszar–Tusnady procedure, in a similar manner as
Finesso and Spreij (2006), and we explore the convergence properties of the opti-
mization procedure. This analysis leads to updating rules which guarantee that the
limit point is stationary. Moreover, we investigate the relationship between Proba-
bilistic Tensor Latent Variable Models (PTLVM) and NTF with the KL divergence
and we propose novel algorithms for PTLVM. In Shashanka et al. (2008), Gaussier
and Goutte (2005), and Ding et al. (2008), the relationship between Probabilistic
Latent Variable Analysis (PLVA) models for bivariate distributions and NMF were
explored. In Gaussier and Goutte (2005) a first attempt to connect NMF and PLSA
was performed. In Ding et al. (2008) it was shown that NMF is similar but not exactly
equivalent to NMF and a hybrid algorithm for performing PLSA using NMF was
proposed. In Shashanka et al. (2008), it was also noted that the approach can be
extended to arbitrary order PTLVM but no algorithm was proposed that could solve
such problems. In this paper, we show the close connection between the algorithms
in Finesso and Spreij (2006), Ding et al. (2008), Gaussier and Goutte (2005) and
Shashanka et al. (2008) and we generalize them for arbitrary multivariate distribu-
tions and for arbitrary order tensors. Summarizing the novel contributions of this
paper are:

– We propose novel nonnegative tensor factorization algorithms based on
KL-divergence by interpreting the optimization problem as a alternative Csiszar–
Tusnady procedure.

– We provide clear probabilistic interpretations for nonnegative tensor factorization,
study the convergence and other theoretical properties of the algorithm.

– We propose algorithms for symmetric and asymmetric probabilistic tensor latent
variable analysis.

All the algorithms are proposed using simple matrix operations.
The remainder of this paper is organized as follows. In Sect. 2, we briefly describe

the problem of NMF with the KL divergence and comment on the relationship between
NMF and PLVM. In Sect. 3, we briefly outline some elements of multilinear algebra
and show how NMF algorithms can be extended to arbitrary order NTF. In Sect. 4,
robust update rules of NTF with the KL divergence are proposed and their conver-
gence theorems are presented. In Sect. 5 we present a probabilistic interpretation of
the optimization problem and explore various properties of this approach. In Sect. 6,
we show the equivalence between the proposed NTF algorithm and PTLVMs and pro-
pose algorithms for arbitrary order probability tensor decompositions. Experimental
results which demonstrate the merits of the proposed approach are presented in Sect.
7. Finally, conclusions are drawn in Sect. 8. For completeness, extensive proofs of the
various statements throughout the paper are given in the Appendices.
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2 Nonnegative Matrix Factorization to NTF

In this section, we briefly describe how NMF is formulated. In the following, we
consider a collection of L nonnegative vectors x ∈ �F+.

2.1 Nonnegative Matrix Factorization

For two vectors x = [x1, x2, . . . , xF ]T and q = [q1, q2, . . . , qF ]T , the KL divergence
(or relative entropy) between them is defined as (Lee and Seung 2000):

K L(x||q) �
F∑

i=1

(
xi ln

xi

qi
+ qi − xi

)
. (1)

For convenience, let us define 0
0 = 0 and 0 ln 0 = 0 (Finesso and Spreij 2006). It

can be shown, that, in general, the KL divergence is nonnegative and is equal to zero if
and only if its two arguments are equal. The basic idea behind NMF is to approximate
the object x by a linear combination of the elements of h ∈ �K+ such that x ≈ Zh,
where Z ∈ �F×K+ is a nonnegative matrix, the columns of which sum up to 1. In order
to measure the error of approximation x ≈ Zh, the K L(x||Zh) divergence may be
used (Lee and Seung 2000).

NMF, when applied to matrix X = [x1| . . . |x j | . . . |xL ] ∈ �F×L+ = [xi j ], aims at
finding two matrices Z ∈ �F×M+ = [zik] and H ∈ �M×L+ = [hk, j ] such that:

X ≈ ZH. (2)

Vector x j after the NMF decomposition can be written as x j ≈ Zh j , where h j is
the j th column of H. Thus, the columns of matrix Z define a basis and h j consists of
the corresponding weights.

Decomposition (2) induces an approximation error which is the sum of all KL
divergences for all x j , i.e.:

DKL(X||ZH) =
L∑

j=1

K L(x j ||Zh j )

=
F∑

i=1

L∑

j=1

(
xi j ln

(
xi j∑K

k=1 zikhk j

)
+

K∑

k=1

zikhk j − xi j

)
(3)

as the measure of the cost for factoring X into ZH (Lee and Seung 2000).
Factorization (2) is the outcome of the following optimization problem:

minZ,H DKL(X||ZH) subject to
zik ≥ 0, hkj ≥ 0, ∀k = 1, . . . , M and ∀i = 1, . . . , F ∀ j = 1, . . . , L .
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NMF has non-negative constraints in both the elements of Z and H; these nonneg-
ativity constraints permit the combination of multiple basis components in order to
represent the original nonnegative vectors using only additions between the different
basis components. The following update rules guarantee a nonincreasing behavior of
the KL divergence (3) (Lee and Seung 1999, 2000):

z(t)
ik = z(t−1)

ik

∑M
m=1

(
h(t−1)

km xim

)/[Z(t−1)H(t−1)]im

∑M
m=1 h(t−1)

km

(4)

h(t)
k j = h(t−1)

k j

∑F
l=1

(
z(t)

lk xl j

)/[Z(t)H(t−1)]l j

∑F
l=1 z(t)

lk

. (5)

2.2 Alternative multiplicative update rules of NMF using KL divergence
and a probabilistic interpretation

In Finesso and Spreij (2006), an alternative algorithm for solving the optimization
problem of minimizing (3) under nonnegativity constraints was proposed. That is, the
problem was transformed in the factorization of a probabilities matrix P with Pi j ≥ 0
and

∑F
i=1

∑L
j=1 Pi j = 1. In the following for denoting the elements of matrix P we

shall use either pi j or P(i, j).
The problem was formulated as follows:

min
Q−,Q+:Q+e=e,eT Q−e=1

DKL(P||Q−Q+) (6)

for notation simplicity, we shall use only e for denoting an arbitrary dimensional vector
of ones. For the above constrained optimization problem cost function (6) is simplified
as:

DKL(P||Q−Q+) =
F∑

i=1

L∑

j=1

(
P(i, j) ln

(
P(i, j)

∑K
k=1 Q−(i, k)Q+(k, j)

))
. (7)

The update rules for solving the above optimization problem are:

Q(t)
− (i, k) = Q(t−1)

− (i, k)

M∑

m=1

Q(t−1)
+ (k, m)P(i, m)[
Q(t−1)

− Q(t−1)
+

]

im

(8)

and

Q(t)
+ (k, j) = Q(t−1)

+ (k, j)

×
⎛

⎜⎝
F∑

i=1

Q(t)
− (i, k)P(i, j)[
Q(t)

− Q(t−1)
+

]

i j

⎞

⎟⎠
/

⎛

⎜⎝
F∑

m=1

M∑

l=1

Q(t)
− (m, k)Q(t−1)

+ (k, l)P(m, l)[
Q(t)

− Q(t−1)
+

]

ml

⎞

⎟⎠ . (9)
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Update rule (9) may be equivalently written as

Q(t)
+ (k, j) = Q(t−1)

+ (k, j)

⎛

⎜⎝
F∑

i=1

Q(t)
− (i, k)P(i, j)[
Q(t)

− Q(t−1)
+

]

i j

⎞

⎟⎠
/(

N∑

l=1

Q(t)
− (l, k)

)
. (10)

Matrices P, Q− and Q+ are related with X, Z and H through:

P = 1

eT Xe
X, Q− = 1

eT Ze
Z, Q+ = H. (11)

The above updating rules not-only guarantee the nonincreasigness of cost function
DKL(P||Q−Q+) but also guarantee the stationarity of the limit point. By transform-
ing the optimization problem (4) into the factorization of a probabilities matrix, not
only helped in proving stationarity, but also revealed a lot of interesting properties
and interpretations. The generalization of these properties to arbitrary order tensor
factorizations will be explored in this paper.

Before proceeding we will briefly comment on an alternative factorization introduc-
ing another vector a which is also computed during the procedure. The optimization
problem is:

min
Q−,Q+:Q+e=e,QT−e=e,aT e=1

DKL(P||Q−AQ+) (12)

where A = diag(a) and diag(a) returns a diagonal matrix that has in its main diagonal
the elements of vector a. The corresponding update rules are given by:

Q̃(t)
− (i, k) = Q(t−1)

− (i, k)

M∑

m=1

[
A(t−1)Q(t−1)

+
]

km
P(i, m)

[
Q(t−1)

− A(t−1)Q(t−1)
+

]

im

(13)

Q(t)
− (i, k) = Q̃(t)

− (i, k)
∑F

m=1 Q̃(t)
− (m, k)

,

Q̃(t)
+ (k, j) = Q(t−1)

+ (k, j)

⎛

⎜⎝
F∑

i=1

[
Q(t)

− A(t−1)
]

ik
P(i, j)

[
Q(t)

− A(t−1)Q(t−1)
+

]

i j

⎞

⎟⎠

Q(t)
+ (k, j) = Q̃(t)

+ (k, j)
∑L

m=1 Q̃(t)
+ (m, k)

, (14)

and

a(t)(k) = a(t−1)(k)

F,L∑

i=1, j=1

P(i, j)Q(t)
+ (k, j)Q(t)

− (k, j)[
Q(t)

− A(t−1)Q(t)
+

]

i j

. (15)
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In Gaussier and Goutte (2005), Ding et al. (2008), Shashanka et al. (2007, 2008),
and Smaragdis and Raj (2007) the close relationship between NMF with the KL diver-
gence, PLSA and other PLVM approaches was commented. In Gaussier and Goutte
(2005), it was shown how NMF problems may be interpreted as PLSA (Hofmann
1999). In Ding et al. (2008) the authors showed that NMF and PLSA even though they
minimize similar objective functions they do not converge to the same limit point.
Moreover, in Shashanka et al. (2007, 2008) the relationship between PLVM and NMF
algorithms was further studied. Here we shall try to provide an interpretation optimi-
zation problem (6) and update rules (8), (9) and (10) in terms of PLVM. Moreover, we
will show that the constrained optimization problem (12) which is solved via update
rules (13), (14) and (15) is exactly the same as PLSA algorithm in Hofmann (1999).

Latent class models, like PLSA, enable one to attribute the observations to hid-
den or latent factors. The main characteristic of these models is that conditionally
independent bivariate data are modelled as belonging to latent classes, such that the
random variables within a latent class are independent of one another. Random vari-
ables (X1, X2) can be thought of as if they were defined in the canonical measurable
space (Ω,F), where Ω is the set of all pairs (i1, i2) and F = 2Ω (i.e., the powerset of
Ω). Let P be a probabilistic measure on this space. Then, the distribution of the pair
(X1, X2) under P is given by matrix P = [pi j ]. We shall use the notation P(x1, x2)

for distribution P(x1 = i, x2 = j) = pi j . Distribution P(x1, x2) is modelled as a
mixture, where each component of the mixture is the product of one-dimensional
marginal distributions. Let x1 and x2 be random variables and let P(x1, x2) be their
joint probability mass function. The PLSA approximation may be written as:

P(x1, x2) ≈
∑

z∈{1,...,K }
P(x1, z)P(x2|z) (16)

where z is a latent random variable. In an EM (Hofmann 1999) (EM) approach we
maximize the following functional:

DPLSA (P(x1, x2)||P(x1, z)P(x2|z))

=
I1,I2∑

i1=1,i2=1

P(x1 = i1, x2 = i2) ln

⎛

⎝
K∑

i3=1

P(x1 = 1, z = i3)P(x2 = i2|z = i3)

⎞

⎠

= −DKL (P(x1, x2)||P(x1, z)P(x2||z)) − c (17)

where c is a constant c = ∑I1,I2
i1=1,i2=1 P(x1 = i1, x2 = i2) ln(P(x1 = i1, x2 =

i2)). Thus, as can be seen is equivalent to minimization of DKL (P(x1, x2)||P(x1, z)).
Solving maximization of (17) (Hofmann 1999) we have the following updating rules:

P(t)(z|x1, x2) = P(t−1)(x1, z)P(t−1)(x2|z)∑
y∈{1,2,...,K } P(t−1)(x1, y)P(t−1)(x2|y)

(18)
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and

P(t)(x1, z) =
∑

a2

P(x1, a2)P(t)(z|x1, a2)

P(t)(x2|z) =
∑

a1
P(a1, x2)P(t)(z|a1, x2)∑

a1,a2
P(a1, a2)P(t)(z|a1, a2)

. (19)

Now by substituting (18) into (19) we have:

P(t)(x1, z) = P(t−1)(x1, z)
∑

a2

P(x1, a2)
P(t−1)(a2|z)∑

y∈{1,2,...,K } P(t−1)(x1, y)P(t−1)(a2|y)

P(t)(x2|z) = P(t−1)(x2|z)
∑

a1
P(a1, x2)

P(t)(a1,z)∑
y∈{1,2,...,K } P(t)(a1,y)P(t−1)(x2|y)

∑
a1,a2

P(a1, a2)
P(t)(a1,z)P(t−1)(a2|z)∑

y∈{1,2,...,K }
P(t)(a1,y)P(t−1)(a2|y)

(20)

= P(t−1)(x2|z)
∑

a1
P(a1, x2)

P(t)(a1,z)∑
y∈{1,2,...,K } P(t)(a1,y)P(t−1)(x2|y)

∑
a1

P(t)(a1, z)
.

Then, since
∑F

i=1
∑M

k=1 P(x1 = i, z = k) = 1 and
∑L

j=1 P(x2 = j |z = k) = 1

(which are equivalent to eT Q−e = 1 and Q+e = e, respectively) we can see that
Q+(i, k) = P(x1 = i, z = k) and [Q−]T ( j, k) = P(x2 = j, z = k). Thus, the update
rules (8), (9) and (10) are exactly the same as the EM algorithm (20).

In case that we that want to calculate the probabilities P(z) [which is computed in
the PLSA algorithm in Hofmann (1999)] as well then approximation (21) is reformu-
lated as:

P(x1, x2) ≈
∑

z∈{1,...,K }
P(z)P(x1|z)P(x2|z) (21)

and optimization problem is the maximization of DPLSA(P(x1, x2)||P(x1, z)diag(P(z))
P(x2|z)) which is the PLSA model proposed in Hofmann (1999). The corresponding
update rules are given by:

P(t)(x1|z) = P(t−1)(x1|z)
∑

a2
P(x1, a2)

P(t−1)(z)P(t−1)(a2|z)∑
y∈{1,2,...,K } P(t−1)(y)P(t−1)(x1|y)P(t−1)(a2|y)

∑
a1,a2

P(a1, a2)
P(t−1)(z)P(t−1)(a2|z)∑

y∈{1,2,...,K } P(t−1)(y)P(t−1)(a1|y)P(t−1)(a2|y)

P(t)(x2|z) = P(t−1)(x2|z)
∑

a1
P(a1, x2)

P(t−1)(z)P(t)(a1|z)∑
y∈{1,2,...,K } P(t−1)(y)P(t)(a1|y)P(t−1)(x2|y)

∑
a1,a2

P(a1, a2)
P(t−1)(z)P(t)(a1|z)P(t−1)(a2|z)∑

y∈{1,2,...,K } P(t−1)(y)P(t)(a1|y)P(t−1)(a2|y)

(22)

123



428 S. Zafeiriou, M. Petrou

and

P(t)(z) = P(t−1)(z)
∑

a1,a2

P(a1, a2)P(t)(a1|z)P(t)(a2|z)∑
y∈{1,2,...,K } P(t−1)(y)P(t)(a1|y)P(t)(a2|y)

. (23)

We observe that since
∑F

i=1 P(x1 = i |z = k) = 1,
∑L

j=1 P(x2 = j |z = k) = 1

and
∑K

k=1 P(z = k) (which are equivalent to QT−e = 1, Q+e = e and aT e = 1,
respectively) we can see that Q−(i, k) = P(x1 = i |z = k), [Q+]T ( j, k) = P(x2 =
j |z = k) and a(k) = P(z = k). Thus, update rules (8), (9) and (10) are exactly the
same as the PLSA algorithm given by (22) and (23).

2.3 Relationship between PLSA, original NMF and the approach proposed
in Ding et al. (2008)

The relationship between NMF and PLSA has been commented in Gaussier and Goutte
(2005), Ding et al. (2008), and Shashanka et al. (2008). Now, we will discuss the actual
difference between NMF and PLSA and complete the analysis initiated in Ding et al.
(2008). In Ding et al. (2008) the authors proposed an algorithm for solving the approx-
imation (16) using the actual NMF update rules (4) and (5). After the computation of
Z and H they computed matrices Q−(i, k) = P(x1 = i |z = k), Q+(k, j) = P(x2 =
j |z = k) and a(k) = P(z = k) (the diagonal of A):

Q− = Z
EZ

Q+ = H
HE

(24)

A = diag
(

eT Z
)

diag(He).

As the authors showed the above procedure results to a different limit point than
the limit point derived from update rules (22) and (23). What the authors actually
showed in Ding et al. (2008) is that the algorithm will converge to a different limit
point when the factors are normalized under every iteration such that the constraints
QT−e = 1, Q+e = e and aT e = 1 are satisfied and it will converge to another limit
point when the normalization is applied once at the end of the procedure (i.e., at the
convergence). This is quite expected since these are two different optimization prob-
lems. The first one is the NMF optimization problem (4) having free variables Z and
H which solution is given by update rules (4) and (5). The second one is the con-
strained optimization problem (12) having as free variables Q−, Q+, a (subject to the
additional constraints QT−e = e, Q+e = e and aT e = 1) which solution is computed
by update rules (13), (14) and (15). A similar analysis also hold for the optimization
problem (6). That is, even though (12) and (6) are similar they are not equivalent.
Thus, they do not converge to the same limit point.

Summarizing, we provided a supplement to the analysis given in Ding et al. (2008)
and we showed that even though optimization problems (4), (6) and (12) optimize
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similar objective function they are not equivalent, since they are optimization prob-
lems with different set of variables (for example in PLSA we search for an additional
vector a) and with different constraints (and thus a different search space). Only the
constrained NMF given by optimization problem (12) and solved by update rules (13),
(14) and (15) is equivalent to PLSA and both converge to the same limit point.

3 Nonnegative Tensor Factorization

In this section we shall briefly describe elements of multilinear algebra and show how
to perform nonnegative tensor factorizations.

3.1 Tensor models and PARAFAC decomposition

To begin with, let us briefly review the tensor algebra concepts needed hereafter and
define the notation that will be used throughout the paper. An n-order tensor is a collec-
tion of measurements indexed by n indices, where each index refers to a mode. Accord-
ingly, vectors are first-order tensors and matrices are second-order tensors (Kolda and
Bader 2009). Lower case letters (e.g. x) have already been used to denote scalars in the
introduction, while boldface lowercase letters (e.g. x) and boldface capital letters (e.g.
X) have denoted vectors and matrices, respectively. Higher-order tensors (of order 3
or higher) are denoted by boldface Euler script calligraphic letters (e.g. X). If the i th
element of a vector x ∈ R

I+ is denoted by xi , i = 1, 2, . . . , I , then the elements of
an n-order tensor X will be denoted by xi1i2...in , i� = 1, 2, . . . , I�, � = 1, 2, . . . , n.
In the following, we shall focus on nth order tensors with non-negative elements, i.e.
X ∈ R

I1×I2× ···×In+ . For example:

– X could be the representation of a database with L objects. Then every database
object is a nonnegative tensor of order (n − 1) denoted as X:in ∈ R

I1×I2×···×In−1+ ,

in = 1, 2, . . . , L , that is indexed by an (n − 1) tuple of indices (i1, i2, . . . , in−1).
To be more specific, the most natural way to model a facial image database is by
a 3rd order tensor X ∈ R

I1×I2×I3+ , where I1 and I2 refer to the image hight and
width, respectively and I3 = L is the number of images in the database (Shashua
and Hazan 2005).

– A relationship that refers to more than two modes is more naturally represented
by a tensor X . Such relationships could be nonnegative affinity measures over an
n-tuple of patterns that frequently arise in visual interpretation problems, includ-
ing 3D multi-body segmentation and illumination-based clustering of human faces
(Shashua and Hazan 2005).

– An n-variate distribution is more naturally modelled as an n-order tensor.

Frequently, transformations of tensors into matrices (�-mode matricization) and
matrices into vectors (vectorization) are needed. The mode-� matricization of a ten-
sor X ∈ R

I1×I2×···×In+ maps X to a matrix X(�) ∈ R
I�×M with M = ∏n

m=1
m �=�

Im

such that the tensor element xi1i2...in is mapped to the matrix element xi� j where
j = 1 +∑n

k=1
k �=�

(ik − 1)Jk with Jk = ∏k−1
m=1
m �=�

Im . The operator vec() applied to a matrix
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stacks the matrix columns into a single vector and the operator. The matrix of ones and
the identity matrix are denoted by E and I, respectively. A tensor of ones is similarly
denoted as E. A tensor which has all elements equal to 0 except those for which all
indices are the same is called superdiagonal. If the nonzero elements are equal to 1,
then such a superdiagonal tensor is referred to as the unit superdiagonal tensor I.
In the remaining of the paper, • and / tensor operators will denote the elementwise
multiplication and division between tensors.

In the following, we shall need several products between vectors and matrices as
well as between tensors and matrices. Let a ∈ R

I+ and b ∈ R
J+ be two non-negative

real valued vectors. Their outer product yields a matrix C ∈ R
I×J+

C = a ◦ b with elements ci j = ai b j . (25)

Consequently, the outer product of n vectors a� ∈ R
I�+ , � = 1, 2, . . . , n, a1 ◦ a2 ◦

· · · ◦ an = ©n
�=1a� yields a tensor A ∈ R

I1×I2×···×In+ .

The Kronecker product between two matrices A ∈ R
I1×M1+ and B ∈ R

I2×M2+ is
defined as:

A ⊗ B =

⎡

⎢⎢⎢⎣

a11B a12B · · · a1M1 B
a21B a22B · · · a2M1 B

...
...

. . .
...

aI11B aI12B · · · aI1 M1 B

⎤

⎥⎥⎥⎦ (26)

= [
a1 ⊗ b1 a1 ⊗ b2 . . . a1 ⊗ bM2 a2 ⊗ b1 . . . aM1 ⊗ b1 . . . aM1 ⊗ bM2

]

and yields a nonnegative matrix of size I1 I2 × M1 M2. Accordingly, the Kronecker
product of n matrices A� ∈ R

Ii ×Mi+ , � = 1, 2, . . . , n, denoted compactly as
⊗n

�=1 A�

yields a matrix of size
∏n

�=1 Ii × ∏n
�=1 Mi .

The Khatri-Rao product between two matrices A = [a1|a2| . . . |aK ] ∈ R
I×K+ and

B = [b1|b2| . . . |bK ] ∈ R
J×K+ results in a matrix of size (I J )× K . It is defined as the

matching columnwise Kronecker product of the aforementioned matrices, i.e.

A � B = [a1 ⊗ b1|a2 ⊗ b2| . . . |aK ⊗ bK ] . (27)

If we have n matrices A� ∈ R
I�×K
+ , � = 1, 2, . . . , n, their Khatri-Rao product is

compactly denoted as
⊙n

�=1 A� and yields a nonnegative matrix of size
(∏n

�=1 I�
)×K .

The two most commonly used tensor decompositions are the PARAFAC/CANDE-
COMP model (Harshman 1970; Carroll and Chang 1970) [which is also equivalent
to the decomposition using 1-order Kruskal tensors (Kruskal 1977)] and the Tucker
tensor models (Tucker 1966). Another way to perform the decomposition, especially
for 3D tensor factorization, is given through the PARAFAC2 model (Smilde et al.
2004) which has been applied for 3D NTF in Cichocki et al. (2007). An n-order tensor
X is of rank at most K if it can be expressed as the sum of K rank-1 Kruskal tensors
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Fig. 1 Visualization of the rank-K approximation of a 3-order tensor using Kruskal tensor notation

i.e., a sum of K n-fold outer-products. Using the PARAFAC tensor model1 a tensor X
can be decomposed as the sum of K n-fold outer-products as:

X ≈
∑K

l=1
©n

j=1ul
j ⇔

xi1...in ≈
∑K

l=1
ul

i11 . . . ul
inn, 0 ≤ i j ≤ I j , 1 ≤ j ≤ n (28)

with ul
j ∈ �I j

+ and ul
j =

[
ul

1 j , . . . , ul
I j j

]T
. That is, NTF aims at finding the best rank

K nonnegative approximation of X with respect to an approximation cost. The NTF
factorization using Kruskal tensors is pictorially described in Fig. 1. As can be seen,
tensor X ∈ �I1×I2×I3+ is represented as the sum of K outer product tensors ul

1 ◦ul
2 ◦ul

3.
Decompositions like (28) can be calculated using only matrix operations. To do

so, let us define matrices U j �
[
u1

j | . . . |uK
j

]
which contain as columns the Kruskal

vectors, j = 1, . . . , n or equivalently U j =
[
ul

i j j

]
∈ �I j ×K

+ , 1 ≤ i j ≤ I j , 1 ≤ j ≤
n, 1 ≤ l ≤ n. These matrices will be used for defining NTF algorithms using matrix
multiplications.

Let us introduce the compact notation

⊙
j
Ul � Un � · · · � U j+1 � U j−1 � · · · � U1. (29)

Using compact notation (29) the nonnegative factorization (28) can be written in a
matricized form as:

X( j) ≈ R( j) = U j ZT
( j) = U j

(⊙
j
Ul

)T

(30)

matrices R( j) ∈ �I j ×∏n
i=1,i �= j Ii

+ and Z( j) ∈ �
∏n

i=1,i �= j Ii ×K
+ where Z( j) = ⊙

j Ui will be
helpful in defining algorithms for the above factorization. The NMF problem X ≈ ZH
or x j ≈ Zh j in Lee and Seung (2000) can be easily derived from (28) by selecting
Z = U1 and H = UT

2 .

1 In the rest of the paper PARAFAC tensor decomposition and decomposition using the Kruskal tensor
model will be used interchangeably in order to denote the same tensor decomposition.
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3.2 Nonnegative Tensor Factorization algorithms for KL-divergence

The first method for NTF was proposed in Paatero and Tapper (1994). The NMF
methods proposed in Lee and Seung (2000) were generalized using PARAFAC tensor
decomposition in Shashua and Hazan (2005). Recently, in Kim and Choi (2007) and
Mørup et al. (2008) NTF methods using Tucker decomposition were proposed. More-
over, in Cichocki et al. (2008) PAFARAC2 models for 3D NTF were also proposed.

In Hazan et al. (2005) the authors proposed an NTF algorithm using the KL-diver-
gence for 3-order tensors. NTF with the KL-divergence for arbitrary order tensors was
proposed in Zafeiriou (2009a). In the general n-order tensor case, the KL divergence
between the given tensor X and the sum of rank-1 tensors is:

DKL

(
X ||

K∑

l=1

©n
j=1ul

j

)
=

I1,...,In∑

i1=1,...,in=1

⎛

⎝xi1...in ln

⎛

⎝ xi1...in∑K
m=1

∏n
j=1 um

i j j

⎞

⎠

− xi1...in +
K∑

m=1

n∏

j=1

um
i j j

⎞

⎠ . (31)

The optimization problem of this NTF decomposition is:

min
um

i j

DKL

(
X ||

∑K

m=1
©n

j=1um
j

)
subject to

um
i j j ≥ 0, ∀ 1 ≤ i j ≤ I j , 1 ≤ j ≤ n, 1 ≤ m ≤ K (32)

The solution of the above optimization problem was calculated via the use of an
auxiliary function. W is an auxiliary function of Y (F) if W

(
F, F(t−1)

) ≥ Y (F) and
W (F, F) = Y (F). If W is an auxiliary function of Y , then Y is nonincreasing under
the update F(t) = arg minF W

(
F, F(t−1)

)
(Lee and Seung 2000). With the help of

the auxiliary function, the update rules for U j can be derived. By fixing matrices
U1, . . . , U j−1, U j+1, . . . , Un , the elements of matrix U j are updated by minimizing

Y (U j ) = DKL

(
X ||∑K

m=1 ©n
j=1um

j

)
= DKL

(
X( j)||U j

(⊙
j Ul

)T
)

. For matrix U j

we define function:

W (U(t)
j , U(t−1)

j ) �
∑I1,...,In

i1=1,...,in=1
(xi1...in ln(xi1...in ) − xi1...in )

+
∑I1,...,In

i1=1,...,in=1
xi1...in

∑K

m=1

um
i j j

(t−1) ∏n
r=1
r �= j

um
ir r

∑K
l=1 ul

i j j
(t−1) ∏n

r=1
r �= j

ul
ir r

⎛

⎜⎝ln

(
ul

i j j
(t) ∏n

r=1
r �= j

ul
ir r

)

− ln

um
i j j

(t−1) ∏n
r=1
r �= j

um
ir r

∑K
l=1 ul

i j j
(t−1) ∏

r=1
r �= j

ul
ir r

⎞

⎟⎠ +
∑I1,...,In

i1=1,...,in=1

∑K

m=1
um

i j j
(t)

∏n

r=1
r �= j

um
ir r . (33)
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Function (33) is an auxiliary function for (31). A proof of the above statements is
given in Zafeiriou (2009a).

Let us define the compact notation

∑

i j

�
I1∑

i1=1

I2∑

i2=1

· · ·
I j−1∑

i j−1=1

I j+1∑

i j+1=1

· · ·
In∑

in=1

. (34)

and

∏n

r=1
( j,t)

um
ir ,r � um

i j j
(t−1)

∏n

r=1,r �= j
( j,t)

um
ir r

� um
i j j

(t−1)um
i11

(t) · · · um
i j−1 j−1

(t)um
i j+1 j+1

(t−1) · · · um
inn

(t−1)
. (35)

The above calculates the product
∏n

r=1 um
ir r where for r = 1, . . . , j − 1 we use the

estimate of um
ir r at time t while for the rest of them we use the estimate at time t − 1.

Having defined the above compact notations the update rules that can guarantee
a non increasing behavior of cost function (31) for factors um

i j j
(t), are obtained by

solving
∂W

(
U(t)

j ,U(t−1)
j

)

∂um
i j j

= 0 and are given by:

um
i j j

(t) = um
i j j

(t−1)

∑
i j

xi1...in

∏n
r=1,r �= j

( j,t)

um
i j j

∑K
l=1

∏n
r=1
( j,t)

ul
ir r

∑
i j

∏n
r=1
( j,t)

um
i j j

. (36)

The above update rules can be formulated using matrix operations. To do so, let us
define notation

Z(t−1)
( j) � U(t−1)

n � · · · � U(t−1)
j+1 � U(t)

j−1 � · · · � U(t)
1 (37)

and

R(t−1)
( j) � U(t−1)

j

[
Z(t−1)

( j)

]T
. (38)

Using the above definitions, the update rules (36) are given by:

U(t)
j = U(t−1)

j •

⎛

⎜⎜⎝

X( j)

R(t−1)
( j)

Z(t−1)
( j)

T

EZ( j)
(t−1)

⎞

⎟⎟⎠ . (39)

If we allow a total of r iterations, the complexity of the NTF algorithm is

O
(

rnK
∏n

j=1 I j

)
.
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In Sra and Dhillon (2006) exponential rules for NMF using the KL divergence were
proposed. The exponential rules for arbitrary valence NTF were proposed in Zafeiriou
(2009a). For the exponential rules the following problem was considered:

min
um

i j

DKL

(∑K

m=1
©n

j=1um
j ||X

)
subject to

um
i j j ≥ 0, ∀ 1 ≤ i j ≤ I j , 1 ≤ j ≤ n, 1 ≤ m ≤ K . (40)

The update rules that guarantee a nonincreasing behavior of the above cost function
are the following (Zafeiriou 2009a):

ul
i j j

(t) = ul
i j j

(t−1)
exp

⎛

⎜⎜⎝

∑
i j

∏n
r=1,r �= j

( j,t)

ul
ir r ln

xi1 ...in∑n
m=1

∏n
r=1
( j,t)

um
ir r

∑
i j

∏n
r=1
( j,t)

ul
ir r

⎞

⎟⎟⎠ . (41)

or in matrix notation:

U(t)
j = U(t−1)

j • exp

⎛

⎜⎜⎝

ln

(
X( j)

R(t−1)
( j)

)
Z(t−1)

j

T

EZ( j)
(t−1)

⎞

⎟⎟⎠ . (42)

4 NTF with KL divergence as an alternative Csiszar–Tusnady procedure
and convergence properties

In this section we will formally define the proposed NTF with KL divergence, provide
a clear probabilistic interpretation and explore its convergence properties. First, let us
consider the optimization problem with constraints:

min
U1,...,Un :eT U1e=1,U2

T e=e,...,Un
T e=e

DKL

(
X ||

K∑

l=1

©n
j=1ul

j

)
. (43)

Proposition 2.1 The NTF optimization problem (43) has a solution.

The proof of the above proposition can be found in Appendix 10.
Before starting to explore the properties of NTF with KL Divergence, we should

try to find the resemblance between the robust NMF method proposed in Finesso and
Spreij (2006) and NTF decomposition. NMF is a special case of NTF when having
2-order tensors (i.e. having only U1 and U2), thus the NTF optimization problem is
exactly the one in Finesso and Spreij (2006) under the constraints eT U1e = 1 and
UT

2 e = e. The generalized optimization problem for NTF using KL divergence is the
one expressed by (43).

In order to define the robust NTF algorithm we should reformulate the optimization
problem using probability matrices. That is, we shall define the probability tensor as
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P such that pi1i2...in ≥ 0 and
∑I1,I2,...,In

i1=1,i2=1,...,in=1 pi1i2...in = 1. For convenience, we
shall use the notation P(i1, . . . , in) interchangeably with pi1...in .

Let p �
∑I1,...,In

i1=1,...,in=1 xi1...in and w1 � eT U1e then we define P � 1
p X , Q1 �

1
w1

U1 and Qi � Ui for all i = 2, . . . , n. As proven in Appendix 11 cost function

DKL

(
X ||∑K

l=1 ©n
j=1ul

j

)
can be reformulated as:

DKL

(
X ||

K∑

l=1

©n
j=1ul

j

)
= pDKL

(
P||

K∑

l=1

©n
j=1ql

j

)
+ DKL(p||w1). (44)

Since number p is known, the minimization of DKL

(
X ||∑K

l=1 ©n
j=1ul

j

)
with

respect to (U1, . . . , Un) is equivalent to minimizing DKL

(
P||∑K

l=1 ©n
j=1ql

j

)
with

respect to Q1,…,Qn and minimizing DKL(p||w1) with respect to w1. For the new
optimization problem, we obtain w

(opt)
1 = p and so U(opt)

1 = pQ(opt)
1 and U(opt)

j =
Q(opt)

j , j = 2, . . . , n.2 Thus, minimization of DKL

(
X ||∑K

l=1 ©n
j=1ul

j

)
subject to

nonnegativity constraints is equivalent to minimizing DKL

(
P||∑K

l=1 ©n
j=1ql

j

)
sub-

ject to nonnegativity constraints. This leads to the minimization of the KL-Divergence
between (finite) probability measures:

DKL

(
P||

∑K

l=1
©n

j=1ql
j

)
=

∑I1,...,In

i1=1,...,in=1
DKL

⎛

⎝pi1,...,in ||
∑K

l=1

n∏

j=1

ql
i j j

⎞

⎠

=
∑I1,...,In

i1=1,...,in=1
pi1,...,in log

⎛

⎝ pi1,...,in∑K
l=1

∏n
j=1 ql

i j j

⎞

⎠ .

(45)

Given a probability tensor P and an integer K , the optimization problem is to find
Q1, . . . , Qn :

min
Q1,...,Qn :eT Q1e=1,Q2

T e=e,...,Qn
T e=e

DKL

(
P||

K∑

l=1

©n
j=1ql

j

)
. (46)

2 The superscript opt reflects the optimality.
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We define the function:

W
(

U(t)
j , U(t−1)

j

)
=

I1,...,In∑

i1=1,...,in=1

pi1...in ln(pi1...in )

+
I1,...,In∑

i1=1,...,in=1

pi1...in

K∑

m=1

qm
i j j

(t−1) ∏m
n

r=1
r �= j

qir r

K∑
l=1

ql
i j j

(t−1) ∏n
r=1
r �= j

ql
ir r

⎛

⎜⎝ln

(
ql

i j j
(t) ∏n

r=1
r �= j

ql
ir r

)

− ln

qm
i j j

(t−1) ∏n
r=1
r �= j

qm
ir r

∑K
l=1 ql

i j j
(t−1) ∏l

r=1
r �= j

qir r

⎞

⎟⎠ . (47)

This function (47) is an auxiliary function for (45).
Let Q(t)

1 � 1
w1

U(t)
1 and Q(t)

2 � U(t)
2 ,…, Q(t)

n � U(t)
n . Now by substituting the

definition of
(P, Q1

(t), . . . , Qn
(t)

)
into (36) and using the fact that w

(opt)
1 = p, the

following update rules for t ≥ 1 are obtained for factors ql
i11:

ql
i11

(t) = ql
i11

(t−1)∑

i1

pi1...in

∏n
j=2
(1,t)

ql
i j j

∑K
m=1

∏n
j=1
(1,t)

qm
i j j

(48)

and for j ∈ {2, . . . , n}

ql
i j j

(t) = ql
i j j

(t−1)

∑
i j

pi1...in

∏n
r=1,r �= j

( j,t)

qir r
l

∑K
m=1

∏n
r=1
( j,t)

qm
ir r

∑I1,...,In
i1=1,...,in=1 pi1...in

∏n
j=2
(1,t)

ql
i j j

∑K
m=1

∏n
j=1
(1,t)

qm
i j j

. (49)

Update rule (49) can be equivalently written as:

ql
i j j

(t) = ql
i j j

(t−1)

∑
i j

pi1...in

∏n
r=1,r �= j

( j,t)

ql
ir ,r

∑K
m=1

∏n
r=1
( j,t)

qm
ir ,r

∑I1
i1=1 ql

i1,1
(t)

. (50)

In a matrix notation the above update rules can be written as:

Q1
(t) = Q j

(t−1) •
⎛

⎝ P(1)

R(t−1)
(1) Z(t−1)

(1)

T
Z(t−1)

(1)

T

⎞

⎠ (51)
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and

Q j
(t) = Q j

(t−1) •
P( j)

R(t−1)
( j) Z(t−1)

( j)

T Z(t−1)
( j)

T

EQ(t)
1

(52)

where Z(t−1)
( j) = Q(t−1)

n �· · ·�Q(t−1)
j+1 �Q(t)

j−1 · · ·�Q(t)
1 and R(t−1)

( j) = Q(t−1)
j Z(t−1)

( j)

T
.

The following Theorems guarantee that the limit point of the update rules (48) and
(49) exists and is a stationary point of optimization problem (46).

Before presenting the convergence theorems we should introduce the following
sets.

Given a probability tensor P and an integer K , we introduce the following sets:

℘ �
{

V ∈ �I1×K×I2×···×In+ :
K∑

l=1

V(i1, l, i2, . . . , in) = P
}

� �
{
Q ∈ �I1×K×I2×···×In+ : Q(i1, l, i2, . . . , in) = Q1(i1, l)Q2(i2, l) . . . Qn(in, l)

Q1, . . . , Qn ≥ 0, eT Q1e = 1, QT
2 e = e, . . . , QT

n e = e
}

ℵ �
{

O ∈ �I1×I2×···×In+ : O =
K∑

l=1

Q(i1, l, i2, . . . , in) for some Q ∈ �
}

(53)

Theorem 2.1 Let Q(t)
1 , . . . , Q(t)

n be generated by algorithm (48), (49) and

Q(t) (Q(t)(i1, l, i2, . . . , in) = Q(t)
1 (i1, l)Q(t)

2 (i2, l) . . . Q(t)
n (in, l)) the corresponding

tensor. Then, Q(t)
1 (i1, l) converges to limit Q∞

1 (i1, l) and Q(t) converges to the limit

Q∞ in Q, Q(t)
j (i j , l) for j = 2, . . . , n converge to limits Q∞

j (i j , l) for all l with
∑I j

i j =1 Q∞
j (i j , l) > 0.

The proof can be found in Appendix 12. The role of tensor Q will be made clear in
the next section.

Theorem 2.2 If (Q1, . . . , Qn) is a limit point of the algorithm given by update rules
(48) and (49) in the interior of the domain, then it is a stationary point of the objective
function DKL (46). If (Q1, . . . , Qn) is a limit point on the boundary of the domain
corresponding to an approximate factorization where none of the columns of Q1 is
zero (

∑I1
i1=1 Q1(i1, l) > 0 ∀ l), then all partial derivatives ∂ DKL

∂Q j (i j ,l)
for j = 1, . . . , n

are nonnegative.

The proof can be found in Appendix 13.
Corollary 2.1 shows that the limit points of the above optimization problem using

the update rules (48) and (49) are all Kuhn-Tucker points.
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Corollary 2.1 The limit points of the algorithm with
∑I1

i1=1 Q1(i1, l) > 0 for all
l are all the Kuhn-Tucker points for the minimization of DKL under the inequality
constraints Q1 ≥ 0, . . . , Qn ≥ 0.

The proof of the above Corollary can be found in Appendix 14.

5 A probabilistic interpretation of the optimization problem

In this section we explore the properties of optimization problem (46). More precisely
we:

– provide a solid probabilistic interpretation of the optimization problem;
– propose generalized pythagorean rules;
– motivate the use of the auxiliary function (33).

5.1 Setup and exact NTF

Let us consider the (n + 1)-tuple of random variables (Y1, X, Y2, . . . , Yn), taking
values in {1, . . . , I1} × {1, . . . , K } × {1, . . . , I2} × · · · × {1, . . . , In}. The random
variables (Y1, X, Y2, . . . , Yn) can be thought of as if they were defined in the canoni-
cal measurable space (Ω,F), where Ω is the set of all (n + 1)-ples (i1, l, i2, . . . , in)

and F = 2Ω (i.e., the powerset of Ω). For ω = (i1, l, i2, . . . , in) we have the iden-
tity mapping (Y1, X, Y2, . . . , Yn)(ω) = (i1, l, i2, . . . , in). If R is a given probabilistic
measure on this space, the distribution of the (n + 1)-tuple (Y1, X, Y2, . . . , Yn) under
R is given by tensor R:

R(i1, l, i2, . . . , in) = R(Y1 = i1, X = l, Y2 = i2, . . . , Yn = in). (54)

Tensors V and Q define probability measures P and Q on (Ω,F).
Obviously, the sets ℘ and � are subsets of the set of all measures on (Ω,F).

In particular, ℘ corresponds to the subset of all measures whose Y = (Y1, . . . , Yn)

marginal coincides with the given P , while � corresponds to the subset of measures
under which Y1, . . . , Yn are conditionally independent given X . The first assertion
can be proven by definition. The second assertion is proven as follows. First, notice
that Q(Y1 = i1, X = l, Y2 = i2, . . . , Yn = in) = Q(i1, l, i2, . . . , in). Then, by
summing over all i j with j = 2, . . . , n we have Q(Y1 = i1, X = l) = Q1(i1, l),
since QT

j e = e for j = 2, . . . , n. By summing over all i j with j = 1, . . . , n we

have Q(X = l) = ∑I1
i1=1 Q1(i1, l) and thus Q(Y1 = i1|X = l) = Q(Y1=i1,X=l)

Q(X=l) .
Moreover, for j = 2, . . . , n and by summing over all im with m ∈ {1, . . . , n} −
j then Q(Y j = i j |X = l) = Q(Y j =i j ,X=l)

Q(X=l) =
∑I1

i1=1 Q1(i1,l)Q j (i j ,l)
∑I1

i1=1 Q1(i1,l)
= Q j (i j , l).

Finally, Q(Y1 = i1, . . . , Yn = in|X = l) = Q(Y1=i1,X=l,...,Yn−1=in−1,Yn=in)

Q(X=l) = Q(Y1 =
i1, X = l)Q(Y2 = i2|X = l) . . . Q(Yn = in|X = l).

Lemma 2.1 Tensor P admits exact factorization of K rank one tensors iff ℘ ∩� �= ∅
and an approximate NTF as ℘ ∩ � = ∅.
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A proof can be found in Appendix 15.
Now we generalize the probabilistic interpretation of NMF to an arbitrary

order exact NTF problem. The probability tensor P admits an exact NTF (i.e., P =∑K
l=1 ©n

j=1ql
j ) iff there exist at least one measure (Ω,F) whose Y = (Y1, . . . , Yn)

marginal is P and at the same time making Y1, . . . , Yn conditionally independent given
X .

Proposition 2.2 Given P , function (V,Q) → DKL (V||Q) attains a minimum on
℘ × � and it is valid that

min
Q∈ℵ

DKL(P||Q) = min
V∈℘,Q∈�

DKL(V||Q) (55)

The proof can be found in Appendix 16.
Let V(opt) and Q(opt) be the tensors satisfying Proposition 2.2. If ∃ l0 such that∑I1,...,In
i1=1,i2=1,...,in=1 V(opt)(i1, l0, i2, . . . , in) = 0, then all Q(opt)(i1, l0, i2, . . . , in) = 0,

as well. Equivalently, if ∃ l0, such that∑I1,...,In
i1=1,...,in=1 Q(opt)(i1, l0, i2, . . . , in) = 0, then all V(opt)(i1, l0, i2, . . . , in) = 0, as

well. In both cases the optimal factorization of P has rank less than K and in order
to proceed to the factorization, we may omit all the columns from Q1, . . . , Qn that
correspond to l0.

5.2 Two partial subproblems

Now we shall try to solve the equivalent double minimization problem:

min
V∈℘,Q∈�

DKL(V||Q). (56)

We should solve two partial minimization problems. In the first problem, given
Q ∈ �, we minimize DKL(V||Q) over V , while in the second one, given V ∈ ℘ we
minimize the divergence over Q given V .

The unique solution V(opt) = V(opt)(Q) can be easily computed analytically and is
given by:

V(opt)(i1, l, i2, . . . , in) = P(i1, . . . , in)
∑K

l=1
∏n

j=1 Q j (i j , l)
Q(i1, l, i2, . . . , in) (57)

where
∑K

l=1
∏

j Q j (i j , l) = ∑K
l=1 Q(i1, l, i2, . . . , in).

For the second minimization problem, the unique solution is given by:

Q(opt)
1 =

I2,...,In∑

i2=1,...,in=1

V(i1, l, i2, . . . , in) (58)
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and for j = 2, . . . , n:

Q(opt)
j (i j , l) =

∑
i j
V(i1, l, i2, . . . , in)

∑I1,...,In
i1=1,...,in=1 V(i1, l, i2, . . . , in)

(59)

These two minimization problems and their solutions have a direct probabilis-
tic interpretation. This interpretation generalizes the discussion in Finesso and Spreij
(2006) using arbitrary order tensors instead of order-2 tensors, i.e. matrices. In the first
minimization given a distribution Q, which makes the sequence of Y = (Y1, . . . , Yn)

conditionally independent given X , the best solution represents the best set in ℘

with the marginal of Y being tensor P . Let V(opt) be the optimal distribution
(Y1, l, Y2, . . . , Yn). Equation 57 can then be interpreted in terms of corresponding
measures as:

P
(opt)(Y1 = i1, X = l, Y2 = i2, . . . , Yn = in)

= Q(X = l|Y1 = i1, . . . , Yn = in)P(i1, i2, . . . , in) (60)

Notice that the conditional distributions of X given Y under P
(opt) and Q are the

same.
In the second optimization problem, one is given a distribution Q, with the marginal

of Y given by P and finds the best approximation to it in the set � of distributions
which make Y = (Y1, . . . , Yn) conditionally independent given X . Let Q(opt) denote
the optimal distribution of (Y1, l, Y2, . . . , Yn−1, Yn). Equations 58 and 59 can be now
be interpreted as:

Q
(opt)(Y1 = i1, X = l) = P(Y1 = i1, X = l) (61)

and for j = 2, . . . , n

Q
(opt)(Y j = i j |X = l) = P(Y j = i j |X = l), (62)

respectively. That is, the optimal solution Q
(opt) is such that the marginal distribution

of (X, Y1) under P and Q
(opt) coincide, as well as, the marginal distributions of Y j

given X under P and Q
(opt).

Lemma 2.2 For fixed Q and V(opt) = V(opt)(Q) it holds that, for any V ∈ ℘

DKL(V||Q) = DKL

(
V||V(opt)

)
+ DKL(V(opt)||Q) (63)

moreover

DKL

(
V(opt)||Q

)
= DKL(P||O) (64)
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where

O(i1, . . . , in) =
K∑

l=1

Q(i1, l, i2, . . . , l, in) (65)

For fixed V and Q(opt) = Q(opt)(V), it holds that, for any Q ∈ �.

DKL(V||Q) = DKL(V||Q(opt)) + DKL

(
Q(opt)||Q

)
. (66)

The proof is provided in Appendix 17.
Before we produce the other two Pythagorean rules for NTF, we should define the

following laws. Let the law of (U, V ) under arbitrary probability measures P and Q

by P
U,V and Q

U,V . The conditional distributions of U given V are denoted by the
matrices P

U |V and Q
U |V , with the convention P

U |V (i, j) = P(U = j |V = i) and
likewise for Q

U |V . Let us define the mean value operator EZ DKL(P||O)

EZ DKL(P||O) =
∑

i1,...,in
Z(i1, . . . , in)P(i1, . . . , in) ln

(P(i1, . . . , in)

O(i1, . . . , in)

)
.

(67)

Lemma 2.3 It holds that

DKL

(
P

U,V ||QU,V
)

= EP DKL

(
P

U |V ||QU |V )
+ DKL

(
P

V ||QV
)

(68)

where

DKL

(
P

U |V ||QU |V )
=

∑

j

P(U = j |V ) log
P(U = j |V )

O(U = j |V )
(69)

If moreover V = (V1, V2) and U, V2 are conditionally independent given V1 under
Q, then the first term in (68) can be written as:

EP DKL

(
P

U |V ||QU |V )
= EP DKL

(
P

U |V ||PU |V1
)

+ EP DKL

(
P

U |V1 ||QU |V1
)

(70)

Now we will reinterpret the Pythagorean rules (63), (64) and (66) using probabilistic
terms. In that way we generalize the probabilistic interpretation of NMF pythagorean
rules in Finesso and Spreij (2006). The first optimization problem of (56) can be
reinterpreted in probabilistic terms using similar lines as Finesso and Spreij (2006).
That is, given Q, we are to find its best approximation within ℘. Let Q correspond
to a given Q and the P corresponds to a generic V ∈ ℘. Choosing now, U = X and
V = Y = (Y1, . . . , Yn) in Lemma 2.3, Eq. 68 reads

DKL (V||Q) = EP DKL

(
P

X |Y ||QX |Y )
+ DKL (P||Q) . (71)
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Moreover, (71) is equivalent to (63). That is, the optimization problem is equivalent
to the minimization of EP

(
P

X |Y ||QX |Y )
with respect to V ∈ ℘, which is attained (with

value 0) at P
(opt) with P

X |Y
(opt) = Q

X |Y and P
Y
(opt) = P .

That is, for the second optimization problem (i.e, minimizing DKL (V||Q) given
V) we have the following. Given V we are to find its best approximation within
Q. Let P correspond to given V and Q correspond to a generic Q ∈ �. Choosing
U = {Y2, . . . , Yn}, V1 = X and V2 = Y1 in Lemma 2.3, and remembering that under
any Q ∈ � the random variables Y1, Y2, . . . , Yn are conditionally independent given
X , Eq. 68 combined with (70) now reads:

DKL (V||Q)

= EP DKL

(
P

Y2,...,Yn |X,Y1 ||PY1,...,Yn |X)
+ EP DKL

(
P

Y2,...,Yn |X ||QY2,...,Yn |X)

+DKL

(
P

Y1,X ||QY1,X
)

=
n∑

j=2

EP DKL

(
P

Y j |X ||QY j |X
)

+ DKL

(
P

Y1,X ||QY1,X
)

(72)

as shown analytically in Appendix 18. In the special case of NMF (Finesso and Spreij
2006) (i.e., only two random variables Y1 and Y2) the above Pythagorean rule is written
as DKL (V||Q) = EP DKL

(
P

Y2|X ||QY2|X ) + DKL
(
P

Y1,X ||QY1,X
)
.

The problem is equivalent to the minimization of
∑n

j=2 EP DKL
(
P

Y j |X ||QY j |X )

and DKL
(
P

Y1,X ||QY1,X
)

with respect to Q ∈ �. Both these minima are attained (both

with value 0) at Q
(opt) with Q

Y j |X
(opt) = P

Y j |X for j = 2, . . . , n and Q
Y1,X
(opt) = P

Y1,X .

Note that X have the same distribution under P and Q
(opt). To derive probabilistically

the corresponding generalized Pythagorean rule we notice that:

DKL(V||Q) − DKL(V||Q(opt)) =
n∑

j=2

EP DKL

(
Q

Y j |X
(opt) ||QY j |X

)

+DKL

(
Q

Y1,X
(opt) ||QY1,X

)
. (73)

On the right hand side of (73) we can, by conditional independence, replace

EQ(opt) DKL(Q
Y j |X
(opt) ||QY j |X ), for j = 2, . . . , n with EQ(opt) DKL(Q

Y j |X,Y1
(opt) ||QY1|X,Y1).

By another application of (68), we see that DKL (V||Q) − DKL
(V||Q(opt)

) =
DKL

(Q(opt)||Q)
, which is the second Pythagorean rule (66).

5.2.1 Alternating minimization procedure

As in Finesso and Spreij (2006), we set up the alternating minimization algorithm for
obtaining minO DKL(P||O), where P is a given nonnegative tensor of arbitrary order.
In view of Proposition 2.2. we can lift this problem in ℘ × � space. Starting with
an arbitrary Q(0) ∈ � with positive elements, we adopt the following minimization
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scheme

→ Q(t) → V(t) → Q(t+1) → V(t+1) → (74)

where V(t) = V(opt)(Q(t)),Q(t+1) = Q(opt)(V(t)). As we can see by (74) the update
gain is independent of the order of the tensors.

To relate this algorithm to the one defined by formulae (48) and (49), we combine
two steps of the alternative minimization at a time. From the algorithms (74) we get:

Q(t+1) = Q(opt)
(
V(opt)(Q(t))

)
. (75)

Computing the optimal solutions according to (57), (58) and (59) one gets from
there the update rules (48) and (49). The Pythagorean rules allow us to compute easily
the gain DKL(P||O(t)) − DKL(P||O(t+1)) of the algorithm.

Proposition 2.3 The update gain at each iteration of the algorithm (75) in terms of
the tensors O(t) is given by:

DKL

(
P||O(t)

)
− DKL

(
P||O(t+1)

)
= DKL

(
V(t)||V(t+1)

)

+DKL

(
Q(t+1)||Q(t)

)
(76)

The proof is provided in Appendix 19.

If for matrices
(

Q(0)
1 , . . . , Q(0)

n

)
we have that ql

i j j
(0)

> 0 then under the itera-

tions in (48) and in (49) we shall have ql
i j j

(t)
> 0 with t > 0. If in the t th step the

update gain is zero then we will have DKL(Q(t)||Q(t−1)) = 0. Hence, tensors Q(t)

and Q(t−1) are identical. From this it follows by summation that Q(t)
1 = Q(t−1)

1 . More-

over, we shall have that Q(t+1)
1 (i1, l) . . . Q(t+1)

n (in, l) = Q(t)
1 (i1, l) . . . Q(t)

n (in, l), since

Q(t)
1 = Q(t−1)

1 , Q(t−1)
1 is strictly positive and by summing for all a ∈ {2, . . . , j − 1,

j + 1, . . . , n} we have that Q(t)
j = Q(t−1)

j for all j ∈ {2, . . . , n}. Hence, the update
rules strictly decrease the objective function until the algorithm reaches a fixed point.

5.3 Auxiliary functions

We consider now the minimization of DKL(P||O) and its lifted version i.e., the min-
imization of DKL(V||Q). We shall consider that the problem starts by noting that
Q(t+1) is found by minimizing Q′ → DKL(V(opt)(O(t))||O′). This strongly motivates
the choice of function

(Q,Q′) → W (Q,Q′) = DKL

(
Vopt(Q(t))||Q′) (77)

as an auxiliary function for minimizing DKL(P||O) with respect to O.
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Using the decomposition of the divergence in Eq. 78 we can rewrite W as

W
(Q,Q′) = DKL

(
Vopt(Q(t))||Q′) = DKL

(
P

Y
(opt)||Q′Y )

+EP(opt) DKL

(
P

X |Y
(opt)||Q′X |Y )

(78)

Since P
X |Y
(opt) = Q

X |Y , and P
Y
(opt) = P we write (78) as

W
(Q,Q′) = DKL

(
P||Q′Y )

+ EP DKL

(
Q

X |Y ||Q′X |Y )
(79)

From (79) it follows that W
(Q,Q′) ≥ DKL

(P||O′), and that W (Q,Q) =
DKL (P||O), which are the properties of an auxiliary function for DKL (P||O).

For our problem one can find n auxiliary functions for the original minimiza-

tion of DKL

(
P||∑K

l=1 ©n
j=1ql

j

)
(the same auxiliary functions given in (33)). In

every auxiliary function for Q j , j = 1, . . . , n we fix all m ∈ {1, . . . , n} − { j}. As
in Finesso and Spreij (2006) the auxiliary function W

(Q,Q′) can be denoted as
W

(
Q1, . . . , Qn, Q′

1, . . . , Q′
n

)
. The auxiliary function minimization with fixed Qm

with m ∈ {1, . . . , n} − { j} can be taken as

Q′
j → W j

O
(

Q′
j

)
= W

(
Q1, . . . , Qn, Q1, . . . , Q j−1, Q′

j , Q j+1, . . . , Qn

)
(80)

Now, we shall generalize the update gains in Finesso and Spreij (2006) and provide
the update gains for arbitrary order NTF decompositions.

Lemma 2.4 Consider the auxiliary functions W
(Q,Q′) and n auxiliary functions

W
(

Q1, . . . , Qn, Q1, . . . , Q j−1, Q′
j , Q j+1, . . . , Qn

)
. Denote by Q′

j the minimizers

of auxiliary functions in all n + 1 cases. Then, the following Lemma holds.

DKL

(
P||

K∑

l=1

©n
j=1ql

j

)
− WQ

(
Q′

1

) = DKL

(
Q

′Y1,X ||QY1,X
)

(81)

DKL

(
P||

K∑

l=1

©n
j=1ql

j

)
− WQ

(
Q′

j

)
= EP(opt) DKL

(
Q

′Y j |X ||QY j |X
)

(82)

DKL

(
P||

∑K

l=1
©n

j=1ql
j

)
− W

(
Q1, . . . , Qn, Q′

1, . . . , Q′
n

)

= DKL

(
Q

′Y1,X ||QY1,X
)

+
n∑

j=2

EQ′ DKL

(
Q

′Y j |X ||QY j |X
)

(83)

The proof of the above can be found in Appendix 20.

123



Nonnegative tensor factorization as an alternative Csiszar–Tusnady procedure 445

Corollary 2.2 The update gain of the multiplicative update rules in (48) and (49) is
given by:

DKL

(
P||O(t)

)
− DKL

(
P||O(t+1)

)
= DKL

(
Q

(t+1)Y1,X ||Q(t)Y1,X
)

+
n∑

j=2

EQ(t+1) DKL

(
Q

(t+1)Y j |X ||Q(t)Y j |X)

+EP DKL

(
Q

(t)X |Y ||Q(t+1)X |Y )
. (84)

In order to prove the above we start by writing:

DKL

(
P||O(t)

)
− DKL

(
P||O(t+1)

)
= DKL

(
P||O(t)

)
− W

(
O(t),O(t+1)

)

+W
(
O(t),O(t+1)

)
− DKL

(
P||O(t+1)

)
(85)

and then, using (79) and (83) the corollary is proven. Finally, by using (76) we can
prove that:

DKL

(
V(t)||V(t+1)

)
= EP

(
Q

(t)X |Y ||Q(t+1)X |Y )

DKL

(
Q(t)||Q(t+1)

)
= DKL

(
Q

(t)X |Y ||Q(t+1)X |Y )

+
n∑

j=2

EQ(t+1) DKL

(
Q

(t+1)Y j |X ||Q(t)Y j |X)
(86)

6 Probabilistic latent tensor variable analysis

In the previous section we studied some of the properties of the NTF optimization
problem in (43) and the corresponding algorithm based on multiplicative update rules.
In this section we shall try to relate the above algorithm with probabilistic tensor
latent component analysis models. In Shashanka et al. (2008) the authors commented
about the possible extension of PLSA and PLVA models (the algorithms of which
are implemented using update rules similar to NMF) using arbitrary order tensors but
no algorithm was proposed. Here we shall show that the algorithm for solving (43)
can indeed be used for multilinear PLTVA and by introducing additional factors we
propose algorithms for PLTVA which are the generalization of the NMF algorithms
used in Shashanka et al. (2008) and Gaussier and Goutte (2005). In the following, we
generalize both the symmetric and asymmetric PLSA models.

6.1 The symmetric model

In the symmetric PLSA model for the two random variable case we seek for the latent
probabilities matrices for P(x2|z) and P(x1, z) (or P(x1|z)). Let x1, . . . , xn be random
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variables. Then approximation (16) can be generalized as:

P(x1, . . . , xn) ≈
∑

z,z=1,...,K

P(x1, z)
∏n

j=2
P(x j |z) (87)

In an EM manner the above is solved as:

P(t)(z|x1, . . . , xn) = P(t−1)(x1, z)
∏n

j=2 P(t−1)(x j |z)∑
z∈{1,2,...,K } P(t−1)(x1, z)

∏n
j=2 P(t−1)(x j |z) (88)

and

P(t)(x1, z) =
∑

x2,...,xn

P(x1, . . . , xn)P(t)(z|x1, . . . , xn)

P(t)(x j |z) =
∑

x1,...,x j−1,x j+1,...,xn
P(x1, . . . , xn)P(t)(z|x1, . . . , xn)

∑
x1,...,xn

P(x1, . . . , xn)P(t)(z|x1, . . . , xn)
, j = 2, . . . , n.

(89)

We can easily verify that the above update rules (88) and (89) are equivalent to
update rules (57), (58) and (59) and also to update rules (48) and (49). Thus, approx-
imation (87) is equivalent to optimization problem (43).

Now, we shall expand further the approximation (87) by allowing another factor
P(z), which is naturally introduced by expanding P(x1, z) = P(z)P(x1|z). Thus,
factorization (87) becomes:

P(x1, . . . , xn) ≈
∑

z,z=1,...,K

P(z)
n∏

j=1

P(x j |z). (90)

In an EM approach the above problem is solved as:

P(t)(z|x1, . . . , xn) = P(t−1)(z)
∏n

j=1 P(t−1)(x j |z)∑
z∈{1,2,...,K } P(t−1)(z)

∏n
j=1 P(t−1)(x j |z) (91)

and

P(t)(x j |z) =
∑

x j
P(x1, . . . , xn)P(t)(z|x1, . . . , xn)

∑
x1,...,xn

P(x1, . . . , xn)P(t)(z|x1, . . . , xn)

P(t)(z) =
∑

x1,...,xn

P(x1, . . . , xn)P(t)(z|x1, . . . , xn). (92)
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By substituting (91) into (92) we get:

P(t)(x j |z) =

∑
x j

P(x1, . . . , xn)

P(t−1)(z)
∏n

r=1
( j,t)

P(xr |z)
∑

z∈{1,2,...,K } P(t−1)(z)
∏n

r=1
( j,t)

P(xr |z)

∑
x1,...,xn

P(x1, . . . , xn)

P(t−1)(z)
∏n

r=1
( j,t)

P(xr |z)
∑

z∈{1,2,...,K } P(t−1)(z)
∏n

r=1
( j,t)

P(xr |z)

P(t)(z) =
∑

x1,...,xn

P(x1, . . . , xn)
P(t−1)(z)

∏n
j=1 P(t)(x j |z)∑

z∈{1,2,...,K } P(t−1)(z)
∏n

j=1 P(t)(x j |z) .

(93)

Now, let P be the probability tensor with pi1...in = P(x1 = i1, x2 = i2, . . . , xn =
in) and let matrices [Q j ]i j l = P(x j = i j |z = l) and vector a with [a]l = P(z = l).
Then, approximation (90) is written as:

P ≈ R =
K∑

l=1

al ©n
j=1 ql

j . (94)

In a matricized form the above nonnegative approximation can be written as:

P( j) ≈ R( j) = Q j ZT
( j) = Q j A

⎛

⎝
⊙

j

Qi

⎞

⎠
T

(95)

for j = 1, . . . , n where A = diag(a) and Z( j) =
(⊙

j Qi

)
A. In terms of A it can be

written as:

vec(P(1)) ≈
(

Q1 �
(
⊙

1

Qi

))
a. (96)

Using tensor unfolding and matricization procedures, the update rules (93) can be
written as:

Q̃(t)
j = Q j

(t−1) • P( j)

R(t−1)
( j)

Z(t−1)
( j)

T

Q j
(t) = Q̃(t)

j

EQ̃(t)
j

(97)

where R(t−1)
( j) = Q(t−1)

j Z( j)
(t−1)T

and Z(t−1)
( j) = Q(t−1)

n � . . . � Q(t−1)
j+1 � Q(t)

j−1 �
. . . � Q(t)

1 .
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The update rule for the probabilities of the latent variables is:

a(t) = a(t−1) •
⎛

⎝
(

Q(t)
1 �

(
⊙

1

Q(t)
i

))T
vec(P(1))(

Q(t)
1 �

(⊙
1Q(t)

i

))
a(t−1)

⎞

⎠ . (98)

We can easily verify that the above update rules are the solution of the following
optimization problem:

min
Q1,...,Qn :Q j

T e=e,eT a=1
DKL

(
P||

K∑

l=1

al ©n
j=1 ql

j

)
. (99)

In order to use the above algorithm for the factorization of an arbitrary tensor
X ≈ ∑K

l=1 al © j ul
j with w1 = ∑I1,...,In

i1=1,...,in=1 X (i1, . . . , in) we should normalize the

tensor into P = 1
w1

X , then use update rules (97). Finally, the factors of the decompo-

sition are given by b(opt) = w1a(opt) and U(opt)
j = Q(opt)

j .

6.2 Asymmetric model

Now we generalize the asymmetric PLSA model for the arbitrary order tensor case. In
the asymmetric PLSA model for the two random variable case we seek for the latent
probabilities matrices for P(x1|z) and P(z|x2). An example of the asymmetric model
decomposition is the application of NMF to facial images. In this case the images are
vectorized. The vectors are then normalized in order to sum up to one (i.e., in order
to form probability mass functions). Then, matrix P = [P(x1 = i |x2 = j)] contains
as columns the facial images (x1 is the random variable that corresponds to feature
dimensionality and x2 is the random variable that corresponds to number of faces in
the dataset). The decomposition (16) can be reformulated as:

P(x1|x2) =
∑

z∈{1,...,K }
P(z|x2)P(x1|z) (100)

then using the EM in (18) can be reformulated as:

P(t)(z|x1, x2) = P(t−1)(z|x2)P(t−1)(x1|z)∑
z∈{1,...,K } P(t−1)(x1|z)P(t−1)(z|x2)

(101)
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and

P(t)(z|x2) =
∑

x1
P(x1, x2, z)

∑
x1,z∈{1,...,K } P(x1, x2, z)

=
∑

x1
P(x1|z)P(z|x1, x2)∑

x1,z∈{1,...,K } P(x1|z)P(z|x1, x2)

= P(t−1)(z|x2)∑
x1

P(x1|x2)∑
z∈{1,...,K } P(t−1)(x1|z)P(t−1)(z|x2)

P(t−1)(x1|z)
∑

x1,z∈{1,...,K }
P(x1|x2)∑

z∈{1,...,K } P(t−1)(x1|z)P(t−1)(z|x2)
P(t−1)(z|x2)P(t−1)(x1|z)

(102)

and

P(t)(x1|z) =
∑

x2
P(x1, x2, z)

∑
x1,x2

P(x1, x2, z)
=

∑
x2

P(x2)P(x1|x2)P(z|x1, x2)∑
x1,x2

P(x2)P(x1|x2)P(z|x1, x2)

= P(t−1)(x1|z)∑
x2

P(x1|x2)∑
z∈{1,...,K } P(t−1)(x1|z)P(t)(z|x2)

P(x2)P(t)(z|x2)

∑
x1,x2

P(x1|x2)∑
z∈{1,...,K } P(t−1)(x1|z)P(t)(z|x2)

P(x2)P(t)(z|x2)P(t−1)(x1|z)
.

(103)

Let that the images are not vectorized, then each of the facial image is represented
by a matrix and all the faces together for a tensor P = [P(x1 = i1, x2 = i2|x3 = i3)]
where x1 and x2 are the random variables that correspond to height and width of the
facial images and x3 is the random variable that corresponds to the number of facial
images in the dataset. In the general n-order case we have:

P(x1, . . . , xn|xn+1) =
∑

z∈{1,...,K }
P(z|xn+1)P(x1, . . . , xn|z)

=
∑

z∈{1,...,K }
P(z|xn+1)

n∏

j=1

P(x j |z) (104)

the above model in an EM manner can be solved as:

P(t)(z|x1, . . . , xn+1) = P(t−1)(z|xn+1)
∏n

j=1 P(t−1)(x j |z)∑
z∈{1,...,K } P(t−1)(z|xn+1)

∏n
j=1 P(t−1)(x j |z) (105)

and

P(t)(z|xn+1) = P(t−1)(z|xn+1)
∑

xn+1

P(x1,...,xn |xn+1)∑
z∈{1,...,K } P(t−1)(z|xn+1)

∏n
r=1 P(t−1)(xr |z)

∏n
r=1 P(t−1)(xr |z)

∑
x j

∑
z∈{1,...,K }

P(x1,...,xn |xn+1)∑
z∈{1,...,K } P(t−1)(z|xn+1)

∏n
r=1 P(t−1)(xr |z) P(t−1)(z|xn+1)

∏n
j=1 P(t−1)(x j |z)

(106)
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and

P(t)(x j |z) = P(t−1)(x j |z)
∑

x j

P(x1,...,xn |xn+1)∑
z∈{1,...,K } P(t)(z|xn+1)

∏n
r=1
( j,t)

P(xr |z) P(xn+1)P(t)(z|xn+1)
∏n

r=1,r �= j
( j,t)

P(xr |z)
∑

x1,...,xn+1

P(x1,...,xn |xn+1)∑
z∈{1,...,K } P(t)(z|xn+1)

∏n
r=1
( j,t)

P(xr |z) P(xn+1)P(t)(z|xn+1)
∏n

r=1
( j,t)

P(x j |z)

(107)

Then, by defining tensor P with elements P(i1, . . . , in) = P(x1 = i1, . . . , xn =
in|xn+1 = in+1) and Q j (i j , l) = P(x1 = i1|z = l) for j = 1, . . . , n and
Qn+1(in+1, l) = P(z = l|xn+1 = in+1). Then, we formulate the following opti-
mization problem:

min
Q1,...,Qn+1:Q j

T e=e,Qn+1e=e
DKL

(
P||

K∑

l=1

©n+1
j=1ql

j

)
. (108)

Using tensor unfolding and matricization procedures the update rules (93) can be
written as:

Q̃(t)
j = Q j

(t−1) • P( j)

R(t−1)
( j)

[Z̄(t−1)
( j) ]T

Q j
(t) = Q̃(t)

j

EQ̃(t)
j

(109)

for j = 1, . . . , n where R(t−1)
( j) = Q(t−1)

j Z( j)
(t−1)T

, Z( j)
(t−1) = Q(t−1)

n+1 � Q(t−1)
n �

. . . � Q(t−1)
j+1 � Q(t)

j−1 � . . . � Q(t)
1 and Z̄(t−1)

( j) = Q̄(t−1)
n+1 � Q(t−1)

n � . . . � Q(t−1)
j+1 �

Q(t)
j−1 � . . .�Q(t)

1 , where Q̄(t)
n+1 = BQ(t)

n+1 and B = diag(b) is a In+1 × In+1 diagonal
matrix with bl = P(xn+1 = l) (i.e., the probability of every instance).

For matrix Q(t)
n+1 we have the following update rules:

Q̃(t)
n+1 = Qn+1

(t−1) • P(n+1)

R(t−1)
(n+1)

[
Z(t−1)

(n+1)

]T

Q(t)
n+1 = Q̃(t)

n+1

Q̃(t)
n+1E

. (110)

7 Experimental results

We demonstrate the usefulness of the proposed approach using both simulated and
real life data.

123



Nonnegative tensor factorization as an alternative Csiszar–Tusnady procedure 451

7.1 Experiments using simulated data

We demonstrate the power of PLTVA framework providing an empirical verification
of the fact that the algorithm given by update rules (97) and (98) can produce better
bases in terms of interpretability and sparseness than PLSA and its effect on the suc-
cess of recreating the underlying model. One dataset that has been used to this end is
the Swimmer database. The Swimmer database has been used in Donoho and Stodden
(2004) for demonstrating a case when the PLTVA can provide a unique decomposition
into parts. Some of the images of the Swimmer dataset can be seen in Fig. 2a. The
Swimmer image set is comprised of 256 images of dimensions 32×32 forming a ten-
sor X ∈ �32×32×256+ . Each image contains a “torso” (the invariant part) of 12 pixels
in the center and four “limbs” of 6 pixels that can be in one of 4 positions. We applied
the NMF algorithm given by update rules (13), (14) and (15) (which is equivalent to
PLSA) to matrix X(3) ∈ �1024×256+ (matricization of tensor X in terms of the number
of images). Matrix X(3) is first normalized so as is sums up to one. The resulted bases
given by the columns of matrix Q− are shown in Fig. 2b. As can be seen the NMF
scheme (Lee and Seung 2000) correctly resolves the local parts but fails on the torso,
which is shown as a “ghost” part in all images [this has been also demonstrated in
Donoho and Stodden (2004)].

Next we applied the NTF given by (97) and (98) which is equivalent to PLTVA.
The proposed NTF algorithm computed bases (which are given by the outer product
ql

1 ◦ql
2 and l = 1, . . . , K ) that contain a unique factorization and correctly resolve the

parts (Fig. 2b). Moreover, we performed eigenanalysis to the bases of NMF (PLSA)
and NTF(PLTVA) and the mean number of non-zero eigenvalues for NMF was 31.92
and for NTF was 1. This shows that the proposed NTF correctly decomposed the data
tensors to rank-one basic tensors (or independent factors given the latent variable).

7.2 Face verification experiments

The experiments conducted with the XM2VTS database used the protocol described
in Messer et al. (1999). The images were aligned semi-automatically according to the
eyes’ position of each facial image using the eye coordinates. The facial images were
down-scaled to a resolution of 64 × 64 pixels. Histogram equalization was used for

Fig. 2 Some images of the Swimmer database and the corresponding bases for PLSA and PLTVA,
a Swimmer images; b PLSA bases images; c PLTVA bases images
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the normalization of the facial image luminance and every image was normalized so
that is sums up to one.

The XM2VTS database contains 295 subjects, four recording sessions and two
shots (repetitions) per recording session. It provides two strict experimental setups,
namely, Configuration I and Configuration II (Messer et al. 1999). Each configuration
is divided into three different sets: the training set, the validation (in Messer et al.
(1999) the set was named evaluation set) and the test set. The training set is used to
create client and impostor models for each person. The evaluation set is used to learn
the verification decision thresholds. In both the original and the revised manuscript
the evaluation set was used in order to learn the parameters of the various methods.
That is, the feature dimensionality, kernel parameter and the thresholds were learned
using the evaluation set and then the ones which lead to the best EER for every tested
method were applied afterwards to the test set. For both configurations, the training set
had 200 clients, 25 evaluation impostors and 70 test impostors. The two configurations
differed in the distribution of client training and client evaluation data. For additional
details concerning the XM2VTS database an interested reader is referred to Messer et
al. (1999).

The procedure followed in the experiments was the one also used in Zafeiriou et
al. (2006). For comparison reasons the same methodology, using Configuration I of
the XM2VTS database, was used. The performance of the algorithms is quoted for
the Equal Error Rate (EER) which is the scalar figure of merit that is often used to
judge the performance of a verification algorithm. An interested reader is referred
to Zafeiriou et al. (2006) and Messer et al. (1999) for more details concerning the
XM2VTS protocol and the experimental procedure followed. We have applied both
the NMF algorithm which is equivalent to asymmetric PLSA and the proposed NTF
algorithm given by (109) and (110) which is the tensor extension of asymmetric PLSA
model. In case of NMF we computed the matrix that corresponds to P(x1|z) and in
case of NTF we computed two matrices on that corresponds to P(x1|z) and the other
one to P(x2|z).

In Zafeiriou (2009a) for extracting features the author projected the images using
the bases ql

1 ◦ql
2. In this paper we extract features directly from PLSA or PLTVA. That

is, we extract features P(z|l) from a novel image l by applying update rules (110) using
as P(x1|z) and P(x2|z) the matrices that have been computed from the training set (and
similar for NMF). Then, the features P(z|l) are used for accepting or rejecting a claim.
The best EER using the NMF algorithm that is equivalent to asymmetric PLSA was
measured about 2.9% while the best EER for the corresponding NTF algorithm was
measured about 1.6% (the best EER for the tested methods is summarized in Table 1).
That is, the proposed algorithm resulted to better verification performance. Figure 3
plots the EER as a function of feature dimensionality for the projections based NTF
proposed (Zafeiriou 2009a) (abbreviated as NTF–KL–proj), the KL–NTF using as
features P(z|l) and the proposed KL–NMF using as features P(z|l), as well.

Table 1 EER for the various
tested methods

METHOD KL–NMF KL–NTF–Proj. Proposed KL–NTF

EER 2.9% 3.8% 1.6%
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Fig. 3 EER versus feature dimensionality

Table 2 Mean Recognition
Error and Variance

METHOD ORL FERET

KL–NMF 85.1 (±4.2) 72.6 (±4.7)

KL–NTF–Proj. (Zafeiriou 2009a) 87.85 (±2.7) 84.52 (±3.5)

Proposed KL–NTF 90.2 (±2.9) 86.2 (±2.7)

7.3 Face recognition experiments

Apart of face verification experiments in XM2VTS database we run experiments on
ORL and FERET (Phillips et al. 2009, 2000) databases. ORL database consists 40
persons with 10 images each. We used 70 people from the FERET database with 6
images per person. For both databases, half of the images for each person were ran-
domly selected as training set and the remaining as test set. In Table 2 we report the
average recognition rate over five random splits of the data and the standard devia-
tion. The test methods were the same applied on XM2VTS for face verification (i.e.,
NMF, KL–NTF method proposed in Zafeiriou (2009a) and the proposed KL–NTF
methods). As can be seen the proposed method achieved the best recognition rate in
both databases.

8 Conclusions

In this paper we presented new algorithms for NTF based on Kullback–Leibler diver-
gence. We explored the properties of the optimization problems, investigated the con-
vergence properties and calculated generalized pythagorean rules for KL divergence
by formulating the problem as a Csiszar–Tusnady procedure. We explored the relation
between the proposed algorithms and probabilistic tensor latent component analysis
and generalized over (Finesso and Spreij 2006; Gaussier and Goutte 2005; Ding et al.
2008) and (Shashanka et al. 2008). We proposed decompositions for both symmetric
and asymmetric probabilistic latent tensor analysis models. We demonstrate the use-
fulness of the proposed procedure using both simulated and real life data. We believe
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that the proposed algorithms can be used in a variety of applications that span several
disciplines such as feature extraction, clustering and classification.

Acknowledgment This work has been supported by the EPSRC project EP/E028659/1 Face Recognition
using Photometric Stereo.

9 Appendix

10 Proof of Proposition 2.1

As in Finesso and Spreij (2006), we first prove that there exists a sequence
of matrices (U1, U2, . . . , Un) with [U1e]i1 = ∑I2,...,In

i2=1,...,in=1 xi1i2...in and U j e =
e ∀ j ∈ {2, . . . , n} for which DKL

(
X ||∑K

l=1 ©n
j=1ul

j

)
is finite. Now, if we choose

[U1]i1,l = 1
K

∑I2,...,In
i2=1,...,in=1 xi1i2...in and for j ∈ {2, . . . , n} we choose [U j ]i j l =

1∑I1,...,In
i1=1,...,in=1 xi1 ...in

∑
i j

xi1...i j−1i j i j+1...in . Note that under these conditions U j e = e and

[U1e]i1 = ∑
i1

xi1i2...in and all the elements ul
j ∀ j = {1, . . . , n} and ©n

j=1ul
j are

nonnegative and finally the cost DKL

(
X ||∑K

l=1 ©n
j=1ul

j

)
is finite.

Next, we shall show that we can restrict ourselves to minimization over a com-
pact set L of matrices. It will be shown that for positive matrices U1, . . . , Un ,
there exist positive matrices U̇1, . . . , U̇n with

(
U̇1, . . . , U̇n

) ∈ L such that

DKL

(
X ||∑K

l=1 ©n
j=1u̇l

j

)
≤ DKL

(
X ||∑K

l=1 ©n
j=1ul

j

)
. We choose arbitrary

U0
1, . . . , U0

n and we calculate U1
1, . . . , U1

n according to the update rules in (36). Hence,[
U1

1e
]

i1
= ∑I2,...,In

i2=1,...,in=1 xi1i2...in and U1
j e = e ∀ j ∈ {2, . . . , n}. Hence, it is sufficient

to confine search to the compact set L where the above constraints are valid.
Fix a set of indices i1, . . . , in . Since we can compute the divergence elementwise,

we have the trivial estimate:

DKL

(
X ||

K∑

l=1

©n
j=1ul

j

)
≥ xi1...in log

xi1...in∑K
l=1

∏n
j=1 ul

i j j

− xi1...in +
K∑

l=1

n∏

j=1

ul
i j j

(111)

Since for xi1...in function di1...in (x) : x → log
xi1...in

x − xi1...in + x is decreas-
ing on (0, xi1...in ), we have for any sufficiently small xi1...in < ε < 0 that
di1,...,in (x) > di1...in (ε) for x ≤ ε and of course limε→0 di1...in (ε) = ∞. Hence,
in order to find the minimum of di1...in , it is sufficient to look at x ≥ ε. Let
ε0 > 0 and such that ε0 < {min{xi1...in } : xi1...in > 0}. Let X bet the set of
U1, U2, . . . , Un such that

∑K
l=1

∏n
r=1 ul

ir ,r
≥ 0 for all i1, . . . , in with xi1...in > 0.

Then, the set X is closed. Take now K = L ∩ X , then K is the desired compact
set. Let us observe that K is non-empty for sufficiently small ε0. Clearly, the map

U1, U2, . . . , Un → DKL

(
X ||∑K

l=1 ©n
j=1ul

i j

)
is continuous on K and thus attains

its minimum.
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11 Proof of

DKL

(
X ||∑K

l=1
∏n

j=1 ul
j

)
= pDKL

(
P||∑K

l=1 ©n
j=1ql

j

)
+ DKL(p||w1)

Since
∑I1,...,In

i1=1,...,in=1 pi1...in = 1 and
∑I1,...,In ,K

i1=1,...,in=1,l=1

∏n
r=1 ql

ir r = 1 we have:

DKL

(
X ||

∑K

l=1
©n

j=1ul
j

)

=
∑I1,...,In

i1=1,...,in=1

⎛

⎝xi1...in log
xi1...in∑K

l=1
∏n

j=1 ul
i j , j

− xi1...in +
∑K

l=1

∏n

j=1
ul

i j j

⎞

⎠

=
∑I1,...,In

i1=1,...,in=1
ppi1...in log

pxi1...in

w1
∑K

l=1
∏

j ql
i j j

− pxi1...in +w1

∑K

l=1

∏n

j=1
ql

i j j

= p

⎛

⎝
∑I1,...,In

i1=1,...,in=1
pi1...in log

xi1...in∑K
l=1

∏n
j=1 ql

i j j

⎞

⎠ +
(

p log
p

w1
− p + w1

)

= pDKL

(
P||

∑K

l=1
©n

j=1ql
j

)
+ DKL(p||w1) (112)

12 Proof of Theorem 2.1

Before we proceed to the proof, one should refer to the proof of Lemma 2.2 for
some notation definition that should be used. We first show that Q(t)

1 , . . . , Q(t)
n form

convergent sequences. We start with Eq. 76. By summing over t , we obtain:

DKL

(
P||Q(0)

)
− DKL

(
P||Q(t)

)

=
(t−1)∑

k=1

(
DKL

(
Vk ||Vk+1

)
+ DKL

(
Q(k+1)||Q(k)

))
(113)

It follows that
∑∞

k=1 DKL
(V(k)||V(k+1)

)
and

∑∞
k=1 DKL

(Q(t+1)||Q(t)
)

are finite.
Now by using the Hellinger distance, H (P, Q) ≤ DKL (P||Q) (Shiryaev 1996). In our
case we have H

(
Q

(k), Q
(k+1)

) = ∑I1,K ,I2,...,In
i1=1,l=1,i2=1,...,in=1(

√
Q(k)(i1, l, i2, . . . , in) −√

Q(k+1)(i1, l, i2, . . . , in))2. So we obtain that:

∞∑

k=1

H
(

Q(k), Q(k+1)
)

< ∞ (114)

We therefore have that, pointwise, tensor Q(t) forms a Caushy sequence and hence it
has a limit Q∞. We shall show that Q∞ belongs Q. Before we proceed, let us define the

following notation. Q(i j , l) = ∑I1,...,I j−1,I j+1,...,In
i1=1,...,i j−1=1,i j+1=1,...,in=1 Q(i1, l, i2, . . . , in),Q(l)
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= ∑I1,...,In
i1=1,...,in=1 Q(i1, l, i2, . . . , in) and Q (

i1, l, i2, . . . , i j−1, i j+1, . . . , in
) =

∑I j
i j =1 Q (i1, l, i2, . . . , in). This notation will be used for other tensors as well.

Since Q(t)(i1, l, i2, . . . , in) converges to limits O∞(i1, l, i2, . . . , in), by summa-
tion, we have that the marginals Q(t)

1 (i1, l) = Q(t)(i1, l) converge to limits Q∞(i1, l)
and likewise we have convergence of the marginals Q(t)(i j , l) to Q∞(i j , l) and Q(t)(l)

to Q∞(l). Hence, if Q∞(l) > 0, then the Q∞
j (i j , l) converge to Q∞

j (i j , l) = Q∞(i j ,l)
Q∞(l)

and we have Q∞(i1, l, i2, . . . , l, in) = Q∞(i1, l, i2, . . . , i j−1, i j+1, . . . , l, in)

Q∞
j (i j , l) for j = 2, . . . , n. Now for the case where Q∞(l0) = 0 for some l0. In

this case both Q(i1, l, i2, . . . , in) and Q∞(i1, l) are zero, but still we may have a
factorization Q∞(i1, l, i2, . . . , in) = Q∞

1 (i1, l0)Q∞
2 (i2, l0) . . . Q∞

n (in, l0) where we
may assign arbitrary values to Q∞

j (i j , l0) for j = {2, . . . , n}. Let L be the set of l for

which
∑I1

i1=1 Q∞
1 (i1, l) > 0. Then, O∞(i1, . . . , in) = ∑

l∈L O∞(i1, l) . . . O∞(in, l)

and the O(t) converge to O∞ and the theorem is proven.

13 Proof of Theorem 2.2

By computing the first order partial derivatives of the objective function, using the
middle term of Eq. 45, we can rewrite the update Eqs. 48 and 49 as:

Q(t+1)
1 (i1, l) = Q(t)

1 (i1, l)

(
− ∂ D(t)

KL

∂Q1(i1, l)
+ 1

)
(115)

and for j = 2, . . . , n

Q(t+1)
j (i j , l)

⎛

⎝
I1∑

i1=1

Q(t+1)
1 (i1, l)

⎞

⎠

= Q j (i j , l)

⎛

⎝− ∂ D(t)
KL

∂Q j (i j , l)
+

I1∑

i1=1

Q(t+1)
1 (i1, l)

⎞

⎠ (116)

where
∂ D(t)

KL
∂Q1(i1,l)

stands for the partial derivative evaluated at (Q(t)
1 , . . . , Q(t)

n ) and like-

wise
∂ D(t)

KL
∂Q j (i j ,l)

.

Let (Q1, . . . , Qn) be a limit point of the algorithm (i.e., Q(t+1)
j = Q(t)

j for all j).
Equations 115 and 116 become:

Q1(i1, l) = Q1(i1, l)

(
− ∂ DKL

∂Q1(i1, l)
+ 1

)
(117)
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and

Q j (i j , l)

⎛

⎝
I1∑

i1=1

Q1(i1, l)

⎞

⎠ = Q j (i j , l)

⎛

⎝− ∂ D(t)
KL

∂Q j (i j , l)
+

I1∑

i1=1

Q1(i1, l)

⎞

⎠ (118)

which implies:

Q j (i j , l)
∂ D(t)

KL

∂Q j (i j , l)
= 0 (119)

for all j = 1, . . . , n.
First, we start with Q1. Suppose that for some i1 and l we have Q1(i1, l) > 0, then

necessarily ∂ DKL
∂Q1(i1,l)

= 0. Now, suppose for a pair i1 and l we have Q1(i1, l) = 0

and ∂ DKL
∂Q1(i1,l)

< 0. Of course, by continuity, this partial derivative will be negative
in a sufficiently small neighborhood of this limit point. Since, we deal with a limit
point of the algorithm, we must have infinitely often Q(t+1)

1 (i1, l) < Q(t)
1 (i1, l). From

(117), we then conclude that in these points we do have ∂ DKL
∂Q1(i1,l)

> 0. Clearly, this
contradicts our assumption of a negative partial derivative. Hence, we conclude that

∂ DKL
∂Q1(i1,l)

≥ 0 when Q1(i1, l) = 0.
For j = 2, . . . , n, let Q j (i j , l) > 0. Then the corresponding partial derivative

is zero. Let l be such that Q j (i j , l) = 0 and suppose that we have ∂ DKL
∂Q j (i j ,l)

< 0. If

we run the algorithm, then
∂ D(t)

KL
∂Q j (i j ,l)

/
∑I1

i1=1 Q(t+1)
1 (i1, l) converges to a negative limit,

whereas
∑I1

i1=1 Q1(i1, l)/
∑I1

i1=1 Q(t+1)
1 (i1, l) converges to one. Hence, there is η > 0

such that ∂ DKL
∂Q j (i j ,l)

< −2η/3 and
∑I1

i1=1 Q1(i1, l)/
∑I1

i1=1 Q(t+1)
1 (i1, l) > 1 − η/3.

Hence, eventually we shall have from (118):

Q(t+1)
j (i j , l) − Q(t)

j (i j , l) = Q(t+1)
j

⎛

⎜⎝−
∂ D(t)

KL
∂Q j (i j ,l)

∑I1
i1=1 Q(t+1)

1 (i1, l)

+
∑I1

i1=1 Q1(i1, l)
∑I1

i1=1 Q(t+1)
1 (i1, l)

⎞

⎟⎠ > η/3 (120)

which contradicts with the convergence of Q(t)
j (i j , l) to zero.

This theorem says nothing about the convergence of Q j (i j , l) for those l such that∑I1
i1=1 Q∞

1 (i1, l) = 0. But this behavior is uninteresting from a factorization point of
view. If the lth column of Q∞

1 is zero, the values of the lth column of Q∞
j are not

relevant, since they don’t appear in the product
∑K

m=1 ©n
j=1ql

j . This case corresponds
to a factorization with less than K rank-one tensors.
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14 Proof of Corollary 2.1

Consider the Lagrangian function L defined by

L (Q1, . . . , Qn) = DKL

(
P||

K∑

l=1

©n
j=1ql

j

)
−

I1,K∑

i1=1,l=1

Λ1(i1, l)Q1(i1, l) − · · ·

−
In ,K∑

in=1,l=1

Λn(in, l)Qn(in, l) (121)

where Λ j is a sequence of n matrices of Lagrangian multipliers. Let us concentrate
on partial derivative ∂L

∂Q1(i1,l)
in a fixed point of the algorithm. From Theorem 2.2,

it is known that Q1(i1, l) ∂ DKL
∂Q1

= 0. Suppose that Q1(i1, l) > 0, then ∂ DKL
Q1(i1,l)

= 0
and the KKT conditions on for this variable are satisfied with Λ(i1, l) = 0. In case
Q1(i1, l) = 0, we know from Theorem 2.2 that ∂ DKL

∂Q1(i1,l)
≥ 0. By choosing Λ(i1, l) =

∂ DKL
∂Q1(i1,l)

≥ 0, we see that the Karush–Kuhn-Tucker conditions are satisfied.

15 Proof of Lemma 2.1

If ℘ ∩ � �= ∅ then there exist a tensor O ∈ ℵ which also belongs to ℘, there-
fore P = ∑K

l=1 ©n
j=1ql

j . Conversely, if we have P = ∑K
l=1 ©n

j=1ql
j with K rank-

one-tensors, then tensor V(i1, l, i2, . . . , in) = ∏K
j=1 Q j (i j , l) clearly belongs to ℘.

Without loss of generality, we assume that Q j e = e, so that V belongs to ℵ as well.

16 Proof of Proposition 2.2

With V(opt) = V(opt)(Q), being the optimal solution of the partial minimization over
P , we have:

DKL(V||Q) ≥ DKL

(
V(opt)||Q

)

= DKL(P||O)

≥ min
O∈ℵ

DKL(P||O). (122)

It follows that infV∈℘,Q∈� DKL(V||Q) ≥ minO∈ℵ DKL(P||O).
Conversely, let Q ∈ � be given and let O be defined as

O(i1, . . . , in) = ∑K
l=1 Q(i1, . . . , l, in). Now from

DKL(P||O) = DKL

(
V(opt)(Q)||Q

)

≥ inf
V∈℘,Q∈�

DKL(V||Q), (123)

123



Nonnegative tensor factorization as an alternative Csiszar–Tusnady procedure 459

we obtain

min
O∈ℵ

DKL(P||O) ≥ infV∈℘,Q∈� DKL(V||Q) (124)

Finally, we show that the infima can be replaced by minima. Let Q(opt)
1 , Q(opt)

2 , . . . ,

Q(opt)
n be such that (Q1, . . . , Qn) → DKL

(
P||∑K

l=1 ©n
j=1ql

j

)
is minimized (their

existence is guaranteed by Proposition 2.1).

17 Proof of Lemma 2.2

To prove Pythagorean rule (63) we start by expanding DKL
(V||V(opt)

)
and

DKL
(V(opt)||Q)

using the P(opt) from Eq. 57 and
∑K

l=1 V(i1, . . . , in−1, l, in) =
P(i1, . . . , in):

DKL

(
V||V(opt)

)
+ DKL

(
V(opt)||Q

)

=
∑I1,K ,I2,...,In

i1=1,l=1,i2=1,...,in=1
V(i1, l, i2, . . . , in) log

V(i1, l, i2, . . . , in)O(i1, . . . , in)

Q(i1, . . . , in)P(i1, . . . , in)

+
∑I1,K ,I2,...,In

i1=1,l=1,i2=1,...,in=1
Q(i1, l, i2, . . . , in)

P(i1, . . . , in)

O(i1, . . . , in)
log

P(i1, . . . , in)

O(i1, . . . , in)

=
∑I1,K ,I2,...,In

i1=1,l=1,i2=1,...,in=1
V(i1, l, i2, . . . , in) log

V(i1, l, i2, . . . , in)

Q(i1, l, i2, . . . , in)

+
∑I1,K ,I2,...,In

i1=1,l=1,i2=1,...,in=1
V(i1, l, i2, . . . , in) log

O(i1, . . . , in)

P(i1, . . . , in)

+
∑I1,...,In

i1=1,...,in=1
O(i1, . . . , in)

P(i1, . . . , in)

O(i1, . . . , in)
log

P(i1, . . . , in)

O(i1, . . . , in)
= DKL(P||O)

(125)

To prove the relation (64) insert Eq. 57 into DKL(V(opt)||Q) and sum over l to get:

DKL(V(opt)||Q)

=
I1,K ,I2,...,In∑

i1=1,l=1,i2=1,...,in=1

P(i1 = 1, . . . , in = 1)
Q(i1, l, i2, . . . , in)

O(i1, . . . , in)
log

P(i1, . . . , in)

O(i1, . . . , in)

= DKL(V||Q) (126)

To prove the Pythagorian rule (66) we should introduce the following notation.
Let V(i1, l) = ∑I2,...,In

i2=1,...,in=1 V(i1, l, i2, . . . , in), for j = {2, . . . , n} then V(i j , l) =
∑I1,...,I j−1,I j+1,...,In

i1=1,...,i j−1=1,i j+1=1,...,in=1 V(i1, l, i2, . . . , in). Moreover, for j = {2, . . . , n} we

introduce V(i j |l) = V(i j ,l)
∑I j

i j =1 V(i j ,l)
. For Q we introduce the similar notation and observe
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that Q(i1, l) = Q1(i1, l), Q j (i j |l) = Q j (i j ,l)
∑I j

i j =1 Q j (i j ,l)
, Q(opt)

1 (i1, l) = V(i1, l) with j =

{2, . . . , n} and Q(opt)
j (i j , l) = V(i j |l).

Now we compute:

DKL(V||Q) − DKL

(
V||Q(opt)

)

=
∑I1,K ,I2,...,In

i1=1,l=1,i2=1,...,in=1
V(i1, l, i2, . . . , in)

(
log

V(i1, l)

Q1(i1, l)
+ log

V(i2|l)
Q1(i1, l)

+ log
V(i2|l)

Q2(i2, l)
+ · · · + log

V(in|l)
Qn(in, l)

)

=
∑K

i1=1,l=1
V(i1, l) log

V(i1, l)

Q1(i1, l)
+

∑I2,K

i2=1,l=1
V(i2, l) log

V(i2|l)
Q2(i2, l)

+ · · ·

+
∑In ,K

in=1,l=1
V(in, l) log

V(in|l)
Qn(in, l)

=
∑I1,K

i1=1,l=1
V(i1, l) log

V(i1, . . . , l)

Q1(i1, l)
+

∑I2,K

i2=1,l=1
V(i2, l) log

V(i2|l)
Q2(i2, l)

+ · · ·

+
∑I2,K

in=1,l=1
V(in, l) log

V(in|l)
Qn(in, l)

= DKL

(
Q(opt)||Q

)
(127)

18 Generalized Pythagorean rule in (72)

We start from Eq. 70 Lemma 2.3

EP DKL

(
P

U |V ||QU |V )
= EP DKL

(
P

U |V ||PU |V1
)

+EP DKL

(
P

U |V1 ||QU |V1
)

(128)

by letting V2 = Y1, U = Y2, . . . , Yn and V1 = X and replacing in Eq. 71 then

DKL (V||Q) = EP DKL

(
P

Y2,...,Yn |X,Y1 ||PY2,...,Yn |X)

+EP DKL

(
PY2,...,Yn |X ||QY2,...,Yn |X)

+DKL

(
P

Y1,X ||QY1,X
)

(129)

now for

EP DKL

(
P

Y2,...,Yn |X ||QY2,...,Yn
)

= EP

∑
P

Y2,...,Yn |X (Y2 = i2, . . . , Yn = in|X = l)
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× log
P

Y2,...,Yn (Y2 = i2, . . . , Yn = in|X = l)

QY2,...,Yn |X (Y2 = i2, . . . , Yn = in|X = l)

= EP

∑
P(Y2 = i2|X = l) . . . P(in = in|X = l)

× log
P(Y2 = i2|X = l) . . . P(Yn = in|X = l)

Q(Y2 = i2|X = l) . . . Q(Yn = in|X = l)

= EP

∑I2,...,In

i2=1,...,in=1
P(Y2 = i2|X = l) . . . P(in = in|X)

×
(

log
P(Y2 = i2|X = l)

Q(Y2 = i2|X = l)
+ · · · + log

P(Yn = in|X = l)

Q(Yn = in|X = l)

)

= EP

(
DKL(PY2|X ||QY2|X ) + · · · + DKL(PYn |X ||QYn |X )

)

=
∑

i=2,...,n

EP DKL

(
P

Yi |X ||QYi |X
)

(130)

19 Proof of Proposition 2.3

The two Pythagorean rules from Lemma 2.2 now take the forms

DKL

(
V(t)||Q(t)

)
= DKL

(
V(t)||Q(t+1)

)
+ DKL

(
Q(t+1)||Q(t)

)

DKL

(
V(t)||Q(t+1)

)
= DKL

(
V(t)||V(t+1)

)
+ DKL

(
V(t+1)||V(t)

) (131)

By adding these two equations results in

DKL(V(t)||Q(t)) = DKL(V(t)||V(t+1)) + DKL(V(t+1)||Q(t+1))

+DKL(Q(t+1)||Q(t)) (132)

and since DKL(V(t)||Q(t)) = DKL(P||O(t)) from (64) the result follows.
A practical result of the above is the following. If one starts the algorithms with

matrices (Q0
1, . . . , Q0

n) in the interior of the domain, the iterations will remain in
the interior. Suppose that, at step n, the update gain is zero. Then, we get that
DKL(Q(t+1)||Q(t)) = 0. Hence the tensors Q(t+1) and Q(t) are identical. From this
it follows by summation that Q(t+1)

1 = Q(t)
1 . But, then we also have the equality for

j �= 2

Q(t)
1 (i1, l) . . . Q(t)

j−1(i j−1, l)Q(t+1)
j (i j , l)Q(t)

j+1(i j+1, l) . . . Q(t)
n (in, l)

= Q(t)
1 (i1, l) . . . Q(t)

j−1(i j−1, l)Q(t+1)
j (i j , l)Q(t)

j+1(i j+1, l) . . . Q(t)
n (in, l) (133)
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for all i1, . . . , in and l. Since Q(t)
1 (i1, l) are positive and summing for all r =

{2, . . . , n} − { j} then we have Q(t+1)
j = Q(t)

j . Hence, the updating formulas strictly
decrease the objective function until the algorithm reaches a fixed point.

20 Proof of Lemma 2.4

We can start from Eq. 79

W
(
Q1, . . . , Qn, Q′

1, . . . , Q′
n

) = DKL

(
P||Q′Y )

+ EP DKL

(
Q

X |Y ||QX |Y ′)
(134)

since Q
X |Y (Y1 = i1, . . . , Yn = in) = Q(Y1=i1,X=l,Y2=i2,...,Yn=in)

O(Y1=i1,...,Yn=in)
we can expand as:

EP DKL

(
Q

X |Y ||QX |Y ′)

=
I1,...,In∑

i1=1,...,in=1

P (i1, . . . , in)

K∑

l=1

Q (Y1 = i1, X = l, Y2 = i2, . . . , Yn = in)

O(Y1 = i1, . . . , Yn = in)

× log
Q(Y1=i1,...,Yn=in ,X=l)

O(Y1=i1,...,Yn=in)

Q′(Y1=i1,...,Yn=in ,X=l)
O′(Y1=i1,...,Yn=in)

=
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in)

K∑

l=1

Q(Y1 = i1, X = l, Y2 = i2, . . . , Yn = in)

O(Y1 = i1, . . . , Yn = in)

×
(

log
Q(Y1 = i1, X = l, Y2 = i2, . . . , Yn = in)

Q′(Y1 = i1, X = l, Y2 = i2, . . . , Yn = in)

+ log
O′(Y1 = i1, . . . , Yn = in)

O(Y1 = i1, . . . , Yn = in)

)

=
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in)

K∑

l=1

Q1(i1, l) . . . Qn(in, l)

O(Y1 = i1, . . . , Yn = in)

× log
Q1(i1, l) . . . Qn(in, l)

Q′
1(i1, l) . . . Q′

n(in, l)

+
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in)

K∑

l=1

Q(Y1 = i1, X = l, Y2 = i2, . . . , Yn = in)

O(Y1 = i1, . . . , Yn = in)

× log
O′(Y1 = i1, . . . , Yn = in)

O(Y1 = i1, . . . , Yn = in)
(135)

then

A2 =
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in)

K∑

l=1

Q(Y1 = i1, X = l, Y2 = i2, . . . , Yn = in)

O(Y1 = i1, . . . , Yn = in)
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× log
O′(Y1 = i1, . . . , Yn = in)

O(Y1 = i1, . . . , Yn = in)

=
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in) log
O′(Y1 = i1, . . . , Yn = in)

O(Y1 = i1, . . . , Yn = in)
(136)

and

DKL

(
P||Q′Y )

+ A2 =
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in) log
P(i1, . . . , in)

O′(Y1 = i1, . . . , Yn = in)

+
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in) log
O′(Y1 = i1, . . . , Yn = in)

O(Y1 = i1, . . . , Yn = in)

=
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in) log
P(i1, . . . , in)

O(Y1 = i1, . . . , Yn = in)

= DKL(P||O) (137)

For the other term

− A1 =
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in)

K∑

l=1

Q1(i1, l) . . . Qn(in, l)

O(Y1 = i1, . . . , Yn = in)

× log
Q′

1(i1, l) . . . Q′
n(in, l)

Q1(i1, l) . . . Qn(in, l)

=
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in)

K∑

l=1

Q1(i1, l) . . . Qn(in, l)

O(Y1 = i1, . . . , Yn = in)

×
(

log
Q′

1(i1, l)

Q1(i1, l)
+ . . . + log

Q′
n(in, l)

Qn(in, l)

)

=
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in)

×
K∑

l=1

Q1(i1, l) . . . Qn(in, l)

O(Y1 = i1, . . . , Yn = in)
log

Q′
1(i1, l)

Q1(i1, l)
+ . . .

+
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in)

×
K∑

l=1

Q1(i1, l) . . . Qn(in, l)

O(Y1 = i1, . . . , Yn = in)
log

Q′
n(in, l)

Qn(in, l)
. (138)
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Let that we take the first term of (138):

I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in)

K∑

l=1

Q1(i1, l) . . . Qn(in, l)

O(Y1 = i1, . . . , Yn = in)
log

Q′
1(i1, l)

Q1(i1, l)

=
I1,K∑

i1=1,l=1

I2,...,In∑

i2=1,...,in=1

P(i1, . . . , in)Q(i1, . . . , in, l)

O(i1, . . . , in)
log

Q1(i1, l)

Q1(i1, l)

=
I1,K∑

i1=1,l=1

Q′
1(i1, l) log

Q′
1(i1, l)

Q1(i1, l)
= DKL

(
Q

′Y1,X ||QY1,X
)

(139)

Now we can note that:

EQ′ DKL(Q′Y j |X ||QY j |X )

=
K∑

l=1

⎛

⎝
I1,I2,...,In∑

i1=1,i2=1,...,in=1

Q
′(i1, l, i2, . . . , in)

⎞

⎠
I j∑

i j =1

Q′
j (i j , l) log

Q
′(i j , l)

Q(i j , l)

=
K∑

l=1

I1∑

i1=1

Q′
1(i1, l)

I j∑

i j =1

Q′
j (i j , l) log

Q′
j (i j , l)

Q j (i j , l)
. (140)

From the update rules (59) we have

I1,I j∑

i1=1,i j =1

Q′
1(i j , l)Q′

j (i j , l)

=
I1,...,In∑

i1=1,...,in=1

P(i1, . . . , in)

K∑

l=1

Q1(i1, l) . . . Qn(in, l)

O(Y1 = i1, . . . , Yn = in)
(141)

thus, using (140) for j = 2, . . . , n, we have:

∑I1,...,In

i1=1,...,in=1
P(i1, . . . , in)

K∑

l=1

Q1(i1, l) . . . Qn(in, l)

O(Y1 = i1, . . . , Yn = in)
log

Q′
j (i j , l)

Q j (i j , l)

= EQ′ DKL

(
Q

′Y j |X ||QY j |X
)

(142)

using (142) and (139) the Eq. 138 becomes:

− A1 = DKL

(
Q

′Y1,X ||QY1,X
)

+
∑

j

EQ′ DKL

(
Q

′Y j |X ||QY j |X
)

. (143)

Finally, using (143) and (137) the Eq. 79 becomes (83). The other two formulas are
obtained similarly by noticing that optimization of WQ

(
Q′

1

)
and the optimization of
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WQ
(

Q′
j

)
for j = 2, . . . , n separately yield the same Q′

1 and Q′
j for j = 2, . . . , n,

as those obtained by minimization of W .
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