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Abstract

In this paper, the principles of sparse signal represen-
tation theory are explored in order to perform facial ex-
pressions recognition from frontal views. Motivated by the
success such methods have demonstrated in the face recog-
nition problem, we formulate the feature extraction proce-
dure in order to achieve facial expression recognition as an
l1 optimization problem. We show that the straightforward
application of these methods to expressive images imposes
certain difficulties. The use of difference images (i.e., the
images that are derived from the subtraction of the neu-
tral image from the expressive one) for sparse facial expres-
sion representations is justified. The use of expressive facial
grids for similar tasks is also studied. Finally, the robust-
ness of the proposed representations under facial image oc-
clusion is shown and the efficacy of the proposed method in
a series of experiments is demonstrated.

1. Introduction
The procedure followed by the different levels of the hu-

man visual system in order to process and formulate im-
ages constitutes a very active research topic in neuropsy-
chology, neurophysiology, psychophysics, signal process-
ing and computer vision. Many of the recent theoretical and
experimental studies support the idea that the visual system
performs object detection and recognition in a hierarchical
and parsimonious way in which neurons become selective
(i.e., they are selective for various stimuli such as color, tex-
ture, orientation etc) to process progressively more complex
features of the image structure. Such models of the human
visual system have initiated studies for image-based object
recognition using sparse image representations.
In computer vision, sparse coding corresponds to ob-

ject representation by using bases with components that
are spatially distributed without any connectivity. The rep-
resentation acquired using sparse bases was the first step
towards the implementation of a part-based representation
[16, 14, 9]. As shown in [16], the linear sparse coding of

natural images yielded features qualitatively very similar to
the receptive fields of simple-cells in the primary visual cor-
tex. Subsequently, the very closely related model of Inde-
pendent Component Analysis (ICA) [11] was introduced to
provide similar results [16]. However, the above mentioned
models [16] allow the existence of negative entries to the ac-
quired representation. This is in contrast with the fact that
the firing rates of the simple-cells in the primary visual cor-
tex are nonnegative [14, 9]. The nonnegativity of the firing
rates and the fact that the representation of an object by its
parts is more naturally coded using only additions between
the different bases [17, 19, 18, 1, 15], lead to the introduc-
tion of the Nonnegative Matrix Factorization (NMF) algo-
rithm, proposed in [14].
Recently, another sparse representation for object rep-

resentation and recognition was proposed in the seminal
work [20] based on principles of compressed sensing [7].
In [20] an attempt to find an object representation using
a sparse linear combination of an overcomplete dictionary
was made. More specifically, a facial image is represented
as a sparse linear combination of the training facial images.
It is shown that, if a sufficient number of training samples
are available for each facial class, it is possible to repre-
sent the test facial image samples as a linear combination
of only those training samples that belong to the same fa-
cial class. The resulting optimization problem penalizes the
l1- norm of the coefficients of the linear combination. It
was proven that the representation is indeed sparse, involv-
ing only a small fraction of the overall training database. It
is also demonstrated that the sparsest representation consti-
tutes a mean for performing a discriminant analysis between
the facial classes. This means, intuitively, that the test im-
age is most likely to belong to the facial class with the most
nonzero coefficients.
The sparse representation approaches that were pro-

duced through NMF [14, 3] and the l1 norm optimization
in [20] have certain differences in modelling. That is, in
NMF-based approaches both bases and weights are calcu-
lated. An example of NMF basis images can be found in
Figure 1a. Then, an image is represented as a nonnegative
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linear combination of the calculated bases. An example of
an image decomposition using the NMF bases can be found
in Figure 1b. In many cases, the NMF bases contain com-
ponents and features that are spatially distributed without
any connectivity (we will refer to them as sparse bases from
now onwards). On the other hand, sparse approaches in [20]
and [10], which are based on l1 optimization, attempt only
to find the weights of the linear combination assuming that
the bases are the training images. We shall refer to such
bases as dictionaries from now and on. Thus, they estimate
a sparse weighting vector with larger values for those train-
ing images which bear a resemblance to the test image.
A lot of research has been conducted regarding facial ex-

pressions recognition in the past fifteen years. The facial
expressions under examination were defined by psycholo-
gists as a set of six basic facial expressions (anger, disgust,
fear, happiness, sadness, and surprise) [8]. An example of
expressive images is depicted in Figure 2. An interested
reader may refer to [13, 21] and in the references therein,
regarding the various technologies developed for facial ex-
pression recognition. The application of sparse represen-
tations produced by NMF has been extensively studied for
the analysis of expressive images [3, 4] and subsequently
for facial expression recognition.
In this paper we study the facial expressions recognition

problem using principles from the sparse representation the-
ory [20, 7, 6]. We demonstrate that the straightforward ap-
plication of the method proposed in [20] does not produce a
meaningful sparse representation for facial expressions and
prove that this approach is tuned for the recognition of facial
identity. Afterwards, we study the use of the differences im-
ages (calculated by subtracting the neutral image intensity
values from the corresponding values of the fully expressive
facial expression image) for the creation of sparse represen-
tations for the decomposition of expressive images. The
difference images tend to emphasize the facial parts that are
moved and eliminate in that way the identity of the facial
image. Some examples of difference images are shown in
Figure 3.
Moreover, we show that facial grids can be also used

for sparse facial expression representation. Examples of fa-
cial expressive grids are depicted in Figure 2. Facial grids,
which are graphs consisting of nodes placed at prespecified
fiducial facial points (like lips, eyebrows etc), describe fa-
cial expressions in a person-independent way. Thus, they
eliminate the problems imposed by facial images for sparse
representation of facial expressions.
The rest of the paper is organized as follows. In Section 2

we describe the method proposed in [20] to acquire a sparse
representation for face recognition. Afterwards we present
the difficulties aroused by the application of such a method
in the facial expression recognition problem. Furthermore,
we propose ways to overcome these difficulties. In Sec-

tion 3 we present the experimental results which support
our theoretical arguments. Finally, conclusions are drawn
in Section 4.

2. Motivating Sparse Representations for Fa-
cial Expressions Representation

2.1. Face Recognition via l1 sparse representation
Let a set of N training facial images be separated to K

different facial identity classes. Each of the facial images
was scanned row-wise in order to form an F -dimensional
vector. Afterwards, dimensionality reduction methods are
applied, like Principal Component Analysis (PCA) [12], in
order to form from each each image a vector xi ∈ �

f , with
f � F , which is normalized in such a way that ||xi|| = 1
(from now and on we shall refer to images as vectors with
magnitude one). Let the dictionary (matrix)X be defined as
X = [x1| . . . |xN ] ∈ �f×N . Let also a test image y ∈ �f .
In [20], a method for feature extraction in order to achieve
face recognition was proposed via a sparse decomposition.
That is, they motivated the use of an l1 optimization prob-
lem in order to find a sparse vector of weights w which
depicts the contribution of each facial training image xi in
the formation of the test facial image y. Let be a thresh-
old ε. Then, the optimization problem for finding the sparse
vectorw is the following:

w̃ = arg min ||w||1 subject to ||Xw − y||22 < ε. (1)

After the calculation of the optimal vectors w̃ according
to (1), we attempt to classify image y to one of theK facial
identity classes. Let δk(w̃) be a new vector whose only
nonzero entries are the entries in w̃ that are associated with
class k. Using only the coefficients associated with the k-
th facial identity class, one can approximate the given test
sample y as ỹk = Xδk(w̃). Image y is classified based on
these approximations to the object class that minimizes the
residual between y and ỹk:

l(y) = arg min
k

rk(y) = ||y − ỹk||2. (2)

Moreover, in order to model pixel corruptions and deal
with the presence of occlusion, an error vector e has been
taken into consideration in the optimization problem. As-
suming that the error vector e has sparse nonzero entries
with respect to the natural pixel coordinates we create the
dictionary Xe = [X, I] ∈ �f×(N+f) where I is the iden-

tity matrix. Then, we seek a vector we =

[
w

e

]
from the

optimization problem:

w̃e = argmin ||we||1 subject to ||Xewe − y|| < ε. (3)

For solving the optimization problem (1) and (3) we used
the l1-magic software package in [5].
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(a) (b)

Figure 1. a) NMF basis images; b) a decomposition of an image using NMF basis images and nonnegativity weights.

Figure 2. Expressive images and their corresponding facial grids. From left to right the depicted expressions are Anger, Disgust, Fear,
Happiness, Sadness and Surprise.

Figure 3. The differences images that correspond to the expressive images.

Once the sparse solution w̃e =

[
w̃

ẽ

]
is computed from

(3), then the clean from corruption or occlusion facial image
yr = y − ẽ is used for classification using the rule:

l(y) = argmin
k

rk(y) = ||yr −Xδk(w̃)||2. (4)

Intuitively, if the database comprises K facial identity
classes then vector w̃ should contain high valued coeffi-
cients that correspond to the facial identity class to which
image y belongs and very low (or probably zero) values for
all other images. An example is shown in Figures 4a and b,
where two different facial images are decomposed having
in the dictionary images of the same facial identity class.
As it can be seen, a sparse representation is acquired where
high peaks are calculated for images inside the same facial
identity class and very low responses for most of the other
images.

2.2. Facial Expressions Recognition via l1 sparse
representation

Let the database be separated in 6 different facial classes
one for each facial expression to be recognized (anger, dis-
gust, fear, happiness, sadness and surprise). The data used
were created from the Cohn-Kanade (CK) database. All the
available subjects were taken into consideration to form the
database for the experiments (a total of 352 videos). For the
expressive images we considered all the last frames of the
CK video sequences. The first frames of the sequences were
considered to be the neutral state images. All the images
from the database were used to create a dictionary. A col-
lection of expressive images from the CK database is shown
in Figure 2.
Let us test algorithm (3) using a real facial expression

database. Let us assume that a facial image y is available
and has to be classified into one of the six facial expres-
sion classes. Using the above framework we have to find a
sparse decomposition, by means of a sparse weighting vec-
tor, of image with respect to the dictionary X which con-
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tains all the available expressive images. Intuitively, this
vectorw should have high valued responses for the expres-
sive images of the same facial expression class of the image
y and low valued responses for all the other classes. As we
discuss next this framework cannot be applied in a straight-
forward way for the decomposition and the classification of
expressive images to facial expressions.
The image that is decomposed in Figure 4b is an expres-

sive facial image (disgust). In this Figure we also placed de-
limiters in order to denote the coefficients that correspond
to different facial expression classes (A holds for anger, D
for disgust, F for fear, H for happiness, Sa for sadness, Su
for surprise and N for neutral). As it can be seen in the de-
composition, we achieved high responses for images of the
same person that depict a different facial expression. Let us
remove the images of the same person from the dictionary.
In Figure 4c the decomposition of the same image from Fig-
ure 4b is depicted but now the dictionary does not contain
images of the same person and of the neutral expression. As
it can be seen, the decomposition is not as sparse as the one
in Figure 4d and it does not produce high valued responses
for the coefficients that correspond to the correct facial ex-
pression class (i.e., failed to achieve decomposition using
images from the same expression class).
As it has been shown, the direct use of the expressive

images results in a rather difficult decomposition in terms
of facial expression classes using the algorithm defined in
(1) or in (3). This is due to the fact that the features of the
same facial identity influence the result to a greater extent
than the features of the same facial expression class. It is
clear that in order to use such algorithms we need to allevi-
ate the contribution of the facial identity in the description
of expressions. That is, we should seek as much as possi-
ble person-independent descriptions of expressions. Such
a representation can be found using the difference images.
Examples of difference images calculated for every facial
expression are shown in Figure 3. An example of the de-
composition using the difference images is shown in Figure
4d. In this Figure the decomposition of the expressive dif-
ference image (disgust) of the image depicted in Figure 4c
having in the dictionary difference images of the same facial
identity class, is shown. As it can be seen: 1) the decompo-
sition did not result in high valued responses for difference
images of the same person 2) the decomposition, using the
difference images produced a meaningful sparse represen-
tation where high valued responses were calculated for the
difference images of the same facial expression class (dis-
gust).
We propose that we can increase the recognition per-

formance of the difference images by breaking the image
into smaller blocks and then fusing the overall result. In
a first experiment conducted, we partitioned each of the
training images into 3 blocks of size ai × bi, thus pro-

ducing a set of matrices X(1),X(2),X(3). In Figure 6 the
three different blocks acquired are depicted. The test ex-
pressive image is accordingly partitioned into three blocks
y(1),y(2),y(3). The l-th block of the test image is written
as y(l) = [X(l), I]w(l). The sparse vectorw(l) is recovered
by solving the optimization problem (3). We apply the clas-
sifier (4) within each block and then aggregate the results
by voting.
Now we shall consider the facial grids in order to ac-

quire meaningful sparse representations for facial expres-
sion recognition. The facial grid used in this paper was
the well-known Candide wireframe model [13]. At the first
frame of the video sequence (depicting the neutral state),
certain points of the Candide grid are matched against the
facial features of the actual face image. Grid node track-
ing is performed by a pyramidal variant of the well-known
KanadeLucasTomasi (KLT) tracker available in [2]. The
Candide grid comprises 114 nodes (104 of them are used
in reality to form the grid). In order to use the Candide
grid for the description of expressions we created a vector
xg ∈ �

104×2=208 which contains the concatenated x and y

displacement coordinates of the grid [13]. Let us create a
dictionary which contains the expressive grids, called Xg .
We shall produce expressive grid vectors from the dictio-
nary and apply the algorithm provided in (1). Two such ex-
amples, anger and surprise, are shown in Figures 5 a and b,
respectively. By inspecting these Figures one can see that
the use of grids ensures the creation of meaningful sparse
representations.

3. Experimental Results
For the experiments, we applied a leave one out principle

where one expressive sample (image or grid) is left out to
be used as a test sample and the remaining are used to build
the dictionary. Then, the test sample is classified into one
of the 6 facial expression classes. We originally applied
Principal Component Analysis (PCA) in order to reduce
the dimensionality and form the overcomplete dictionary
Xtrain ∈ �f×N which in our experiments is formed by
the N available in the database vectors, which have at most
f = 200 dimensions (and f = 208 for grids). We observed
that by keeping more dimensions and as f → N then, the
system of approximating the test sample ytest = Xtrainw
is not underdetermined anymore and vectorw is not sparse.
Moreover, in order to demonstrate the robustness of the pro-
posed method to occlusion and corruption, we conducted
additional experiments using images under eyes’ occlusion.
Some of the occluded images can be seen in Figure 8 where
artificial glasses were manually superimposed on the im-
ages. For the partially occluded grids we substituted the
original coordinates, that correspond to the nodes in the oc-
cluded area, with the value (0, 0). Moreover, in order to
demonstrate the robustness of the algorithm in case of data
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Α D F Η Sa Su Ν

(a) (b)

Α D F Η Sa Su

(c) (d)

Figure 4. a) Sparse decomposition of a facial image including images of the same person in the dictionary; b) Sparse decomposition of
an expressive facial image including images of the same person in the dictionary; c) Sparse decomposition of the same image excluding
images of the same facial class from the dictionary; d) Sparse decomposition of the differences images.

A Su

(a) (b)

Figure 5. Sparse decomposition of facial grids: a) anger; b) surprise.

corruption, we randomly corrupted 10%−60% of the nodes
(by replacing the (x, y) values with (0, 0)).

The occlusion experiments were conducted as follows.
The dictionary was built using the original not occluded im-
ages or not occluded grids. Then, by following the leave one
out scenario we removed one sample out of the dictionary

and used for testing its occluded version. The PCA dimen-
sionality reduction that is used in this paper is calculated us-
ing only the training not occluded dictionary. This is a very
realistic scenario since for training we usually have not oc-
cluded images and grids but for testing we can not actually
guarantee that the image or the grid will not be occluded or
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Figure 6. The 3 blocks of the differences image.

corrupted.
In Figure 7a the recognition error, i.e. the number of

misclassified samples, is plotted versus the number of PCA
dimensions kept using the original images, the difference
images, the block-based difference images and the occluded
difference images. Let us abbreviate the method that uses
the original images, PCA for dimensionality reduction and
optimization problem (3) for classification as PCA-Or-L1.
In a similar manner let us abbreviate the method using the
difference images and PCA as PCA-Diff-L1, the difference
images and PCA and the block-wise method as PCA-BDiff-
L1 and the occluded difference images and PCA-block wise
as PCA-BDiff-OC-L1. As it can be seen, using the original
images the recognition error (the percentage of misclassi-
fied samples) exceeds 90%. That is, only 10% of the im-
ages were classified to the correct expressions. This demon-
strates the fact that the straightforward application of the
method described in Section 2.1 for face recognition totally
failed in the case of facial expression recognition.
As it can be seen in the same Figure, by using the dif-

ference images and PCA or PCA using the block based
method, we achieved a recognition error of about 40% and
19% (60% and 81% recognition rate), respectively. Finally,
by applying PCA and the block based method on the oc-
cluded difference images, we achieved a recognition error
of about 21.3% which is a first indicator of the robustness
of the proposed method to partial occlusion.
Moreover, we believe that by dividing the difference im-

age into blocks and applying the sparse representation in (3)
we could also perform Facial Action Units (FAUs) recogni-
tion. Then, the facial expression that corresponds to the
difference image can be determined by the use of the recog-
nized FAUs.
The second set of experiments was conducted using the

facial grids. The application of the algorithm in (3) at the
grids resulted to 7.6% recognition error (abbreviated in Ta-
ble 1 as Grids-l1). We also tested linear Support Vector Ma-
chines (SVMs) [13] for the classification of the expressive
grids and we achieved a recognition error of 10% (abbre-
viated in Table 1 as Grids-SVMs). By using the partial

occluded grids that correspond to eye-occlusion shown in
Figure 6, which correspond to a corruption of 30% of the
nodes, we achieved a recognition error of 10.7% (abbrevi-
ated in Table 1 as Grids-l1-OC). The application of linear
SVMs to the above corrupted grids achieved a recognition
error of more than 24.5% (abbreviated in Table 1 as Grids-
SVM-OC). The lowest Recognition Error (RE) are summa-
rized in Table 1.

In order to test the method further we randomly changed
the node coordinates until 60% of them were corrupted
(placing (0, 0) in place of the changed grid coordinates).
In Figure 7 b the recognition error is plotted versus the per-
centage of the corrupted nodes. As it can be seen, by cor-
rupting 60% of the nodes (i.e., keeping only 40% of the
original nodes) we achieved a recognition error of about
22%. It is interesting to note here that the application of
SVMs in the 60% corrupted grids achieved a error rate of
more than 55%. The findings of our experiments demon-
strate the potential of sparse representations based on l1 op-
timization for facial expression recognition.

4. Conclusions

In this paper we proposed to exploit of sparse represen-
tations which are derived from l1 optimization problems for
facial expressions recognition. The use of such represen-
tations in computer vision applications is a very active and
emerging topic since they exhibit great robustness to pattern
occlusion and corruption. We showed that it is difficult to
producemeaningful representations when using directly the
original images. We argued that person-independent repre-
sentations of facial expressions should be used in order to
find efficient representations. Such representations include
difference images and facial grids. Finally, we verified the
findings of other works in sparse representations where it
was shown that sparse representations could be handled uni-
formly and robustly within the same classification frame-
work, something that is of great importance for the facial
expressions recognition problem.
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(a) (b)

Figure 7. a)Recognition error versus the number of dimensions for the original images, the difference images and occluded images using
PCA and l1 optimization problems; b) Recognition error versus the number of randomly corrupted nodes.

Table 1. Lowest (%) facial expressions Recognition Errors (RE)
PCA-Or.-l1 PCA-Diff-l1 PCA-BDiffl1 PCA-BDiff-OC-l1 Grids-l1 Grids-l1-OC Grids-SVMs Grids-SVM-OC

RE 90% 51.2% 19.7% 21.3% 7.6% 10.7% 10% 24.5%

Figure 8. The eye-occluded expressive images.
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