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The detection of image detail variation due to changes in illumination direction is a key issue in 3D shape
and texture analysis. In this paper two approaches for estimating the optimal illumination direction for
maximum enhancement of image detail and maximum suppression of shadows and highlights are
presented. The methods are applicable both to single image/single illumination direction imaging and
to photometric stereo imaging. This paper uses class-specific prior knowledge, where the distribution
of the normals of the class of surfaces is used in the optimisation. Both the Lambertian and the Phong
models are considered and the theoretical development is demonstrated with experimental results for
both models. For each method experiments were performed using artificial images with isotropic and
anisotropic distributions of normals, followed by experiments with real faces but synthesised images.
Finally, results are presented using real objects and faces with and without ground-truth.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The variation of the intensities observed in images depends on
variation in both surface reflectance and surface relief. While the
reflectance properties are intrinsic to a surface, the surface relief
produces a pattern of shadings that depends strongly on the direc-
tion of illumination. The appearance of a 3D surface changes dras-
tically with illumination [8]. Different image details are enhanced
for different illumination directions. The idea of photometric stereo
is to use this information to recover the intrinsic surface parame-
ters, that is, local surface orientation and albedo, independent of
the illumination direction. Photometric stereo estimates relief
and reflectance information using three or more images of a sur-
face illuminated from different directions captured from a single
viewpoint. The method considers the isophotes in gradient space.
The intersections of the isophotes from different illumination
directions identify the gradients of individual surface facets (corre-
sponding to pixels). Due to the non-linear nature of the problem,
the shape, density and orientation of the isophotes affect the
accuracy with which the gradient vectors can be estimated. The
characteristics of the isophotes depend on the lighting directions.
So, illumination directions play a crucial role in the quality of the
produced image and they should be carefully chosen for applica-
tions in which this is possible. Sub-optimal geometric arrange-
ments may crucially affect the reliability of the subsequently
inferred information.

In this paper, two methods that estimate the optimal imaging
configuration are proposed. The first one is based on maximising
the level of detail in the reconstructed surfaces, revealing details
and salient features of the imaged surface. In the second approach,
we estimate optimal positions of the light sources by maximising
the area covered by dense isophotes in gradient space for an
arbitrarily shaped surface when the distribution of surface normals
is roughly known. The problem has been studied before [32,15],
but previous authors did not consider prior knowledge on the
distribution of the normals of the facets of the surface. All previous
optimisation methods effectively assumed uniform distribution of
the normals. This paper uses class-specific prior knowledge, where
the distribution of the normals of the class of surfaces is used in the
optimisation. At this point we would like to stress that we do not
expect to know the exact surface normals beforehand, as this
would defeat the purpose of photometric stereo. We only assume
the availability of the statistical distribution of the surface normals,
which may be used for all objects of the same class, e.g. all human
faces, although this statistical distribution might be obtained from
the face of a plastic model, for example, using active sensing. The
ultimate purpose is to take into consideration the statistical distri-
bution of the normals, in order to design an optimal lighting
g using

http://dx.doi.org/10.1016/j.cviu.2014.01.012
mailto:Vasileios.Argyriou@kingston.ac.uk
http://dx.doi.org/10.1016/j.cviu.2014.01.012
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu
http://dx.doi.org/10.1016/j.cviu.2014.01.012


2 V. Argyriou et al. / Computer Vision and Image Understanding xxx (2014) xxx–xxx
system for this class of object, and so achieve best reconstruction of
the surfaces of individual objects of the same class.

This paper is organised as follows. In Section 2 previous work on
photometric stereo and optimal illumination estimation is
reviewed. In Section 3, we propose an overview of the proposed ap-
proach. In Section 4 the first proposed methodology is analysed
both for the Lambertian and the Phong models. Also, details on
how this approach can be generalised to n illumination sources
are presented. In Section 5 the second approach is introduced
based on the density of the isophotes in the gradient space, for
Lambertian surfaces. In Section 6 initially an analysis of some pre-
liminary results related to the estimations of some model parame-
ters are presented for the first approach. Then in Section 7, the
proposed illumination setups are compared with the one proposed
in [10]. First, experiments are performed using artificial images
with isotropic distribution of normals, followed by experiments
with anisotropic distributions with four different dominant orien-
tations. Subsequently, experiments with real faces but synthesised
images are performed. Finally, in Section 8 results are presented
using real objects with ground-truth and real faces without
ground-truth but using the side views and the Hausdorff distance
for evaluation. In Section 9 conclusions on the proposed methodol-
ogy and the evaluation process are presented.
2. Previous work

In [41] photometric stereo was introduced. He proposed a
method which was simple and efficient, but was sensitive to noise.
In his method, the surface gradient can be recovered by using two
photometric images, assuming that the surface albedo is already
known for each point on the surface. In [9] photometric stereo
was extended to four light sources, where specular reflections were
discarded and estimation of surface shape could be performed by
means of diffuse reflections and the use of the Lambertian model.
In [27] a photometric approach which uses a linear combination
of the Lambertian model was developed and an impulse specular
component to obtain the shape and reflectance information for a
surface. In [3–5] an algorithm for estimating the local surface gra-
dient and albedo using four source colour photometric stereo was
presented in the presence of highlights and shadows. In [22] an ap-
proach that utilises nine illumination sources was presented. It is
also worth mentioning the related work presented in [31] focusing
on 4-lights PS based on shape information and statistical segmen-
tation techniques to determine which pixels are specular and
which are non-specular. In [7] an algorithm for Lambertian photo-
metric stereo in the presence of shadows is proposed based on fast
graph cuts estimating per pixel light source visibility. Also, it al-
lows images to be acquired with multiple illuminants, and there
can be fewer images than light sources. In [24] a method to remove
shadows from real images based on a probability shadow map is
introduced and in [12] a shadow removal method is presented
from a 3-band colour image finding an intrinsic reflectivity image
based on assumptions of Lambertian reflectance. In the work pre-
sented in [30] a method for cast shadow removal from obliquely
illuminated images of faces is suggested based on a statistical mod-
el of surface normal directions. [34] proposed a multi-light source
photometric stereo system for reconstructing images of various
characteristics of non-Lambertian rough surfaces with widely
varying texture and specularity. An algorithm that no calibration
is needed for recovery of geometry of objects with general
reflectance properties from images was introduced in [17]. In [1]
a technique for resolving the GBR ambiguity based on minimisa-
tion of the entropy of the recovered albedos was proposed. In
[13] an uncalibrated photometric stereo technique for unknown
light sources and general reflectance model was suggested. A
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review of different reflectance maps proposed in the literature
for modelling reflection from real-world surfaces as presented in
[35] and in [28] the problem of estimating the proportions of
Lambertian and specular reflection components in order to im-
prove the quality of surface normal information recoverable using
shape-from-shading was discussed. Recursive approaches for sha-
dow and highlights estimation for advanced reconstruction using
photometric stereo of any number of lights were presented in
[38,39]. In [18] a technique for face recognition was presented that
combines the Fisherface method with the ridgelet transform and
high-speed Photometric Stereo. In [21] was shown that a plausible
shape can be obtained based on two light sources and in [11] a
multiple illumination technique that directly recovers the view-
er-centered curvature matrix and being independent of knowledge
of incident illumination orientation, local surface orientation, or
diffuse surface albedo was presented. A scheme to resolve
handwriting from background printing using photometric stereo
to recover the surface was suggested in [25] and in [19] a photo-
metric stereo algorithm was presented that reconstructs object
shapes from multiple images, in which 3D surfaces were approxi-
mated by Legendre polynomials. In [37] an algorithm for shape
from shading was introduced based on the assumption that a
single input image will be matched to a second image through a
uniform disparity field.

The influence of a lighting arrangement to the accuracy of
surface reconstruction based on photometric stereo has been
considered in the past [41,23,32,8] and suggestions for optimal
illumination configurations in terms of azimuth ul and zenith hl

angles have been reported. In [40], using reflectance maps, dense
iso-intensity contours were recommend to obtain maximal
accuracy.

Lee and Kuo in [23], using two reflectance maps in the case of a
two image photometric stereo, deduced that it is desirable to
incorporate reflectance maps that compensate each other’s weak-
nesses (i.e. the accuracy of the reconstructed surface height is re-
lated to the slope of the reflectance map function and therefore
using a second reflectance map can be combined to improve the
reconstruction in certain areas), in order to determine the optimal
illumination configuration.

Based on [23], it was further confirmed that the two image
photometric stereo is more sensitive to the azimuth rather than
the zenith angle difference and that the optimal value for azimuth
difference is 90�. In [15] three light photometric stereo was consid-
ered and it was suggested that distributing the illumination azi-
muth angles uniformly through 360� is optimal. A theoretical
analysis of Gullon’s arrangement was presented in [32,33], based
on the sensitivity analysis of photometric stereo and by deriving
expressions of each surface normal vector with respect to image
intensities.

It was discovered in [32] that the optimal azimuth and zenith
angles cannot be specified without any assumptions and that the
configuration that results the minimum noise is not unique. In-
stead, it was determined for a two lights Photometric Stereo that
an orthogonal arrangement of the illumination vectors (with an
angle of 90� to each other) is the only restriction to obtain the opti-
mal configuration. In the case of the common zenith angle being
constrained, the optimal values for azimuth angles for three lights
Photometric Stereo were estimated and it was suggested to use
120� difference in a three-image Lambertian photometric stereo
configuration.

The optimal zenith angle in the case of uniformly distributed
light sources according to the azimuth was found to be around
55�, but if shadows are present the angle should be reduced
[32,15]. On the contrary, if the surface is smooth and shadows
are not an issue, the zenith angle can be increased. Furthermore,
in [10] the above was extended for n light sources and derived
ons for faces and rough surfaces for single and multiple light imaging using
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the same value for the optimal zenith angle when the sources are
equally spaced in azimuth angles of 360=n degrees. It is also worth
mentioning the similar methods presented in [14,16,29,20,42].
Fig. 1. Examples of possible illumination directions. Each dot on the hemisphere
corresponds to a possible light l. It may be identified by its azimuth angle ul and its
zenith angle hl .
3. Proposed methodologies – preliminaries

It is well known that the fraction of light reflected on an object’s
surface in a certain direction depends upon the optical properties
of the surface material. In this paper we use the Lambertian and
Phong models, thus the fraction of the incident illumination
reflected in a particular direction depends only on the surface nor-
mals. It has been proven in [10] that it is not possible to define the
optimal imaging conditions without some prior knowledge about
the imaged surface. In this work, we propose two novel approaches
that separate the observed objects into classes which share com-
mon features and characteristics, such as similar distribution of
the normals, and finds the optimal illumination conditions for each
class of object (e.g. faces, bottles, round fruits, etc.).

If the purpose of imaging is to reveal the 3D structure of the
surface, the assumption that the surface consists of a collection
of facets, each with its own orientation and possibly albedo, has al-
ready been made. It is not possible then to select an optimal imag-
ing configuration by considering either the characteristics of a
single surface facet or the average characteristics of the full surface.
Instead, the optimal configuration is selected by considering the
statistical distribution of the normal vectors of the facets that make
up the surface. The application of the proposed methodology is
clearly for controlled environments only. For example, in an indus-
trial inspection problem or a 3D face database creation problem, it
is expected to know a priori what type of surface will be imaged.
Then, from generic graphics models of surfaces of this kind, it
may be assumed that the distribution of the normals of the surface
is approximately known. Therefore, the proposed model is not
parametric, but the required distribution of surface normals could
be extracted from a generic object model of the type of object class
we are interested in imaging.

At this point the relationship between the imaging resolution
and the obtained surface normals should be analysed in more
detail. The majority of the 3D reconstruction methods based on
photometric stereo have a one-to-one relationship between the
surface normals and the resolution of the acquired image. This
means that each pixel corresponds to a facet with one normal.
Furthermore, methods that provide subpixel reconstructions using
photometric stereo are available [36] allowing lower resolution
capturing devices to provide detailed estimates. It should be
mentioned that this one-to-one relationship due to the lack of
the correspondence problem is one of the main advantages of
photometric stereo, allowing detailed reconstructions with
applications to object inspection for defects, surveillance and
recognition.

So, it is proposed that in case of objects (e.g. faces) that share
common surface characteristics, which therefore result in similar
statistical distributions of normal vectors, an optimal arrangement
of the illumination directions may be obtained. The 3D surface of
any face (even one of a plastic model scanned by a laser sensor)
can supply us with the required distribution, as all faces are ex-
pected to have pretty similar distributions of the normals of their
facets. This approach can be extended to any class of surface, not
only faces, as long as they share similar facet normal distributions.
With the proposed approach the optimal illumination directions
are estimated once and then the obtained setup is used to capture
other objects of the same class. If no prior knowledge on the distri-
bution of the facets is available, a recursive approach may be used:
a preliminary surface estimate may be obtained using a default
light setting; from this estimate the optimal light setting may be
Please cite this article in press as: V. Argyriou et al., Optimal illumination directi
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worked out and the surface may be reconstructed more accurately
using images captured under the new lighting arrangement. In the
sections that follow, two approaches are proposed based on the
above assumptions. The first one estimates the optimal illumina-
tion directions operating in the pixel domain while the second
one reasons about the isophotes in the gradient domain.

4. Method 1 – Optimal illumination setup in the pixel domain

The approach that operates in the pixel domain provides the
optimal illumination setup both for a Lambertian and a Phong
model. The solution is obtained by optimising an objective function
consisting of three components that express three different factors
that influence the performance of Photometric Stereo. The first
component tries to maximise and enhance the visibility of the
surface details; the second component tries to minimises the shad-
ows; and the last one, that is applicable only to the Phong model,
tries to determine the illumination setup that minimises the num-
ber of highlights (see Fig. 10). Regarding the shadow component it
should be mentioned that only self-shadows were considered in
the proposed model while cast shadows are not modelled in our
simulations.

4.1. Lambertian model

If Ni is the normal vector of a surface facet, qi its albedo and Ii

the corresponding brightness value recorded for that facet, for
the Lambertian model we have

Iið~LÞ ¼ qi
~Ni �~L ð1Þ

By incorporating the albedo into the normal vector, a general-
ised normal ~N0i � qi

~Ni may be defined for each facet, so that

Iið~LÞ ¼ ~N0i �~L ð2Þ

Treating ~N0 as a random variable, its distribution may be assumed
known, constituting the prior knowledge we have for the problem,
obtained from a training surface of similar type. In case the actual
albedo of the generic model surface used is not available, it can
be replaced by a uniform one without affecting the proposed
methodology.

Any two neighbouring facets i and j will be recorded with
brightness contrast

DIijð~LÞ ¼ ð~N0i � ~N0jÞ �~L � D~N0ij �~L ð3Þ

Over an imaged surface, D~N0ij is expected to take values from the
estimated distribution of the ground truth (e.g. known class
sample) as ij traces all neighbouring facets of the surface. L is the
ons for faces and rough surfaces for single and multiple light imaging using
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unknown illumination vector and in our problem it is constrained
on a hemisphere with radius 1 (see Fig. 1), thus its position is
parameterized with two angles ul and hl.

The idea then is to select ~L so that the spread of DIij is
maximised, i.e. the detail seen in the image is maximised. If the
distribution of D~N0ij is known, it is obvious that~L could be estimated
using a maximisation algorithm. So, the illumination direction
could be estimated by maximising the sum of the magnitudes of
the right-hand side of Eq. (3) for all neighbouring facets, integrated
over the surface normals, given by

f ðul; hlÞ �
1
S

X
i; and j2Ri

jDN0ij � Lj ð4Þ

where S is the total number of pairs ði; jÞ considered and Ri is the
4-neighbourhood of facet i.

If this function were to be minimised, however, we might end
up with a large number of facets receiving no light (self-
shadowed). This is undesirable in a photometric stereo application.
To avoid self-shadows, the angle between the illumination
direction ~L and the surface normal ~N in Eq. (1) should be in the
range � p

2 ;
p
2

� �
. So, a constraint is introduced to constrain the angles

in the desirable range. We define:

gðul; hlÞ �
1
M

XM

i

Wiðul; hlÞ ð5Þ

where Wi ¼ 1 if Ni � L > 0 and Wi ¼ �1 if Ni � L < 0, and M is the
number of surface normals. So, instead of maximising the number
of facets with Ni � L > 0, the difference of the number of facets with
Ni � L > 0 minus the number of facets with Ni � L < 0 is maximised.
Since the number of all facets is constant, it makes no difference
either only the number of facets with positive Wi, or the difference
of the two types of facet is maximised. The case of a p=2 angle is
treated as neutral. Combining the two requirements (4) and (5) in
a single quality function, we obtain

Qðul; hlÞ � f ðul; hlÞ þ kgðul; hlÞ ð6Þ

where k > 0 is a weighting factor. Simulated annealing may be used
to solve this global optimisation problem and obtain the optimal
direction ðul; hlÞ for the light source. In more details, the obtained
quality function in Eq. (6) is the input to the simulated annealing
and the optimal values for the ðul and hlÞ parameters are obtained.
In this way the distribution of the normals DN0 and the self-shadow
component are incorporated in the optimisation process.

4.2. Phong model

The Phong model consists of three components, namely the
diffuse, specular and ambient components (Fig. 2). The diffuse
component is the Lambertian model. The specular component
forms a lobe of reflected light which spreads out around the
specular direction and is modelled by a cosine function raised to a
power. The ambient component accounts for the ambient light
and the inter-reflections. This model is mathematically expressed as

Iðul; hlÞ ¼ Ia þ q~L � ~N þ kð~R � ~VÞ
m

ð7Þ
Fig. 2. Components of the Phong model.
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where Ia is the ambient constant light intensity and k is the specular
reflectance coefficient. ~V denotes the viewing direction,~R is the per-
fect reflector vector, and m controls the width of the specular lobe
and it was equal to 64 in our simulations. One can easily work
out that direction ~R is given by ~R ¼ 2~Nð~N �~LÞ �~L.

For our study the ambient light may be ignored, since it has the
same constant value for all surface facets. Thus, the model of inter-
est here consists of the Lambertian component and the highlight
only. Since the Lambertian component is uniformly radiated, the
position of the camera is not influenced by this. The Lambertian
component is only influenced by the illumination direction, which
may still be determined by the method discussed in Section 4.1.
The position of the camera, however, should be such that the num-
ber of the highlights is minimised. Highlights are a nuisance when
one wants to reconstruct a surface from photometric data, since
the intensity saturates at the corresponding facets.

Since we must avoid highlights, the camera direction
~V � ðuv ; hv Þ should be selected so

tðul; hlÞ �
1
M

XM

i

~Ri �~V ð8Þ

is minimised. Combining (6) and (8) we obtain as quality function

Pðul; hlÞ � f ðul; hlÞ þ kgðul; hlÞ � jtðul; hlÞ ð9Þ

where j > 0 is a weighting factor. Note the minus sign in front of j,
indicating that this term has to be minimised, while the other two
have to be maximised. Simulated annealing may be used to solve
this global optimisation problem and obtain the optimal illumina-
tion ðul; hlÞ and viewing ðuv ; hvÞ directions. In the Phong model case
the approach is similar as in the Lamberian case but the quality
function in Eq. (9) that is the input at simulated annealing contains
a third component that incorporates the viewers direction in the
optimisation process. Other stochastic optimisation methods may
equally well be used. In our work, the directions proposed in [10]
were used for initialisation.

In photometric stereo the main problem is to reconstruct the
surface normals at the areas where shadows or highlights are
present. Also, if the contrast is low, small irregularities, e.g. moles
of a face, would not be revealed. In Eq. (9) the first term f is used to
obtain the illumination direction that maximises the contrast, the
second term to minimise the facets with shadows and the last
one to minimise the highlights. The first and the second terms
could not be combined since the contrast maximisation could be
benefited by the presence of shadows and highlights.
4.3. Extension to n illumination sources

The extension to n illumination sources for use in conjunction
with photometric stereo is performed using alternating optimisa-
tion. According to this approach, the optimal light source direction
of the first light is estimated using (6) or (9). During this first
optimisation, the remaining illumination directions are kept con-
stant. After the first illumination direction is obtained, the second
is estimated in the same way but keeping the values estimated
for the first light fixed. The remaining lights are estimated with
the same process. After the directions of all light sources have been
computed, the whole process is repeated until convergence is
reached.

In the case of the Phong model, the viewing direction is defined
only once, when the direction of the last light is worked out, since
there is only a single acquisition point.

The optimisation process is performed once for each type of
surface under inspection, off line, and therefore there are no issues
related to the complexity and the required time for this step.
ons for faces and rough surfaces for single and multiple light imaging using
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5. Method 2 – Optimal illumination setup using isophotes in the
gradient space

The second proposed approach to obtain the optimal illumina-
tion directions for a specific class of object (e.g. faces) that share
similar distribution of normals is based on the fact that denser
isophotes in the gradient space result more accurate normals dur-
ing the reconstruction process. Knowing the class distribution of
normals we try to estimate the illumination directions that will
provide the denser isophotes to the areas with the most common
and frequent normals since for most object classes a uniform
distribution of normals is not the case. This idea is somehow
equivalent to the idea we exploited in the previous section, since
denser isophotes result from large changes in brightness between
neighbouring pixels. The difference is that in that case, the term
‘‘neighbouring pixels’’ indicated proximity in the physical space,
while here indicates proximity in the gradient space.

The reflectance characteristics of an object that are produced
when a ray of light strikes its surface, (specular and diffuse) depend
on the surface material, microstructure, incident wavelength, and
the direction of incidence. Assuming a Lambertian surface and a
viewing direction that is aligned with the z-axis of the object coor-
dinate system, the normal vector of the surface is ð�pn;�qn;1Þ,
where pn ¼ @x=@z and qn ¼ @y=@z. If the corresponding illumina-
tion vector is ð�pl;�ql;1Þ, the image intensity is calculated by
taking the normalised dot product of the two vectors and multiply-
ing it with the surface albedo qðx; yÞ:

Rðx; yÞ ¼ qðx; yÞ 1þ plpn þ qlqnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

n þ q2
n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

l þ q2
l

q ð10Þ

If two images with different lighting directions are used, the
orientation of each surface facet may be determined by the
intersection of the iso-brightness contours (isophotes) of the two
reflectance functions it lies on.

In general, the reflectance functions are non-linear, so more
than one solutions are possible (contours may intersect at two
points; twofold ambiguity). A third reflectance map, for a different
illumination direction, is needed to resolve the ambiguity. The
methodologies proposed in [10,15,23,32,33] for maximising
the accuracy of isophote intersection determination, are based on
the assumptions of isotropic and homogenous surfaces with
uniform distribution of the ðpn; qnÞ values of the surface facets in
the reflectance map, resulting in the conclusion that the light
sources should be symmetrically arranged in azimuth around the
surface. These assumptions may be relaxed when some prior
knowledge on the acquired surface is available.

Based on the fact that photometric stereo is most accurate in
the regions of gradient space where the density of reflectance
functions is high [41], a method that estimates the optimal illumi-
nation arrangement is proposed. This is self explanatory, since a
reflectance map with higher density increases the probability for
three or more isophotes to cross through a single point, providing
an accurate solution for the system. Assuming a given surface
material, ie fixed qðx; yÞ, and point light sources, the angle
between the viewer and the light source is one of the main param-
eters that affect this accuracy. In this case, the density of reflec-
tance map contours increases for larger zenith angles, which at
the same time increases the shadowed areas. So, a compromise
should be reached. A second determiner of the accuracy is the
choice of the relative directions of the light sources. Assuming that
a rough model of the observed object is known (e.g. an average face
in case of 3D face reconstruction applications), and therefore the
distribution of its facets’ orientations is known, the illumination
angles may be adjusted in such a way, that areas with dense
Please cite this article in press as: V. Argyriou et al., Optimal illumination directi
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surface normals ðpn; qnÞ will also be covered densely by isophotes
(see Fig. 3).

Let us assume an illumination direction

~L ¼ ðxl; yl; zlÞ ¼ ðsin hl cos ul; sin hl sinul; cos hlÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

l þ q2
l þ 1

q ð�pl;�ql;1Þ ð11Þ

where cos hl ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

l
þq2

l
þ1

p , pl ¼ cos ul tan hl and ql ¼ sin ul tan hl. So,

for a given surface normal ~N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

nþq2
nþ1

p ð�pn;�qn;1Þ the intensity

of this facet, given by Eq. (10), depends only on the azimuth ul

and zenith hl angles (and the albedo).
If we assume that the ðpn; qnÞ values are uniformly distributed in

a square area of the reflectance map, corresponding to the case of
an isotropic and uniformly rough surface, the density of the isoph-
otes should be uniform too in the same area of the ðp; qÞ space, in
order to achieve a uniformly reliable recovery of all the surface
normals. However for faces or other anisotropic surfaces, the lights
should be arranged in such a way that the areas with more ðpn; qnÞ
points should be covered by more isophotes. So, the directions
should be selected to satisfy the above requirement and they
may be estimated using the following optimisation methodology.

Without any loss of generality, let us assume that our object
class of interest is human faces. Let us consider that we have at
our disposal the model of a 3D human face, obtained from a man-
nequin. This 3D surface represents the average face containing the
most common facial characteristics and features.

Let us assume that the model face consists of M vertices and let an
M � 2 matrix W contain the directions of the vertices’ normals. The
third component of the normal is discarded as being fully defined by
the other two, due to the choice of the coordinate system we use.

So, Wi ¼ ðpni
; qni
Þ, where pni

¼ dxi=dzi and qni
¼ dyi=dzi. The nor-

mals are quantised and their histogram Wh ¼ hðWÞ is obtained
containing m discrete entries keeping their number equal to the
number of vertices (i.e. pixels on the 2D height map, with one axis
for q and one for p). Some examples of Wh are shown in Fig. 4.

Since the normals are discretized on the ðp; qÞ plane, their range
is known with the vectors P and Q containing all possible values in
each axis (i.e. the range of the normals’ values). For all these dis-
crete normals, the reflectance map for a given illumination direc-
tion ðpl; qlÞmay be estimated using Eq. (10) and be represented as:

RðkÞij ¼ q
1þ plkPi þ qlkQ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ P2
i þ Q 2

j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

lk þ q2
lk

q

ons for faces and rough surfaces for single and multiple light imaging using
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Fig. 4. An example of the histogram of the normals for (a) an isotropic surface, a face, an isotropic surface with significant altitude variation and an anisotropic surface, both in
(b) 3D and (c) 2D views.
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where RðkÞij is the value of the reflectance map (isophota) at location
ij for the k illumination direction.

So, the illumination directions of k lights should be selected to
satisfy the above requirement. They may be estimated by maximis-
ing the sum of the gradient magnitudes of Eq. (12) for the K light
sources, integrated over the whole available range of normals,
given by
f ðpli
; qlj
Þ ¼

XI

i¼1

XJ

j¼1

WhðPi;Q jÞ
XK

k¼1

krRðkÞij k
" #

ð13Þ

where krRðkÞij k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@RðkÞ

ij

@Pi

� �2

þ
@RðkÞ

ij

@Q j

� �2
s

. An example of R and f ðpli
; qli
Þ

is shown in Fig. 5. We use simulated annealing to solve this global
optimisation problem and obtain the optimal ðpl; qlÞ values for the
light sources. Once the light gradients ðpl; qlÞ for each light source,
that maximise our requirements have been estimated, we can
obtain the directions of the lights because the zenith angle was
considered constant and known.
Please cite this article in press as: V. Argyriou et al., Optimal illumination directi
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6. Experiments and results

The idea of the experiments is to reconstruct a surface by using
photometric stereo images of the surface, once captured under
‘default illumination directions’ (as proposed in [10]) and once cap-
tured under optimal illumination directions, as specified by the
proposed methods. The aim is to show that more accurate recon-
structions are obtained when the lighting directions have been se-
lected by the proposed approaches. For all reconstructions, the
standard 4-lights photometric stereo algorithm was used, without
applying any techniques to exclude pixels affected by shadows or
highlights. Initially, simulated surfaces are constructed from which
photometric image sets are created. Also 3D models of human
faces are used to perform controlled experiments. Three different
textures were used to simulate albedo (see Fig. 6) on randomly
generated isotropic and anisotropic surfaces. In the case of surfaces
of human faces, a uniform grey colour was used, as well as their
real albedo.

In more details our testing surfaces in the case of the isotropic
contain a facet at each pixel location with the distribution of the
ons for faces and rough surfaces for single and multiple light imaging using
dx.doi.org/10.1016/j.cviu.2014.01.012
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Fig. 5. An example of RðkÞij ;
PK

k¼1RðkÞij and
PK

k¼1krRðkÞij k for (a) an isotropic surface, (b) a face, (c) an isotropic surface with significant altitude variations and (d) an anisotropic
surface both in 2D and 3D views for a given illumination direction.

Fig. 6. The three different textures used to simulate the albedo for all simulated surfaces used, except faces.

0 500 1000 1500

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

Lights obtained during optimisation

R
ec

on
st

ru
ct

io
n 

Er
ro

r

Fig. 7. The accuracy of reconstruction as a function of the direction of the 4th light
source during the optimisation process.
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normals to be uniform. In order to obtain these surfaces we restrict
the orientation of the normals to be on a hemisphere and we sam-
ple uniformly obtaining the isotropic surfaces. In the anisotropic
case the surfaces contain mainly ripples of different lengths and
orientations and as a result this orientation reflects on the orienta-
tion of the distribution of the normals. Also faces were used that
have anisotropic distribution of normals but there is an axis of
symmetry. All the simulated models were rendered in the same
way using the Phong model in order to avoid unfair comparisons.
Furthermore, regarding the real data faces, bottles and other ob-
jects were used with or without ground truth depending on each
case. Also it should be mentioned that both the simulated isotropic
and anisotropic surfaces are not perfect isotropic and anisotropic
due to the random generation of facets and the cropping the
obtained distributions of the normals are not completely uniform.

Before we move to the actual evaluation of the proposed meth-
ods an experiment was performed to observe the optimisation
landscape of the optimisation algorithm that was utilised. There-
fore, we keep three of the four lights fixed and we optimise only
for the last one and then in Fig. 7 the accuracy of reconstruction
as a function of the direction of the 4th light source during the
Please cite this article in press as: V. Argyriou et al., Optimal illumination directions for faces and rough surfaces for single and multiple light imaging using
class-specific prior knowledge, Comput. Vis. Image Understand. (2014), http://dx.doi.org/10.1016/j.cviu.2014.01.012
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optimisation process is plotted. From the figure it can be seen that
the illumination direction stabilises after approximately 1200
iterations close to the overall minimum.

6.1. Method 1 – Parameters selection

Regarding the first method, in order to select the proper values
for the weights j and k in Eqs. (6) and (9), some pilot experiments
were performed to identify the order of magnitude of each term.
The histograms of each of these terms are shown in Fig. 8. It may
be inferred that all of them are of the same order of magnitude
but the modes of their values are not balanced. In this work we as-
sume that each component is equally important in the quality
functions and therefore these weights are select to secure this
assumption and provide a global optimal with each term contrib-
uting the same. Therefore, the weights k and j should be properly
selected to make the modes of all terms roughly the same, so all
terms play role in the optimisation. From these histograms, it is
inferred that k � 0:5 and j � 2.

As simulated annealing works by minimising a cost function,
while quality functions have been defined that have to be
maximised, the cost function used in the optimisation step was
�Qðul; hlÞ or �Pðul; hl;uv ; hv Þ.

Fig. 9 shows the plots of the minimisation of these functions for
an example case. In Fig. 10 the value of each of the terms consid-
ered in the construction of quality function Pðul; hl;uv ; hv Þ at each
pixel is shown, for specific values of the illumination and viewing
directions, and for a particular example case. Furthermore, in
Fig. 10 we have a visual representation of all terms f ; g and t in
Eqs. (6) and (9). Column ðcÞ corresponds to term f that represents
the relative orientation between neighbouring facets trying to
maximise the local contrast and improve the visibility of local
detail; column ðdÞ corresponds to term g trying to minimise the
self-shadows; and column ðeÞ corresponds to term t indicating
the highlights present in the image. Therefore, it is clear that Eqs.
(6) and (9) depend on the contents of the input images.
7. Experiments with simulated surfaces

Experiments were performed with three sets of surface data:
isotropic surfaces, anisotropic surfaces and simulated human faces
with the terms isotropic and anisotropic we refer to the distribu-
tion of the surface normals. For all these surfaces the normal vector
of each facet (ground truth) is known. For each set of surfaces, that
share common characteristics and statistics related to the surface
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Fig. 8. Histograms of all the optimisation terms (x-axis) over all the different values of /
faces.
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normals, the directions of four light sources were calculated using
the proposed methodology. A subset of surfaces for each surface
class was used to obtain the optimal illumination directions for
the corresponding set. The mean illumination configuration from
the training subset was selected and applied to the surfaces of
the test subset. The term ‘mean’ corresponds to the average four
vectors of all the surfaces in the training subset of each surface
class. Regarding the first approach, in order to identify the corre-
sponding illumination directions, which had to be averaged, the
k-means clustering algorithm was used in the ðul; hlÞ space to par-
tition all the estimated directions into four clusters. The mean for
each cluster was calculated providing the direction of one light
source. Fig. 11 shows some examples of the obtained clusters for
different classes of surfaces used in our experiments.

In order to compare the performance of the proposed approaches,
the angular error (AE) measure suggested by Beauchemin et al. [2]
was used:

WAE ¼ cos�1 xexc þ yeyc þ zezc þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

r þ y2
r þ z2

r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

e þ y2
e þ z2

e

p
" #

ð14Þ

Here ðxe; ye; zeÞT and ðxr; yr; zrÞT are the estimated and the real
surface normals for a particular facet, respectively.

Furthermore, since the real albedo was available, the mean
absolute difference between true and worked out albedo was used
to compare the performance of the proposed methodologies

�AD ¼
1

MN

XM

i¼1

XN

j¼1

j Aeði; jÞ � Arði; jÞ j ð15Þ

where Ae and Ar are the estimated and the real albedo, respectively.
Fifteen isotropic surfaces for training were used and fifteen for

evaluation (see Fig. 12). The surfaces were created to contain
random peaks with low altitude, in order to avoid cast-shadows
and provide a uniform distribution of normals. In all cases, the sim-
ulated annealing was initialised with the ‘default’ vectors for the
illumination directions and with the z-axis for the viewing direc-
tion. In Fig. 13 the worked out illumination directions are shown
for both methods. It can be seen that, as expected, they are
uniformly distributed about the surface. In the first row of Tables
1–3 the average angular and albedo errors for the isotropic sur-
faces for the Lambertian and the Phong models respectively are
shown for all three textures that were used (see Fig. 6). Figs. 14
and 15 show the angular error in degrees and the albedo difference
as a function of the isotropic surfaces, respectively. The mean error
and h for the Lambertian and Phong model of the first method, respectively, for four

ons for faces and rough surfaces for single and multiple light imaging using
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Fig. 9. Examples of cost function reduction by the optimisation process for the first method. At the top for the Lambertial model and at the bottom for the Phong model. On
the left the value of each cost function as a function of the iterations, while on the right each individual term. These runs were for a human face with k ¼ 0:75 and j ¼ 2.

Fig. 10. (a) Selected illumination and viewing directions for the first approach. (b) 3D representation of a face. (c) Every pixel is given a grey value according to the difference
in illumination it receives from the average illumination of its four nearest neighbours. (d) Black pixels are not illuminated. Their number should be minimised. (e) Black
pixels are highlights. Their number should be minimised. In the 1st and 2nd rows the viewing direction is the same, while in the 1st and 3rd rows the illumination direction is
the same.

V. Argyriou et al. / Computer Vision and Image Understanding xxx (2014) xxx–xxx 9

Please cite this article in press as: V. Argyriou et al., Optimal illumination directions for faces and rough surfaces for single and multiple light imaging using
class-specific prior knowledge, Comput. Vis. Image Understand. (2014), http://dx.doi.org/10.1016/j.cviu.2014.01.012

http://dx.doi.org/10.1016/j.cviu.2014.01.012


Fig. 11. Clusters of the illumination directions for different classes of surfaces. Left isotropic surfaces, middle faces and at the right anisotropic surfaces.

Fig. 12. An example of a simulated isotropic surface of size 128� 128 pixels. The
RMS roughness value of these surfaces was in the range between 4:5 and 5:5.

Table 1
The mean angular error (MAE) computed over all faces and all simulated surfaces and
for k ¼ 0:75 in the first method using the Lambertian model. In bold the best result for
each case.

MAE Default Proposed A Proposed B

Isotropic 1.0817 0.0000 0.0000
Anisotropic 0� 3.9902 0.8618 1.1859
Anisotropic 45� 4.2101 1.0434 1.3518
Anisotropic 135� 4.2065 1.2320 1.3627
Anisotropic 90� 4.0553 0.9650 1.0977
Faces 5.0481 0.1244 0.3315

Table 2
The mean angular error (MAE) computed over all facets and all simulated surfaces
and for k ¼ 0:75 and j ¼ 0:5 using the Phong model. In bold the best result for each
case.

MAE Default Proposed A

Isotropic 1.0817 0.0000
Anisotropic 0� 3.9902 0.9346
Anisotropic 45� 4.2101 1.0198
Anisotropic 135� 4.2065 1.0679
Anisotropic 90� 4.0553 0.9610
Faces 5.0481 0.0001

Table 3
The mean absolute difference (MAD) per pixel between the ground truth and the
estimated albedo computed over all isotropic simulated surfaces for different textures
and for all illumination configurations for both methodologies. In bold the best result
for each case.

MAD Texture 1 Texture 2 Texture 3

Default 0.0019 0.0021 0.0014
Proposed A 0.0000 0.0000 0.0000
Proposed B 0.0000 0.0000 0.0000
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of the recovered albedo is insignificant either the default illumina-
tion directions or the worked out ones were used.

From the results about the second approach, we may observe
that for the case of 4-lights photometric stereo, the lights should
be located close to the corners of a square as it was expected, since
the simulated data satisfy the required assumption of a uniformly
rough surface. Based on Eq. (11) the azimuth angle is given by
ul ¼ tan�1ðql=plÞ indicating that the angle remains the same when
the ratio of the illumination directions is constant.

Next, four sets of anisotropic surfaces (Fig. 16) were used. The
selection of these examples and these orientations was mainly to
allow us to demonstrate that the obtained estimates are correct
and according the expectations of the proposed methods. In each
set there were seven surfaces with different appearance, but all
with prominent anisotropy in the same direction. From the seven
surfaces, three were used for training and four for testing. The esti-
mated illumination directions for the anisotropic surfaces are
shown in Fig. 17 coinciding with the directions of the gradients
and exploiting the density of the isophotes as it was expected for
both approaches. The average angular error is given in Tables 1
and 2 for the Lambertian and the Phong models, respectively, in
Fig. 13. Estimated illumination directions for the class of isotropic simulated surfaces using both approaches, (left) method A and Lambertian model, (middle) method A and
Phong model and (right) method B and Lambertian model.
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Fig. 14. Performance comparison in terms of mean angular error for each anisotropic surface using the ‘default’ illumination configuration and the proposed set for both
approaches, (left) method A and B with Lambertian model and (right) method A and Phong model.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Isotropic surfaces − Texture 1

M
ea

n 
Ab

so
lu

te
 A

lb
ed

o 
Er

ro
r

Surface

Default Light Set
Proposed A
Proposed B

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Isotropic surfaces − Texture 2

M
ea

n 
Ab

so
lu

te
 A

lb
ed

o 
Er

ro
r

Surface

Default Light Set
Proposed A

Fig. 15. Performance comparison in terms of mean absolute difference for each anisotropic surface using the ‘default’ illumination configuration and the proposed for both
approaches, (left) method A and B with Lambertian model and (right) method A and Phong model.

Fig. 16. Two example surfaces from each of the four sets of anisotropic surfaces used in our experiments. From left to right the main orientation of the distribution of the
normals is 0�;45� ;90� and 135�. The RMS roughness value of these surfaces was in the range between 3:8 and 14:5.
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rows two to five. It should be mentioned again that the the Phong
model is applicable only for the first method. The average albedo
error for each of the four directions is shown in Table 4 for both
Please cite this article in press as: V. Argyriou et al., Optimal illumination directi
class-specific prior knowledge, Comput. Vis. Image Understand. (2014), http://
methods and the Lambertian model and in Table 5 only for the first
approach and the Phong model. It may be observed that the
proposed methodologies results more accurate normals with
ons for faces and rough surfaces for single and multiple light imaging using
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Fig. 17. Estimated illumination directions for the class of anisotropic simulated surfaces using both approaches, (left) method A and Lambertian model, (middle) method A
and Phong model and (right) method B and Lambertian model.

Table 4
The mean absolute difference (MAD) per pixel in albedo computed over all
anisotropic simulated surfaces for different textures and for all illumination
configurations and both methods for the Lambertian model. In bold the best result
for each case.

MAD T 1 T 2 T 3 T 1 T 2 T 3

0� 45�

Default 0.0042 0.0046 0.0030 0.0057 0.0064 0.0042
Proposed A 0.0005 0.0006 0.0004 0.0012 0.0014 0.0009
Proposed B 0.0031 0.0035 0.0023 0.0040 0.0045 0.0029

135� 90�

Default 0.0057 0.0064 0.0042 0.0042 0.0047 0.0031
Proposed A 0.0051 0.0047 0.0040 0.0004 0.0004 0.0003
Proposed B 0.0040 0.0045 0.0029 0.0033 0.0036 0.0024

Table 5
The mean absolute difference (MAD) in albedo computed over all anisotropic
simulated surfaces for different textures and for all illumination configurations using
the Phong model. In bold the best result for each case.

MAD T 1 T 2 T 3 T 1 T 2 T 3

0� 45�

Default 0.0042 0.0046 0.0030 0.0057 0.0064 0.0042
Proposed A 0.0019 0.0021 0.0014 0.0003 0.0003 0.0002

135� 90�

Default 0.0057 0.0064 0.0042 0.0042 0.0047 0.0031
Proposed A 0.0006 0.0006 0.0004 0.0018 0.0020 0.0013
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Fig. 18. Performance comparison in terms of mean angular error for each anisotropic s
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significant error reduction. Also from the obtained results it is ob-
served that the first proposed method outperforms in the case of
textured data in general, mainly due to the first term in Eqs. (6)
and (9) that takes in to account the local surface deformations
while the other approaches assume it is constant providing an
advantage in these cases. In figures Figs. 18 and 19 the angular
and the mean absolute error for the anisotropic surfaces using
the ‘default’ illumination configuration, versus the proposed one
are shown. Observing the figures, we can see that the first method
gives different results for the two models (Lambertian-left and
Phong-right) due to the different illumination directions. Regard-
ing the default lights, since they are the same illumination setup
in both cases and the percentage of the highlights present in the
images is very low compared with the total number of pixels, the
average difference is almost negligible between the two models
(Lambertian and Phong) for the first method. Even the average con-
tribution of the highlights to the total error is very low, their re-
moval is regarded essential due to the fact that highlights create
local peaks that can affect significantly the visual outcome. Similar
results were obtained for k in the range [0.5,0.75] and j in the
range [1.5,2].

Further experiments were performed using faces (Fig. 20). The
estimated optimal mean illumination directions of the lights are
shown in Fig. 21 and all the results for each face are shown in
Table 6. Observing the results it may be seen that for the faces
the optimal illumination directions are from the left and the right
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urface using the ‘default’ illumination configuration and the proposed set for both
ong model.
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Fig. 19. Performance comparison in terms of mean absolute difference for each anisotropic surface using the ‘default’ illumination configuration and the proposed for both
approaches, (left) method A and B with Lambertian model and (right) method A and Phong model.

Fig. 20. Examples of faces used in our experiments. The RMS roughness value of these surfaces was in the range between 28:6 and 38:1.

Table 6
The estimated illumination directions for both approaches.

Light ul1 ; hl1 ul2 ; hl2 ul3 ; hl3 ul4 ; hl4

Proposed A (92�;20�) (78� ;22�) (�70�;35�) (�89�;31�)
Proposed B (101�;12�) (76� ;13�) (�67�;18�) (�110�;16�)
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sides of the facial axis of symmetry, a bit lower than the chin or at
the level of the eyes. The main difference is the angle h that is smal-
ler in the case of Phong model with a small change in the viewing
direction. The differences are due to the extra component in the
objective functions that tries to reduce the presence of highlights
and also to specify the optimal viewing direction which is not an
Fig. 21. Estimated illumination direction for the class face using both approaches (left) method A and Lambertian model, (middle) method A and Phong model and (right)
method B and Lambertian model.
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Fig. 22. Performance comparison in terms of mean angular error for each face using the ‘default’ illumination configuration and the proposed set for both approaches, (left)
method A and B with Lambertian model and (right) method A and Phong model.
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Fig. 23. Performance comparison in terms of mean absolute difference for each face using the ‘default’ illumination configuration and the proposed set for both approaches,
(left) method A and B with Lambertian model and (right) method A and Phong model.

Table 7
The mean absolute difference (MAD) computed over all faces for different textures and
for both methods and all the illumination configurations using the Lambertian model.
Bold values indicate the method with the best performance (lower error).

MAD Texture 1 Texture 2

Default 0.0053 0.0042
Proposed A 0.0016 0.0014
Proposed B 0.0035 0.0041

Table 8
The mean absolute difference (MAD) computed over all faces for different textures,
and for all illumination configurations using the Phong model. Bold values indicate
the method with the best performance (lower error).

MAD Texture 1 Texture 2

Default 0.0053 0.0042
Proposed 0.0000 0.0000
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issue for the Lambertian model. The mean angular and albedo
errors for each face are shown in Figs. 22 and 23. All mean errors
are shown in Tables 1, 2, 7 and 8. Similar results were obtained
for k in the range ½0:5;0:75� and j in the range ½1:5;2�. This can
be observed in figure Fig. 24 which shows the error versus the
values of k and j. Observing the results of the second method,
we may say that it provides illumination configurations that adjust
the isophotes in order to achieve higher density at more fre-
quented areas on the pq-plane (i.e. more frequently encountered
normals).
Please cite this article in press as: V. Argyriou et al., Optimal illumination directi
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8. Experiments with real objects and faces

Having learnt the optimal illumination directions from the
simulated faces and anisotropic surfaces, now these arrangements
are tested with real surfaces of similar type, for which the ground
truth is available with the help of the 3dMD imaging system [26].
In particular, two mannequin faces (see Fig. 25) will be recon-
structed using the optimal illumination directions reported in
Tables 9 and 10 and the reconstruction will be compared with
the real height maps worked by the 3dMD scanner. In addition, a
bottle, which may be thought of as a ribbed anisotropic surface,
will also be tested using the optimal illumination directions for
ons for faces and rough surfaces for single and multiple light imaging using
dx.doi.org/10.1016/j.cviu.2014.01.012
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Fig. 25. 3D surfaces obtained using the 3dMD imaging system.

Table 10
The default and the proposed illumination directions for faces, isotropic and
anisotropic surfaces using the Phong model in Method 1.

Light ul1 ; hl1 ul2 ; hl2 ul3 ; hl3 ul4 ; hl4

Default (135�;55�) (45�;55�) (�45�;55�) (�135�;55�)
Isot (124�;39�) (57�;39�) (�56�;39�) (�124�;39�)
Anisot 0� (138�;39�) (39�;40�) (�43�;38�) (�142�;42�)
Anisot 135� (122�;35�) (122�;20�) (�60� ;33�) (�61� ;16�)
Anisot 45� (79�;18�) (56�;39�) (�103�;22�) (�122�;35�)
Anisot 90� (100�;38�) (77�;43�) (�77�;39�) (�101�;35�)
Faces (90�;16�) (85�;16�) (�75�;26�) (�93� ;22�)
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such surfaces, also reported in Tables 9–12 and in Figs. 32–34. It
can be observed that the optimal viewing direction is effectively
at the zenith.

For these experiments, the sum of the absolute height map
difference, between the estimated reconstructed surface, using
Photometric Stereo, and the ground truth, obtained using the
3dMD imaging system, was used to compare the accuracy of the
proposed methodology:

hEG ¼
1

MN

XM

i¼1

XN

j¼1

j Heði; jÞ � Hrði; jÞ j ð16Þ

where He and Hr are the estimated and the real height maps,
respectively.

Each object was illuminated both from the default and the
estimated optimal directions. The captured images are shown in
Figs. 26–28. Using the images captured from the default and the
estimated optimal light sources, Photometric Stereo and integra-
tion are applied in succession, in order to obtain the 3D surfaces
for both illumination configurations. Using the Iterative Closest
Point algorithm [6] the obtained surfaces are aligned with the
Table 9
The default and the proposed illumination directions for faces, isotropic and
anisotropic surfaces using the Lambertian model in Method 1.

Light ul1 ; hl1 ul2 ; hl2 ul3 ; hl3 ul4 ; hl4

Default (135�;55�) (45�;55�) (�45�;55�) (�135�;55�)
Isotr (126�;43�) (55�;42�) (�55�;43�) (�126�;43�)
Anisot 0� (143�;41�) (37�;41�) (�40� ;36�) (�143�;41�)
Anisot 135� (125�;39�) (111�;10�) (�56�;37�) (�57� ;26�)
Anisot 45� (65�;26�) (54�;42�) (�106�;13�) (�125�;43�)
Anisot 90� (92�;43�) (84�;36�) (�85�;34�) (�92� ;32�)
Faces (92�;20�) (78�;22�) (�70� ;35�) (�89� ;31�)

Please cite this article in press as: V. Argyriou et al., Optimal illumination directi
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corresponding surfaces captured from the 3dMD imaging system.
In order to evaluate the accuracy of the obtained surfaces, the
absolute height map difference in Eq. (16) was utilised. The
reconstructed 3D surfaces for both configurations are shown in
Figs. 29–31. Observing the surfaces, we may say that the proposed
configuration produces fewer shadows with more details revealed
especially close to the ears and the chin. Also, the seams created at
the borders of shadowed and non-shadowed areas are less
pronounced. The average absolute height map difference is shown
Table 11
The default and the proposed viewing directions for faces, isotropic
and anisotropic surfaces using the Phong model in Method 1. Note
that if h ¼ 0;u is undetermined.

Camera uv ; hv

Default (–,0�)
Isot (�94�;1�)
Anisot 0� (–,0�)
Anisot 135� (92�;2�)
Anisot 45� (�83�;7�)
Anisot 90� (�71�;2�)
Faces (–,0�)

ons for faces and rough surfaces for single and multiple light imaging using
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Table 12
The default and the proposed illumination directions for faces, isotropic and
anisotropic surfaces based on Method 2.

Light ul1 ; hl1 ul2 ; hl2 ul3 ; hl3 ul4 ; hl4

Default (135�, 55�) (45�, 55�) (�45�, 55�) (�135�, 55�)
Isot (137�, 18�) (67�, 18�) (�67�, 18�) (�113�, 18�)
Anisot 0� (177�, 10�) (6�, 10�) (�7�, 11�) (�176�, 11�)
Anisot 135� (131�, 17�) (6�, 11�) (�47�, 16�) (�178�, 11�)
Anisot 45� (95�, 11�) (52�, 16�) (�90�, 11�) (�136�, 16�)
Anisot 90� (101�, 12�) (76�, 13�) (�67�, 18�) (�110�, 16�)
Faces (101�, 12�) (76�, 13�) (�67 �, 18�) (�110�, 16�)

Fig. 26. Images captured using the default (left column) the estimated based on method
configurations for ‘Adam’.

Fig. 27. Images captured using the default (left column) the estimated based on method
configurations for ‘Eve’.

Fig. 28. Images captured using the default (left column) the estimated based on method
configurations for ‘coke’.
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in Table 13 with the proposed illumination configuration resulting
in lower errors.

The proposed algorithm was further applied to the reconstruc-
tion of six real human faces and four potatoes (see Fig. 35) using
photometric data captured both with the default and the proposed
illumination directions. The person is assumed to be still during
the acquisition stage since a high speed camera was used for the
acquisition (i.e. 200 frames per second), eliminating the registra-
tion problem.

In Figs. 36 and 37 results of the reconstructed faces and pota-
toes obtained from the two compared illumination setups are
A (middle column) and estimated based on method B (right column) illumination

A (middle column) and estimated based on method B (right column) illumination

A (middle column) and estimated based on method B (right column) illumination

ons for faces and rough surfaces for single and multiple light imaging using
dx.doi.org/10.1016/j.cviu.2014.01.012
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Fig. 29. 3D surfaces obtained using the default (left column) the proposed based on method A (middle column) and proposed based on method B (right column) illumination
configuration for ‘Adam’.

Fig. 30. 3D surfaces obtained using the default (left column) the proposed based on method A (middle column) and proposed based on method B (right column) illumination
configuration for ‘Eve’.

Fig. 31. 3D surfaces obtained using the default (left column) the proposed based on method A (middle column) and proposed based on method B (right column) illumination
configuration for ‘coke’.

Fig. 32. An example of the illumination and viewing directions using the first method in 3D representation (columns (a) and (c)) and in 2D top view (columns (b) and (d))
using the Lambertian model for isotropic surfaces (top left), faces (top right), an isotropic 0� (mid left), an isotropic 135� (mid right), an isotropic 45� (bottom left) and an
isotropic 90� (bottom right).

Table 13
The mean absolute height map difference (MAD) computed over all three surfaces
captured under real environmental conditions using the default and the proposed
optimal illumination configuration. Bold values indicate the method with the best
performance (lower error).

Adam Eve Coke

Default 69.4904 26.7044 17.0176
Proposed A 52.0409 25.9146 11.6387
Proposed B 57.6912 23.3832 13.5134
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shown. Observing the results it can be inferred that the proposed
illumination directions result more accurate estimates especially
at the region under the jaw indicating that the proposed illumina-
tion directions provide more accurate reconstructions for faces.
Furthermore, the side view was used to evaluate the performance
of the proposed iterative approach. The background was extracted
manually and the Hausdorff distance was used to compare the
reconstructions with the original profiles. Tables 14 and 15 shows
Please cite this article in press as: V. Argyriou et al., Optimal illumination directions for faces and rough surfaces for single and multiple light imaging using
class-specific prior knowledge, Comput. Vis. Image Understand. (2014), http://dx.doi.org/10.1016/j.cviu.2014.01.012
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all the results for all the faces and objects. The obtained results can
provide indications to practitioners on how to arrange the captur-
ing system selecting the appropriate number and locations of the
lights. In the results presented above different configurations are
proposed based on the object class trying to provide most accurate
reconstructions keeping the amount of lights constant.
Fig. 33. An example of the illumination and viewing directions using the first method in
using the Phong model for isotropic surfaces (top left), faces (top right), an isotropic 0� (m
90� (bottom right).

Fig. 34. An example of the illumination directions using the second method in 3D repr
isotropic 135� (mid right), isotropic 45� (bottom left) and isotropic 90� (bottom right) in

Please cite this article in press as: V. Argyriou et al., Optimal illumination directi
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9. Conclusions

In this paper, two methods for estimating the optimal illumina-
tion and viewing direction were proposed assuming that prior
knowledge of the statistical distribution of the surface to be
reconstructed is available. The first approach estimates the
3D representation (columns (a) and (c)) and in 2D top view (columns (b) and (d))
id left), an isotropic 135� (mid right), an isotropic 45� (bottom left) and an isotropic

esentation for isotropic surfaces (top left), faces (top right), isotropic 0� (mid left),
3D view (left column) and top view (right column).

ons for faces and rough surfaces for single and multiple light imaging using
dx.doi.org/10.1016/j.cviu.2014.01.012
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Fig. 35. Real faces and potatoes used for experiments.

Fig. 36. From left to right, the first column corresponds to the ground truth, in the second column we have the profile view of the obtained 3D surfaces using the default
illumination directions, in the third column we have the proposed method 1 and in the last one the proposed method 2.
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optimal illumination conditions taking into consideration three
parameters; and according to this approach the effects of shadows
and highlights are minimised, while it tries to maximise the
distinctiveness of surface detail. The second approach is based on
the fact that denser isophotes in the gradient space result
more accurate normals during the reconstruction process. This
method tries to estimate the illumination directions that will
Please cite this article in press as: V. Argyriou et al., Optimal illumination directi
class-specific prior knowledge, Comput. Vis. Image Understand. (2014), http://
provide the denser isophotes to the areas with the most frequent
normals.

Experiments with simulated and real surfaces were performed
in order to evaluate the performance of the proposed schemes.
From the results it could be inferred that both methods provide
similar results with the first approach to outperform especially in
the case of rough surfaces, mainly due to the third parameter in
ons for faces and rough surfaces for single and multiple light imaging using
dx.doi.org/10.1016/j.cviu.2014.01.012

http://dx.doi.org/10.1016/j.cviu.2014.01.012


0 200 400 600 800 1000 1200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5 x 10−4 Potato 1

Default
Method 2
Ground Truth
Method 1

0 200 400 600 800 1000
−2

0

2

4

6

8

10

12 x 10−4 Potato 2

Default
Method 2
Ground Truth
Method 1

0 200 400 600 800 1000 1200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4 x 10−4 Potato 3

Default
Method 2
Ground Truth
Method 1

0 200 400 600 800 1000 1200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5 x 10−4 Potato 4

Default
Method 2
Ground Truth
Method 1

Fig. 37. The profile views of the obtained 3D surfaces using the default illumination directions, the proposed methods 1 and 2 and the ground truth for the four potatoes.

Table 14
The Hausdorff distance of the side views of the faces from the reconstructed side
views for all the tested illumination directions. In bold, the best result for each face.

Face A Face B Face C Face D Face E Face F

Default 54.3386 54.7264 48.4010 56.70 22.45 61.92
Proposed A 41.1762 37.7257 36.2604 50.00 16.83 54.33
Proposed B 43.5891 41.2357 39.7544 50.15 18.28 54.53

Table 15
The Hausdorff distance of the side views of the potatoes from the reconstructed side
views for all the tested illumination directions. In bold, the best result for each potato.

Potato A Potato B Potato C Potato D

Default 77.7950 239.2161 108.2240 111.2596
Proposed A 19.9113 74.8425 28.7071 28.5516
Proposed B 29.0997 100.3842 41.1328 41.1490
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the optimisation function related to the surface roughness. Regard-
ing the faces, the optimal directions are not uniformly distributed
but the lights at the top and bottom of the face are closer compared
to the sides. Similar outcome was obtained for the anisotropic sur-
faces but rotated according to the surface directionality. The sur-
faces with near isotropic facets the obtained distribution of the
light sources is almost uniform, and this is further affected by
the roughness of the surface. About the estimated zenith angle, it
is at the same range for isotropic surfaces but in case of faces, it
is significantly lower with the variations in general to depend on
the morphology of the surface and the presence of cast shadows.
Please cite this article in press as: V. Argyriou et al., Optimal illumination directi
class-specific prior knowledge, Comput. Vis. Image Understand. (2014), http://
In order to further evaluate the obtained estimates, experiments
were performed with real faces and other objects indicating the
improvement in 3D reconstruction by selecting the appropriate
illumination directions.
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