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Abstract

In this paper we explore the use of dense facial defor-
mation in spontaneous smile/laughter as a biometric signa-
ture. The facial deformation is calculated between a neu-
tral image (as neutral we define the least expressive image
of the smile/laughter episode) and the apex of spontaneous
smile/laughter (as apex we define the frame of the maximum
facial change/deformation) and its complex representation
is regarded. Subsequently, supervised and unsupervised
complex dimensionality reduction techniques, namely the
complex Principal Component Analysis (PCA) and the com-
plex Linear Discriminant Analysis (LDA), are applied at the
complex vector fields for feature extraction. We demonstrate
the efficacy of facial deformation as a mean for person ver-
ification in a database of spontaneous smiles/laughters.

1. Introduction
The role of rigid and non-rigid facial motion in the per-

ception of faces is a rather popular research topic in ex-
perimental psychology. One of the first studies conducted
demonstrated that humans can recognize the six universal
expressions even only when facial motion is visible [1].
Since then, many researchers have shown that facial motion
conveys useful information about gender [5, 11], age [4] and
identity [14, 20, 11, 14, 6, 8, 17, 18, 16, 19, 21, 26, 13, 22].

In the first studies conducted [14, 20] the results indi-
cated that humans can recognize moving faces (both famil-
iar and unfamiliar) with a significantly better rate than still
faces. In [11] it was shown that rigid head motion influences
identity recognition process, while in [23] it was shown that
visible speech motion increases the face recognition accu-
racy achieved by humans.

However, a series of studies published after [14] on how

non-rigid motion affects the perception of identity in human
faces reported quite contradictory results. For example, in
[6, 8, 17, 18, 16] the effectiveness of non-rigid motion was
argued in the recognition of only highly familiar to the ob-
servers faces (e.g., famous faces). In [19] it was further
suggested that the advantage of face motion was only sig-
nificant when the displayed motion was distinctive. In other
words some familiar faces do have quite characteristic facial
motion patterns and these patterns constitute an additional
cue to identity. Finally, in the experiments conducted in
[19] rigid head movement did not provide identity recogni-
tion clues.

One of the first studies that demonstrated that there is a
difference between dynamic and static stimuli in the per-
ception of facial identity even when the stimuli were not
degraded images of famous faces was published in [26]. In
another study [21] further evidence was provided that non-
rigid motion of a previously unfamiliar human face can af-
fect identity decisions over extended periods of time. In
[13] the authors studied the synergy and integration of fa-
cial form and facial motion in the perception of identity.
Consistent evidence was also reported that non-rigid facial
motion biases observers perception of identity. In [22] the
authors investigated the effects of familiarity, facial motion,
and direction of learn/test transfer on person recognition
and verified once more that the presentation of moving faces
resulted in better recognition rate than that of static ones.
The authors reported that there was no advantage in learn-
ing moving versus static faces for the recognition of profile
views of faces.

In order to facilitate the following discussion let us di-
vide facial motion into that induced by speech, referred to
as speech-related, (i.e., caused by speech production) and
that not induced by speech, referred to as speech-unrelated,
(i.e., motion defining facial behavior). Although there is
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a significant amount of work on the role of facial motion
(both speech related and speech-unrelated) during the pro-
cessing of identity in humans, there is rather limited re-
search on using speech-unrelated facial motion (e.g., from
facial expressions) for building automatic person recogni-
tion/verification systems.

One of the first works which showed that the develop-
ment of such a system is feasible was presented in [9]. In
this work it was shown that changes in action units appear-
ance can be used as a biometric trait. In detail, the dif-
ferent phases of facial action units, their sequence order
and their duration were measured. The attained verifica-
tion rates were directly comparable with one of the best
commercial face recognition systems at that time. In [27]
tracker displacement features between the neutral state and
the apex of the expression were used for person verification
where an equal error rate of about 40% was reported.

Even though there are not many studies about the indi-
viduality and the persistence of speech-unrelated facial mo-
tion, the problem of persistence and individuality of speech-
related facial motion, and especially of lip motion, is rela-
tively more studied. In [7] it was experimentally demon-
strated that dense lip motion is useful for person verifica-
tion. In [10] orientation maps of the lip motion fields were
used for person verification. Finally, in [3] the repeatability
of viseme production over time for any speaker and the dis-
tinctiveness of lip motions across speakers in videos of 3D
faces was studied.

In this paper we conduct a preliminary study in order
to assess the discriminative capability of facial deforma-
tion for person verification. That is, from a database of
22 persons with many episodes of spontaneous smiles and
laughters we compute the facial deformation between the
frames corresponding to the least expressive (close to neu-
tral state) and to the apex (maximum intensity) states. For
the dimensionality reduction of the motion vector fields we
adopt a complex representation of the facial deformation
and we then apply the complex Principal Component Anal-
ysis (PCA) and complex Linear Discriminant Analysis al-
gorithms. To the best of our knowledge this the first study
which demonstrates that facial deformation from a sponta-
neous expression can be used for automatic person verifica-
tion.

The remainder of the paper is organized as follows. In
Section 2 we briefly describe the method applied for com-
puting facial deformation. In Section 3 we formulate the
complex PCA and the complex LDA algorithms for dimen-
sionality reduction of facial motion vector fields. Experi-
mental results are described in Section 4. Finally, conclu-
sions are drawn is Section 5.

2. Extracting Facial Deformation using Free
Form Deformations

For the extraction of facial deformation (i.e., facial mo-
tion vector field) we adapted a method used for non-rigid
registration of medical images [24]. This method uses an
Free Form Deformations (FFD) model based on b-splines.
The method was originally used to register breast Magnetic
Resonance images, where the breast undergoes local shape
changes as a result of breathing and patient motion and re-
cently has been applied for the extraction of facial motion
from 2D and 3D facial image sequences [25, 15].

Let Ωt denote the gray-level image of the face region at
frame t, where Ωt(x, y) is the gray-level intensity at pixel
(x, y). Given a pixel (x, y) in frame t, let (x̃, ỹ) be the un-
known location of its corresponding pixel in frame s. Then,
the nonrigid registration method is used to estimate a mo-
tion vector field F̃s between frames t and s such that:

(x̃, ỹ) = (x, y) + F̃s(x, y) (1)

To estimate F̃t, we select a U × V lattice Φt of control
points with coordinates φt(u, v) in Ωt, evenly spaced with
spacing d. Then, nonrigid registration is used to align Φt
with Ωs, resulting in a displaced lattice Φ̃s = Φt + Φδ . F̃t
can be derived by b-spline interpolation from Φδ . To esti-
mate Φ̃s, a cost function C is minimized. In [24] the nor-
malized mutual information was used as the image align-
ment criterion. However, in the 2D low-resolution case con-
sidered here, not enough sample data are available to make
a good estimate of the image probability density function
from the joint histograms. Therefore, we use the sum of
square distances as the image alignment criterion, i.e.,

C(Φ̃s) =
∑
x,y

(Ωt(x, y)− Ωs(x̃, ỹ))
2 (2)

The full algorithm for estimating Φ̃s (and, therefore, Φδ)
can be found in [24]. We can calculate F̃t using b-spline in-
terpolation on Φδ . For a pixel at location (x, y), let φt(u, v)
be the control point with coordinate (x0, y0) that is the near-
est control point lower and to the left of (x, y), i.e., it satis-
fies:

x0 ≤ x < x0 + d, y0 ≤ y < y0 + d. (3)

In addition, let φδ(u, v) denote the vector that displaces
φt(u, v) to φ̃s(u, v). Then, to derive the displacement for
any pixel (x, y), we use a b-spline interpolation between
its 16 closest neighboring control points. This gives us the
estimate of the displacement field F̃t:

F̃t(x, y) =

3∑
k=0

3∑
l=0

Bk(a)Bl(b)φδ(u+k−1, v+l−1), (4)
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where a = x − x0, b = y − y0 and Bn is the nth basis
function of the uniform cubic b-spline, i.e.,

B0(a) = (−a3 + 3a2 − 3a+ 1)/6
B1(a) = (3a3 + 6a2 + 4)/6
B2(a) = (−3a3 + 3a2 + 3a+ 1)/6
B3(a) = a3/6

(5)

To speed up the process and avoid local minima, we use
a hierarchical approach in which the lattice density is being
doubled at every level in the hierarchy. The coarsest lattice
Φ0
t is placed around the point c = (cx, cy) at the intersection

of the horizontal line that connects the inner eye corners,
and the vertical line passing through the tip of the nose and
the center of the upper and bottom lip. Then,

Φ0
t = {(u, v)| u ∈ [cx − 2id, . . . , cx + 2id]

v ∈ [cy − 2id, . . . , cy + 4id]
|} (6)

where id is the distance between the eye pupils (i.e., Φ0
t

consists of 35 control points). New control points are itera-
tively added in between until the spacing becomes 0.25id
(approximately the size of a pupil), giving 1,617 control
points. This has proven sufficient to capture most move-
ments and gives a good balance between accuracy and cal-
culation speed.

Having estimated F̃t, we now have a motion vector field
depicting the facial motion between frames s and t. Some
examples of the facial motion vector field extracted can be
found in Figure 1.

3. Dimensionality Reduction of Motion Fields
The dense motion vector fields computed from the pre-

viously described procedure are patterns of dimensionality
M ×N × 2 (where M and N are image rows and columns,
respectively). In our experimentsM = N = 128, hence the
need of dimensionality reduction is evident. In the follow-
ing we formulate complex Principal Component Analysis
(PCA) and complex Linear Discriminant Analysis (LDA)
for unsupervised and supervised dimensionality reduction
of motion vector fields, respectively.

3.1. Complex PCA of motion fields

Let us denote by xi ∈ Cp the p = NM−dimensional
vector obtained by writing the vector field F̃t(x, y) =
(u(x, y), v(x, y)) in a complex form as u(x, y) + jv(x, y)
(where j =

√
−1) in lexicographic ordering. We as-

sume that we are given a population of n samples X =
[x1| · · · |xn] ∈ Cp×n, where p is the image resolution and
n the number of samples. Without loss of generality, we
assume zero-mean data. PCA finds a set of k < n orthonor-
mal bases Bk = [b1| · · · |bk] ∈ Cp×k by minimizing the
error function [12]

ε(Bk) = ||X−BkB
H
k X||2F . (7)

where H denotes the complex conjugate operator.
The solution is given by the eigenvectors correspond-

ing to the k largest eigenvalues obtained from the eigen-
decomposition of the covariance matrix XXH . Finally,
the reconstruction of X from the subspace spanned by the
columns of Bk is given by X̃ = BkCk, where Ck = BH

k X
is the matrix which gathers the set of projection coefficients.

For high dimensional data and Small Sample Size (SSS)
problems (i.e. n� p), an efficient implementation of PCA
in O(n3) can be used. Rather than computing the eigen-
analysis of XXH , we compute the eigen-analysis of XHX.

Overall, Algorithm 1 summarizes the steps of our PCA
of the vector fields.

Algorithm 1. Estimating the principal subspace of
the vector fields
Inputs: A set of n vector fields F̃i, i = 1, . . . , n of p pixels
and the number k of principal components.
Step 1. Obtain xi by writing F̃i in a complex form and in
lexicographic ordering.
Step 2. Compute xi and form the matrix of
X = [x1| · · · |xn] ∈ Cp×n and compute the matrix
T = XHX ∈ Cn×n.
Step 3. Compute the eigen-decomposition of T = UΛUH

and denote by Uk ∈ Cp×k and Λk ∈ Rk×k the
k−reduced set. Compute the principal subspace from
Bk = XUkΛ

− 1
2

k ∈ Cp×k.
Finally, notice that our framework also enables the di-

rect embedding of new samples. Let a test vector field F̃
of p pixels and the principal subspace Bk of Algorithm 1.
Obtain the test vector x by writing F̃ in a complex form
and lexicographic ordering. Then, we can extract the low
dimensional embedding y by

y = BH
k x. (8)

3.2. Complex Linear Discriminant Analysis of mo-
tion fields

Let us now assume that our training set vector fields con-
sists of C client (person) classes C1, · · · , CC . LDA aims
at finding discriminant projection bases by exploiting this
class-label information [2]. Within our framework of com-
plex motion field, we need to formulate LDA in the complex
domain. Let us denote by b ∈ CN(P) a projection vector
and by yi = uHxi the projection of xi onto b. We start by
minimizing the (sum of the) variances of the data assigned
to a particular class

Ew(u) =
∑C
c=1

∑
yi∈Cc ||yi − m̃

c||2

=
∑C
c=1

∑
yi∈Cc ||u

H(xi −mc)||2

= uH
∑C
c=1

∑
xi∈Cc(xi −mc)(xi −mc)Hu

= uHSzwu
(9)
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where m̃c = uHmc, mc = 1
N(C)

∑N
xi∈Cc xi and Sw is the

complex within-class scatter matrix

Sw ,
C∑
c=1

∑
xi∈Cc

(xi −mc)(xi −mc)H . (10)

We also wish to maximize the distances between the pro-
jected class-means

Eb(u) =
∑C
c=1N(Cc)||m̃c − m̃||2

=
∑C
c=1N(Cc)||uH(mc −m)||2

= uH
∑C
c=1N(Cc)(mc −m)(mc −m)Hu

= uHSbu
(11)

where Sb is the complex between-class scatter matrix

Sb ,
C∑
c=1

N(Cc)(mc −m)(mc −m)H (12)

and m is the total mean vector.
To find K projections U = [u1| . . . |uK ] ∈ CN(P)×K

we generalize Ew(u) and Eb(u) as

Ew(U) = tr[UHSwU] (13)

Eb(U) = tr[UHSbU] (14)

Then, the optimal projections are given by the solution to
the following optimization problem

Uo = arg maxU tr
[
UHSbU

]
s.t. UHSwU = I

(15)

The solution of the above noted problem is given by the K
eigenvectors of (Sw)−1Sb corresponding to the K largest
eigenvalues. For Small Sample Size (SSS) problems (i.e.,
p � n), the matrix Sw is not invertible and the solution, in
this case, is found by applying first the described complex
PCA to preserve n − C dimensions and then applying the
complex LDA on the low-dimensional samples as

y = UHBH
n−Cx. (16)

where Bn−C is the matrix with columns the n− C projec-
tion bases obtained by the complex PCA and U contains the
C − 1 projection bases from the complex LDA. Similarity
is measured by using the real part of the normalized corre-
lation between the test sample y and the training sample yi
as

r(y) = Re[
yHyi
||y||||yi||

]. (17)

4. Experimental Validation
The experiments were conducted in a newly collected

audiovisual database. The audiovisual database has been
collected for the purpose of studying laughter. It contains
22 subjects which were recorded while watching stimulus
material, by two microphones, a video camera and a ther-
mal camera. The primary goal was to elicit laughter, but
also posed smiles, posed laughter and speech were also
recorded. In total, 180 sessions are available with a to-
tal duration of 3h and 49min. There are 563 spontaneous
smiles/laughter episodes, 849 speech utterances, 51 posed
laughs, 67 speech-laughs and 167 other human noises anno-
tated in the database. From the spontaneous smiles/laughter
episodes we extracted the apex frames (the frames of the
maximum facial change). We aligned the facial images us-
ing manually extracted eye coordinates. Them, we com-
puted the non-rigid motion, using the method described
in Section 2, between the apex frame and the frame that
more closely resembles the neutral state from the particular
episode. Examples of facial deformations fields used in our
experiments can be found in Figure 1. From the color-coded
vector field shown in this Figure it is evident that facial de-
formation is quite distinctive.

To fully validate our suggestion, we adopted a stan-
dard experimental protocol used in verification applications.
To demonstrate that facial deformation conveys discrimina-
tive information that can be captured by a verification sys-
tem, we measured the performance of a simple threshold-
ing scheme. The protocol used was the following. Five
experimental sessions were implemented by employing the
leave-one-out (jackknife) and rotation estimates. In each
session, 20% of the samples for every person were left out
to be used as a test set (genuine claims). To implement test
impostor claims, we rotated over the 22 person identities
by considering the samples of each person in the test set as
an impostor. By excluding any sample of the test impostor
from the remaining four sessions, a training set consisted of
21 clients was built. The test impostor pretended to be one
of the 21 clients and this attempt was repeated for all client
identities. This way the impostor claims were produced. In
a similar manner, test client claims were tested by employ-
ing the clients’ samples from the session that was left out
and those of the training set. Let A1, A2, A3, . . . , A22 be
the identity codes of the persons included in the database.
Figure 2 depicts the experimental protocol when person A1

is considered to be an impostor and the samples of Session
5 is employed as test set. It can be seen that the training set
is built of four out of the five available sessions each one
consisting 21 out of the 22 available persons. The compar-
isons shown for personA1 are repeated for all other persons
in the database. Obviously, similar comparisons are made
by rotating among the available sessions.

Next, we describe the training procedure. It is applied
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Figure 1. From left to right: The image that was considered as neutral. The apex of the episode. The vector field computed from the method
described in section. Color-coded vector field.

Figure 2. The verification protocol.

to the training set of the 21 clients. For each client, we
had at least 8 samples at our disposal. Let us assume that
person A1 using one of his samples from session 5 pretends
to be person A2 during the test procedure. To test such a
claim, we first implement the training stage, which includes:

(i) the computation of PCA and/or LDA projections; (ii)
the computation of the distances using (17) to be used as
thresholds.

The defined thresholds should ideally enable the distinc-
tion between the distance measures that correspond to client
claims and the distance measures that correspond to impos-
tor claims. In the instantiation of Figure 2, the training pro-
cedure determines the projection matrices and 21 thresh-
olds. Let us now explain how these thresholds are defined
and incorporated in the final decision. For clarity purpose,
we consider the case of person A1 being an impostor and
persons A2, . . . , A21 being clients. We assume that person
A1 uses one of his samples to pretend to be person Ar. The
measures (17) for every person calculated in the training set
are used to form the distance vector o(r). The elements of
the vector o(r) are sorted in ascending order and are used
for the person specific thresholds on the distance measure.
Let TQ(r) denoting the Q-th order statistic of the vector of
distances, o(r). The threshold of the person r is chosen to
be equal to TQ(r). Let r1, r2, . . . , rs be the s instances of
the person r in the training set. A claim of a person t is
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Figure 3. The ROC curves for the facial motion vector fields.

considered valid if maxj{Dt(rj)} > TQ(r) where Dt(rj)
is the distance between the sample of test person t and the
reference sample rj .

The performance of verification systems is measured in
terms of the false rejection rate (FRR) achieved at a fixed
false acceptance rate (FAR). There is a trade-off between
FAR and FRR. That is, it is possible to reduce either of them
with the risk of increasing the other one. This trade-off be-
tween the FAR and FRR can create a curve where FRR is
plotted as a function of FAR (while altering the threshold
value). This curve is called receiver operating characteristic
(ROC) curve [28, 30, 29]. The performance of a verifica-
tion system is often quoted by a particular operating point
of the ROC curve where FAR = FRR. This operating point
is called equal error rate (EER).

The ROC curves using PCA and LDA of facial motion
vector fields are depicted in Figure 3. The EER achieved
by the applied PCA method was 6.3% while for the applied
LDA 2.5%. The attained results provide a strong indication
that person specific facial motion, in our case for sponta-
neous smiles, is useful for automatic person verification.

5. Conclusion
We presented a preliminary evaluation of the discrim-

inative power of facial deformation from spontaneous
smiles/laughters. We employed a complex representation
of facial motion and applied complex PCA and LDA algo-
rithms for dimensionality reduction. Further research in-
cludes the incorporation of dynamic information of dense
facial deformation for person verification.

6. Acknowledgement
We thank the MEng. Student Tobias Gierk for annotat-

ing the database. This work has been funded funded by the
European Research Council under the ERC Starting Grant
agreement no. ERC-2007-StG-203143 (MAHNOB).”

References
[1] J. Bassili. Facial motion in the perception of faces and of

emotional expression. Journal of Experimental Psychology:
Human Perception and Performance, 4(3):373–379, 1978.
13

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigen-
faces vs. Fisherfaces: Recognition using class specific linear
projection. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19(7):711–720, July 1997. 15

[3] L. Benedikt, D. Cosker, P. Rosin, and D. Marshall. Assessing
the uniqueness and permanence of facial actions for use in
biometric applications. Systems, Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on, 40(3):449–
460, 2010. 14

[4] D. Berry. What can a moving face tell us? Journal of Per-
sonality and Social Psychology, 58(6):1004–1014, 1990. 13

[5] D. Berry. Child and adult sensitivity to gender information in
patterns of facial motion. Ecological Psychology, 3(4):348–
366, 1991. 13

[6] V. Bruce, Z. Henderson, C. Newman, and A. Burton. Match-
ing Identities of Familiar and Unfamiliar Faces Caught on
CCTV Images. Journal of Experimental Psychology: Ap-
plied, 7(3):207–218, 2001. 13

[7] H. Cetingul, Y. Yemez, E. Erzin, and A. Tekalp. Discrimina-
tive analysis of lip motion features for speaker identification

18



and speech-reading. Image Processing, IEEE Transactions
on, 15(10):2879–2891, 2006. 14

[8] F. Christie and V. Bruce. The role of dynamic information
in the recognition of unfamiliar faces. Memory & cognition,
26(4):780–790, 1998. 13

[9] J. Cohn, K. Schmidt, R. Gross, and P. Ekman. Individual dif-
ferences in facial expression: Stability over time, relation to
self-reported emotion, and ability to inform person identifi-
cation. In Multimodal Interfaces, 2002. Proceedings. Fourth
IEEE International Conference on, pages 491–496. IEEE,
2002. 14

[10] M. Faraj and J. Bigun. Audio-visual person authentication
using lip-motion from orientation maps. Pattern recognition
letters, 28(11):1368–1382, 2007. 14

[11] H. Hill and A. Johnston. Categorizing sex and identity from
the biological motion of faces. Current Biology, 11(11):880–
885, 2001. 13

[12] M. Kirby and L. Sirovich. Application of the karhunen-
loeve procedure for the characterization of human faces.
IEEE Transactions Pattern Analysis and Machine Intelli-
gence, 12(1):103–108, Jan. 1990. 15

[13] B. Knappmeyer, I. Thornton, and H. Bulthoff. The use of fa-
cial motion and facial form during the processing of identity.
Vision Research, 43(18):1921–1936, 2003. 13

[14] B. Knight and A. Johnston. The role of movement in face
recognition. Visual Cognition, 4(3):265–273, 1997. 13

[15] S. Koelstra, M. Pantic, and I. Patras. A dynamic texture
based approach to recognition of facial actions and their tem-
poral models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(11):1940–1954, november 2010.
14

[16] K. Lander and V. Bruce. Recognizing famous faces: Ex-
ploring the benefits of facial motion. Ecological Psychology,
2000. 13

[17] K. Lander, V. Bruce, and H. Hill. Evaluating the effective-
ness of pixelation and blurring on masking the identity of fa-
miliar faces. Applied Cognitive Psychology, 15(1):101–116,
2001. 13

[18] K. Lander, F. Christie, and V. Bruce. The role of movement
in the recognition of famous faces. Memory & Cognition,
27(6):974–985, 1999. 13

[19] K. Lander and L. Chuang. Why are moving faces easier to
recognize? Visual Cognition, 12(3):429–442, 2005. 13

[20] G. Pike, R. Kemp, N. Towell, and K. Phillips. Recogniz-
ing moving faces: The relative contribution of motion and
perspective view information. Visual Cognition, 1997. 13

[21] D. Roark, S. Barrett, M. Spence, H. Abdi, and A. O’Toole.
Psychological and neural perspectives on the role of motion
in face recognition. Behavioral and cognitive neuroscience
reviews, 2(1):15, 2003. 13

[22] D. Roark, A. O’Toole, H. Abdi, and S. Barrett. Learning
the moves: The effect of familiarity and facial motion on
person recognition across large changes in viewing format.
Perception, 35(6):761–773, 2006. 13

[23] L. Rosenblum, D. Yakel, N. Baseer, A. Panchal, B. Nodarse,
and R. Niehus. Visual speech information for face recog-
nition. Attention, Perception, & Psychophysics, 64(2):220–
229, 2002. 13

[24] D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and
D. Hawkes. Nonrigid registration using free-form deforma-
tions: application to breast MR images. Medical Imaging,
IEEE Transactions on, 18(8):712–721, 1999. 14

[25] G. Sandbach, S. Zafeiriou, M. Pantic, and D. Rueckert. A
dynamic approach to the recognition of 3d facial expressions
and their temporal models. In Proceedings of IEEE Interna-
tional Conference on Automatic Face and Gesture Recogni-
tion (FG’11), Special Session: 3D Facial Behavior Analysis
and Understanding, Santa Barbara, CA, USA, March 2011.
14

[26] I. Thornton and Z. Kourtzi. A matching advantage for dy-
namic human faces. Perception, 31(1):113–132, 2002. 13

[27] S. Tulyakov, T. Slowe, Z. Zhang, and V. Govindaraju. Facial
expression biometrics using tracker displacement features.
In 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–5. IEEE, 2007. 14

[28] S. Zafeiriou, A. Tefas, and I. Pitas. Exploiting discriminant
information in elastic graph matching. In IEEE International
Conference on Image Processing, 2005 (ICIP 2005), vol-
ume 3, pages III–768, 2005. 18

[29] S. Zafeiriou, A. Tefas, and I. Pitas. The discriminant elastic
graph matching algorithm applied to frontal face verification.
Pattern Recognition, 40(10):2798–2810, 2007. 18

[30] S. Zafeiriou, A. Tefas, and I. Pitas. Learning discrimi-
nant person specific facial models using expandable graphs.
IEEE Transactions on Information Forensics and Security,
2(1):50–55, Mar. 2007. 18

19


