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Abstract

In this paper we present a new database suitable for both
2D and 3D face recognition based on photometric stereo,
the so-called Photoface database. The Photoface database
was collected using a custom-made four-source photomet-
ric stereo device that could be easily deployed in commer-
cial settings. Unlike other publicly available databases the
level of cooperation between subjects and the capture mech-
anism was minimal. The proposed device may also be used,
to capture 3D expressive faces. Apart from the description
of the device and the Photoface database, we present ex-
periments from baseline face recognition and verification
algorithms using albedo, normals and the recovered depth
maps. Finally, we have conducted experiments in order to
demonstrate how different methods in the pipeline of photo-
metric stereo (i.e. normal field computation and depth map
reconstruction methods) affect recognition/verification per-
formance.

1. Introduction

Face recognition researchers have been collecting
databases of face images for several decades now [15,
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while Stefanos Zafeiriou was with Department of Electrical and Electronic
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Chapter 13]. While some databases can be regarded as su-
perior to others, each of them is designed to test different as-
pects of recognition and have their own strengths and weak-
nesses. One of the largest databases available is the FERET
database [17]. This has a total of 1199 subjects with up to
20 poses, two expressions and two light source directions.
The FERET database was originally acquired using a 35mm
camera. Others on the other hand, for example the widely
used CMU PIE database [19] or the Harvard RL database
[11], concentrate more on varying the capture conditions
such as pose and illumination.

The PIE database is one of the most extensively re-
searched. This is due to the fact that the faces are captured
under highly controlled conditions involving 13 cameras
and 21 light sources. The Yale B database [8] offers similar
advantages to the PIE database except with an even larger
number of lighting conditions (64), but just using ten sub-
jects. Nine poses were considered per subject. The original
Yale database [4] was designed to consider facial expres-
sions, with six types being imaged for 15 subjects. Finally,
the extended Yale B database was published. It contains 28
subjects with 9 different poses and 64 illumination condi-
tions [14].

Even though the PIE [19], Yale [8] and extended Yale
[14] databases provide facial samples taken under differ-
ent illumination directions, they contain very few persons.
More recently, the CMU Multi-PIE database [10] has been
constructed with the aim of extending the image sets to in-
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clude a larger number of subjects (337) and to capture faces
taken in four different recording sessions. This database
was recorded under controlled laboratory conditions, as
with the others mentioned above.

Recent trends in face recognition research to incorporate
three-dimensional information into the recognition process
lead to the collection of databases with 3D facial samples.
This trend is due to the fact that a large number of view-
ing conditions adversely affect the 2D appearance of a face
image but not the 3D appearance. This was the motivation
for the FRGC2.0 database [16], which consists of a multi-
partition 2D and 3D database including a validation set of
4007 scans of 466 subjects. A Minolta Vivid 900/910 series
laser range finder [24] was used for data capture.

This paper describes the construction of a new type of
database of faces to aid research into face recognition. As
explained, there is a growing number of related databases
available for public research use. Each of these is de-
signed to test different aspects of recognition, such as ex-
pression or illumination invariance. These databases have
been built under meticulously designed and calibrated phys-
ical arrangements. The purpose of the new database de-
scribed in this paper, however, is to capture a large num-
ber of faces in a more industrial setting. Most existing 3D
capture devices (e.g. [23, 24]) are both financially and com-
putationally expensive which can be highly inhibiting for
commercial application. By contrast, we use a four-source
high-speed capture arrangement, which permits the use of
photometric stereo methods [22] to recover the 3D informa-
tion with minimal computational expense. Furthermore, the
device is significantly financially cheaper than most other
3D capture mechanisms.

Two important features of the database are that (1) the
level of cooperation between subjects and the capture mech-
anism is minimal, and that (2) the capture process was car-
ried out in a realistic commercial setting. For this reason,
we placed the device near the entrance of a busy workplace
and gave all of the volunteer subjects the sole instruction to
“walk through the archway”. This arrangement accurately
simulates one of the ultimate goals for access-control face
recognition, where there is no interaction required between
the subjects and the technology. The database therefore
offers an ideal testbed for face recognition algorithms de-
signed for real world applications. As photometric stereo
can be applied to the four images to calculate the 3D struc-
ture of the face, the database also allows for both 2D, 3D
and hybrid algorithms to be evaluated.

In addition to describing the device and the database, we
also present baseline experiments on the Photoface database
applying baseline face recognition/verification techniques
on albedo, depth and normal images. The focus of the con-
ducted experiments is neither to compare various 2D/3D
face recognition and verification methods nor to demon-

strate that fusion of information of 3D and 2D data in-
crease the recognition performance [5],[9]. The aim of the
experiments conducted in this paper is: 1) to demonstrate
how different methods in the pipeline of photometric stereo
(i.e. normal field computation and depth map reconstruction
methods) affect recognition/verification performance, and
2) to verify that a similar conclusion to [5] can be drawn
for the modalities derived from photometric stereo meth-
ods. We applied three different photometric stereo meth-
ods in order to compute the normal field and the albedo
image and five different integration methods that compute
the height map from the normal field. To the best of the au-
thors’ knowledge this is the first experiment on a real-world
photometric stereo database which also explores the effect
of the use of different methods in the processing pipeline.
In summary, the contributions of this paper are:

• The presentation of the first realistic commercial ac-
quisition arrangement for the collection of 2D/3D fa-
cial samples using Photometric Stereo (PS).

• The presentation of the first facial image database col-
lected under such a setting.

• The demonstration of how different methods in the
pipeline of PS affect recognition/verification perfor-
mance via a detailed set of recognition/verification ex-
periments using a range of algorithms.

2. Capturing Device and Database Collection
The Photoface database was collected using a custom-

made four-source PS device. Unlike previous constructions,
our aim was to capture the data using a hardware that could
be easily deployed in commercial settings. The setup is as
follows: individuals walk through the archway towards the
camera located on the back panel and exit through the side
(Fig. 1). This arrangement makes the device suitable for
usage at building entrances, high security areas, airports etc.
The presence of an individual is detected by an ultrasound
proximity sensor placed before the archway. This can be
seen in Fig. 1 on the horizontal beam towards the left-hand
side of it.

The hardware equipment used to create the entire system
was the following:

• Camera: Basler 504kc with Camera Link interface op-
erating at 200fps, 1ms exposure time, placed approxi-
mately at a distance of 2m from the head of the subject.

• Lens: 55mm, f5.6 Sigma lens.

• Light sources: low cost Jessops M100 flashguns, ap-
proximately at a distance of 75cm from the head of the
subject.
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Figure 1. The image capturing device. One of the light sources and
an ultrasound trigger are shown on the left. The camera is located
at the back panel.

• Device trigger: Baumer highly directional ultrasound
proximity switch. Range 70cm.

• Hardware IO card (for receiving and distributing trig-
gers): NI PCI-7811 DIO.

• Frame grabber: NI PCIe-1429.

• Interfacing code: NI LabVIEW (the reconstruction and
recognition algorithms were written in MATLAB).

The device also contains a monitor (as can be seen in Fig. 1)
that provides instructions and indicates whether or not an
individual was recognised, in the case of a recognition sce-
nario, or whether an identity claim was accepted or rejected,
in the case of a verification scenario.

The device captures one image of the face for each light
source in a total of approximately 20ms. This time, also
chosen for our experiments, was regarded as an adequately
short period of time in which the inter-frame motion is no
greater than a few pixels. The only case in which the perfor-
mance of the system is expected to deteriorate significantly,
is when a person runs passing through the device, due to the
large inter-frame motion observed. For each person passing
through the device, the following sequence of events takes
place to capture the four images:

1. Await signal from ultrasound sensor.

2. Send trigger to camera.

3. Await integration enabled signal from camera.

4. Discharge first flashgun.

5. Await end of integration enabled signal.

6. Repeat from step 2 for the remaining light sources.

Figure 2. Four raw input images.

Figure 2 shows an example of four raw images of an in-
dividual (the resolution of the captured images were 1280×
1024).

The capturing device was placed at the entrance of a busy
workplace for a period of four months. Volunteer employ-
ees casually passed through the booth at regular intervals
throughout this period. No instructions were given, other
than to instructing them to walk through the archway look-
ing at the camera or monitor. Thus, the volunteers typically
passed through the device on their way in and out of the
building. This arrangement is of great importance as:

1. It means that the capturing conditions were realistic for
a real-world example. This is in contrast with exist-
ing face databases such as the widely used CMU-PIE
database [10] or the FRGC database [16].

2. The whole setup was non-invasive, thus being suitable
for any recognition algorithms developed for immedi-
ate commercial use.

3. Statistics of the Database
The Photoface database was collected in a period of four

months (February 2008 to June 2008). It consists of a total
of 1,839 sessions of 261 subjects and a total of 7,356 im-
ages. Some individuals used the device only once, while
some others walked through it more than 20 times. The
majority of people in the database are men (227 men over
34 women). The vast majority of the individuals are Cau-
casians (257 persons). Since there was no supervision, most
of the captured faces in the database display an expres-
sion (for example more than 600 smiles and more than 200
surprises, open mouth, scream like expression etc. were
recorded).

98 people walked through the device only once. For 126
of the 163 subjects that used the device more than once, the
sessions were collected over a period of more than a week’s
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Figure 3. Four raw input images.

interval. For the majority of those (90 people), this interval
was greater than one month. A histogram corresponding to
the number of subject recordings by the device is depicted
in Figure 3.

4. Photometric Stereo (PS) and Surface Recon-
struction Methods

In this Section we summarise the standard PS method
[6, §5.4], which we implemented using both three and four
light sources. For these experiments we used an implemen-
tation of the standard PS method of Woodham [22]. We
have mainly concentrated on a four-source version of the
technique, although we have also compared our results with
methods using three light sources. For the latter, we omit-
ted the upper-right source in Fig. 1 from the computation.
In order to do so, we examined a few reconstructions us-
ing various combinations of sources, resulting in the con-
clusion that deleting this specific light source was the most
safe choice, as the performance was neither enhanced nor
decreased, in comparison with the removal of one of the
remaining three sources.

The standard PS method we used, assumes three or more
greyscale images of a Lambertian object and constructs the
following matrix equation from Lambert’s Law for each
pixel x = [x, y]:

[I1(x) I2(x) · · · IN (x)]
T

= ρ(x)
[
lT1 lT2 · · · lTN

]T
n(x)

(1)
where Im(x) is themth measured pixel brightness, lm is the
mth light source vector, N is the number of light sources,
ρ(x) is the reflectance albedo and n(x) is the surface unit
normal. Examples of the raw images under 4-lights can be
seen in Figure 2. The intensity values and light source posi-
tions are known a-priori and from these the albedo and sur-
face normal components can be calculated by solving (1).
(example of the computed albedo and surface using the 4-

lights PS are shown in Figures 4 In our experiments, apart
from the above mentioned PS method, we also applied the
PS method proposed in [3].

In the following, we briefly review the problem of re-
constructing a surface from the surface normals. In order
to compute the shape of the surface, we need to obtain
the depth map. This suggests representing the surface as
(x, f(x)), so that the normal is a function of x:

ñ(x) =
1√

1 + ∂f
∂x

2
+ ∂f

∂y

2

(
−∂f
∂x
,−∂f

∂y
, 1

)T
(2)

To recover the depth map, we need to determine f(x) from
the computed values of the unit normal.

Let us assume that the computed value of the unit normal
at some point x is n(x) = [a(x), b(x), c(x)], as calculated
by (1). Then

∂f

∂x
=
a(x)

c(x)

∂f

∂y
=
b(x)

c(x)
. (3)

Here, we also perform another check on the data set. Let
the images P(x) = [a(x)c(x) ] and Q(x) = [ b(x)c(x) ]. Because

∂2f

∂x∂y
=

∂2f

∂y∂x
(4)

we expect

A(x) ≡ ∂ (P(x))

∂y
− ∂ (Q(x))

∂x
(5)

to be small (close to zero) at each point x.
Assuming that the partial derivatives satisfy the above

condition, we can reconstruct the surface up to some con-
stant error in depth. The partial derivatives give the change
in surface height with a small step in either the x or the y di-
rection. This means that we can get the surface by summing
these changes in height along some path. In particular, we
have

f(x) =

∮
C

(
∂f

∂x
,
∂f

∂y

)
· ~dl + c (6)

where C is a curve starting at some fixed point and ending
at x, ~dl is the infinitesimal element along the curve and c
is a constant of integration, which represents the unknown
height of the surface at the starting point. All methods pro-
posed for surface reconstruction solve the above problem
with similar results. In our experiments we applied the sur-
face reconstructions described in [7, 20, 8, 1, 2]. A recent
discussion regarding the accuracy of different algorithms
for face reconstruction from normals can be found [12].
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Figure 4. The reconstructed surface with the computed albedo.

5. Face recognition/verification using Albedo
and Depth Images

In this Section we outline the baseline methods used for
feature extraction from albedo and depth images for face
recognition and verification. The family of methods that
we applied extract features using linear projections (also re-
ferred to as subspace methods). This family includes Princi-
pal Component Analysis (PCA) (the so-called Eigenfaces),
Nonnegative Matrix Factorization (NMF) etc. In our exper-
iments NMF [13] produced the best recognition and verifi-
cation results. In subspace methods, like NMF, the facial
images are lexicographically scanned in order to form vec-
tors Let M be the number of samples in the image database
U = {u1,u2, ..,uM}where ui ∈ <n is a database’s image.
A linear transformation of the original n-dimensional space
onto a subspace with m-dimensions (m � n) is a matrix
WT ∈ <m×n. The new feature vectors yk ∈ <m are given
by:

yk = WT (uk − ū), k ∈ {1, 2, . . . ,M} (7)

where ū ∈ <n is the mean image of all samples. Classi-
fication is performed using a simple distance measure and
a nearest neighbour classifier using the normalized correla-
tion.

5.1. Face Recognition using Normalfaces

In this paper we use a face recognition method based
on the orientation of the normals. The baseline method is
a very easy to implement method that is based on a novel
representation of faces, the so-called Normalfaces. For an
image I using the computed P and Q from PS we compute:

Φ(x) = atan
Q(x)

P(x)
(8)

which is an image that contains the normal orientations. We
measure the orientations in the interval ∈ [−π2 ,

π
2 ]. For two

images Φ1(x) and Φ2(x) we use the following dissimilarity
measure:

d(Φ1(x),Φ2(x)) = 1− 1

NMπ

N×M∑
i=1

|Φ1(xi)−Φ2(xi)|.

(9)
The above dissimilarity measure is then used in order to ex-
tract features using metric multidimensional scaling. Clas-
sification is performed using the normalized correlation in
the new space.

6. Baseline Experiments
6.1. Recognition Experiments

We used the subset of images taken with more than a
week’s interval (126 people). For the majority of them (90
people) the interval was greater than one month. We as-
sessed the recognition performance of all three modalities
(i.e., albedo image, normals and height maps). Moreover,
we experimented using fusing strategies. For the experi-
ments presented here we tested using two setups:

• In the first one, a very challenging experimental pro-
cedure was followed, exploiting only one grayscale
albedo image, the surface normals derived from the
application of PS, and the depth image derived from
the integration of the normal field. Similarly, one
grayscale albedo image, one set of normals and a
height map was used for testing. Most of the train-
ing and testing images display a different facial expres-
sion. One sample face recognition is among the most
challenging face recognition scenarios with various ap-
plications [21]. In [17], a face recognition scenario
was designed based only on one sample per person for
training. Similar recognition/verification experiments
were also described for the FRGC database [16]. A
similar scenario was tested in [5].

• In the second, two samples for training and one for
testing were used. In our database we have 96 persons
with three or more samples per person. The testing
image for all 96 subjects was the same one used in the
one sample experimental setup. This realization was
implemented in order to test whether or not recognition
using two samples of the same modality is better than
fusing information across different modalities.

6.1.1 Face recognition from Albedo Images

Four source, three source and ray trace-based PS methods
were employed for albedo computation. These methods
are abbreviated as 4L-PS, 3L-PS and RAY-PS, respectively.
The recognition rates using one albedo image for training
and one for testing for all the tested PS methods are de-
picted in Figure 5 (a). As it can be seen the recognition rate
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is affected by the PS method applied and noticeably better
recognition performance is achieved by PS methods that use
all four illuminants. The best recognition rate was equal to
78%.

For the case of the two samples experiment, we used a
decision fusion strategy similar to [5]. That is, we com-
bined the matching scores for each person across the two
samples of 2D albedo images and ranked the subjects based
on the combined scores. Scores from each modality are lin-
early normalized to the range of [0, 100] before combining.
We explored various confidence-weighted versions of the
sum, product and minimum rules. Among the fusion rules
that we tested, the sum rule provided the best performance
overall. The recognition rates for the two samples exper-
iments is depicted in Figure 5 (b). As it can be seen, the
use of more than two samples increases the recognition per-
formance. Moreover, the methods which use all four illu-
minants achieved better recognition rates than those using
only three. The best recognition rate was equal to 85%.

It is worth noting here that when using only the 96 per-
sons of the second experiment in the first experiment the
recognition rate was also about 78%, as well.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Experiments using, (a) one albedo image for training
and one for testing; (b) two albedo images for training and one
for testing; (c) one depth image for training and one for testing;
(d) two depth images for training and one for testing; (e) one Nor-
malface for training and one for testing; (f) two Normalfaces for
training and one for testing .

6.1.2 Face recognition from Depth and Normalface
Images

We applied five different methods for surface reconstruc-
tion from the normal field. For the reconstruction methods

we use the following abbreviations: 1) ‘at’ for the method
in [1] 2) ‘dctFC’ for the DCT Frankot-Chellappa method
[8], 3) ‘FC’ for the original Frank-Chellappa method [7], 4)
‘ls’ for the least square solution of the poison equation [20]
and 5) ‘me’ for the reconstruction based on M-estimator [2].
The recognition rates for the one sample experiment and for
all reconstruction and PS methods are plotted in Figure 5
(c). The best recognition result it was equal to 74%. As can
be seen, PS and reconstruction methods greatly affect the
recognition performance. More precisely, four source PS
methods always achieve better recognition results. More-
over, the depth maps that were produced by dctFC con-
stantly outperformed the performance of the depth maps
produced by all other reconstruction methods.

Experiments using two samples for training and one
sample for testing were conducted in a similar manner as
the ones for the albedo images. These results are depicted
in Figures 5 (d). The best recognition result was equal to
86%.

The experiments using NormalFace for all tested PS
methods are depicted in Figures 5 (e) and 5 (f) for one sam-
ple and two samples recognition, respectively.

6.1.3 Fusion 2D and 3D

Multimodal decision fusion is performed by combining the
match scores for each person across the modalities of 2D
albedo and depth image and ranking the subjects based on
the combined scores in a similar manner as in the two sam-
ples experiments. The sum rule provided the best perfor-
mance. We performed fusion only on depth images derived
from the DCT-FC method. Fusion of intensity and geom-
etry information was conducted only on the subset of per-
sons that have more than 2 samples available in order to be
directly comparable with the single modality two samples
experiments. The recognition results from multimodal fu-
sion using various PS methods are summarized in Figure 6
(a). The best recognition result was equal to 85%.

A summary of the best recognition results for the single
modalities and multimodal fusion is given in Tables 1 and
2.

(a) (b)

Figure 6. Multimodal fusion results (a) for recognition, (b) for
verification.
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6.2. Verification Experiments

A person verification system should decide whether an
identity claim is valid or not. The performance of face ver-
ification systems is measured in terms of the False Rejec-
tion Rate (FRR) achieved at a fixed False Acceptance Rate
(FAR) [26, 25]. There is a trade-off between FAR and FRR.
This trade-off between the FAR and FRR can create a Re-
ceiver Operating Characteristic (ROC) curve, where FRR is
plotted as a function of FAR. The performance of a verifica-
tion system is often quoted by a particular operating point
of the ROC curve where FAR=FRR. This operating point
is called Equal Error Rate (EER). The performance of the
algorithms is quoted for the Equal Error Rate (EER) which
is the scalar figure of merit that is often used to judge the
performance of a verification algorithm. Verification exper-
iments were conducted in the same database as well. The
verification protocol was similar to the one defined in the
FERET verification protocol in [18]. The probe (or client
set) was defined by the 126 persons as in the recognition
experiments. The first image is used for training while the
second is used for testing client claims. The remaining 135
people in the database, with one image per person, are con-
sidered to be impostors.

In the second experiment we used two images from the
96 subjects for training while the third is used for testing
client claims. The other 135 persons were used for impostor
claims.

6.2.1 Face Verification using Albedo, Depth and Nor-
malface Images

The EERs for various PS methods for the one sample exper-
iment are depicted in Figure 7 (a). The verification results
for the two samples experiment and for various PS methods
are depicted in Figure 7 (b).

The EERs for various PS and surface reconstruction
methods for the one sample experiment are depicted in Fig-
ure 7 (c). The verification results for the two samples exper-
iment and for various PS and surface reconstruction meth-
ods are depicted in Figure 7 (d).

The EERs for various PS methods for the one sample
experiment are depicted in Figure 7 (e). The verification
results for the two samples experiment and for various PS
methods are depicted in Figure 7 (f).

6.2.2 Multimodal Fusion

Multimodal decision fusion was performed exactly as in
the recognition experiments case, by combining the match
scores for each person across the modalities of the 2D
albedo image and depth map and ranking the subjects based
on the combined scores. The fusion results for verification
using various PS methods are summarized in Figure 6 (b).

Table 1. A summary of the best percentage of recognition (PR)
for all the conducted experiments across different modalities.

Perc. of Recognition (PR%)
One Sample Two Samples

Albedo Depth Normal Albedo Depth Normal
78 74 78 85 86 86

Table 2. A summary of the best PR for fusion across different
samples and modalities.

Perc. of Recognition (PR%)
Sample Fusion Modality Fusion

Albedo Depth Normal Albedo + Depth
85 86 86 85

Table 3. A summary of the best percentage of EER for all the
conducted experiments across different modalities.

Verification (EER%)
One sample Two samples

Albedo Depth Normal Albedo Depth Normal
7.4 10.5 9.1 5.2 5.7 5.2

A summary of the best verification results for the single
modalitities and multimodal fusion is given in Tables 3 and
4.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Verification experiments (a) using one albedo image for
training; (b) using two albedo images for training; (c) using one
depth image for training; (d) using two depth images for training;
(e) using one Normalface image for training; (f) using two Nor-
malfaces for training.
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Table 4. A summary of the best percentage of EER for fusion
across different samples and modalities.

Verification (EER%)
Sample Fusion Modality Fusion

Albedo Depth Normal Albedo + Depth
5.2 5.7 5.2 5.2

7. Discussion and Concluding Remarks
In this paper, we presented a new database collected

using a real life commercial setting based on photometric
stereo. We presented the first experiments which demon-
strate how different methods in the pipeline of photomet-
ric stereo affect the recognition performance and concluded
the following: (1) Four source photometric stereo methods
produce facial samples (albedo, normals) that achieve con-
stantly better recognition and verification performance re-
gardless of the reconstruction method applied. (2) The re-
construction methods greatly affect the recognition and ver-
ification performance. The method which constantly pro-
duces the best recognition/verification performance proved
to be the one proposed in [8].

Moreover, we have verified most of the findings of [5]:
(1) In most cases the best recognition and verification re-
sults of recovered albedo, normals and the reconstructed
depth maps achieve approximately the same results, in some
cases the recovered albedo produces better results. (2) Fu-
sion of albedo and reconstructed surfaces produce signifi-
cantly better results than using only the albedo or the depth
images. (3) Fusion of two albedo images in the same way
that we fused the results of albedo and depth map gave ap-
proximately the same recognition and verification results.
Details on how the database can be provided to researchers
are provided in http://Photoface.iti.gr/ or
http://www.uwe.ac.uk/research/Photoface.
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