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Abstract

Forward models enable a robot to predict the ef-
fects of its actions on its own motor system and its
environment. This is a vital aspect of intelligent be-
haviour, as the robot can use predictions to decide
the best set of actions to achieve a goal. The ability
to learn forward models enables robots to be more
adaptable and autonomous; this paper describes a
system whereby they can be learnt and represented
as a Bayesian network. The robot’s motor system
is controlled and explored using ‘motor babbling’.
Feedback about its motor system comes from com-
puter vision techniques requiring no prior informa-
tion to perform tracking. The learnt forward model
can be used by the robot to imitate human move-
ment.

1 Introduction
The purpose of any robot is to interact with its environment.
There is, however a separation between the effects a robot can
produce in the environment and its mechanisms for produc-
ing them, its motor commands. To overcome this, inverse and
forward models can be used [Jordan and Rumelhart, 1992].
In robotics, forward models enable a robot to predict the con-
sequences of its actions: given the current state of the robot
they predict how a set of motor commands will influence the
state of the robot or its environment, or how the observa-
tions will be perceived by the robot’s sensors, as shown in
figure 1. Conversely, inverse models are used to output the
necessary motor commands to achieve or maintain a desired
goal. Both these internal models have been hypothethised
to be used in human motor control [Wolpert et al., 1998].
The ability to predict the consequence of actions has several
uses in robotics, such as allowing mental rehearsal of possi-
ble actions or imitating the actions of humans or other robots
[Demiris, 2002].

Practically any environment a robot works in will change,
or have properties which cannot be modelled beforehand.
Even if the environment is assumed to be completely pre-
dictable, endowing the robot with this knowledge may be
beyond the abilities or desires of its programmer. A truly au-
tonomous robot, therefore, needs to be able to learn and adapt

Figure 1: A forward model

its own forward models. Forward models of dynamic and un-
certain environments, and how they can be learnt, is the topic
which is investigated in this paper. Although forward mod-
els are used in a different context, there are similarities here
to work on calibrating action-sensor models in robotics e.g.
[Roy and Thrun, 1999]. A robot learning about itself and its
environment is in the position of being an active part of the
system it is trying to learn about; this situation draws inter-
esting parallels with learning in human infants, with mech-
anisms such as babbling (issuing random motor commands)
used by infants to learn how to control their own motor sys-
tem [Meltzoff and Moore, 1997].

A system is presented here that enables a robot to au-
tonomously learn a forward model with no prior knowledge
of its motor system or the external environment. Informa-
tion about the effects of the robot’s actions are captured via
a vision system that clusters low-level image features to au-
tomatically find and track moving objects in a scene. The
robot sends out random motor commands to its motor system
and receives information back from the vision system. This
set of evidence is used to learn the structure and parameters
of a Bayesian network, which represents the forward model.
This model can then be used to enable the robot to predict the
effects of its actions. By observing the gestures of a human
with its own vision system, the robot can imitate the human
gesture using the forward model it has learnt of its own motor
system.
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2 Representing forward models with Bayesian
networks

Bayesian networks [Pearl, 1988] are an ideal method for rep-
resenting forward models that can be learnt. They offer a way
of representing the causal nature of a robot’s control system
within a rigorous probabilistic framework. The system here is
aimed at learning and representing the causal associations be-
tween the robot’s motor commands, the robot’s state, and the
observations of the robot’s state that are received from the vi-
sion system. The motor commands and state of the robot are
represented as random variables in the Bayesian network, and
the causal relationships between them are shown with arcs.
The Bayesian network represents a learnt probability distribu-
tion across the previous N motor commands, M1:N [t−d], the
P current states S1:P [t], and the P observations of the state,
O1:P [t]. The variable d represents the delay between a mo-
tor command being issued and robot’s state changing; in real
robotic systems it cannot be assumed that the effect of a mo-
tor command will occur after just one time-step, so this is a
parameter that must be modelled and learnt. Figure 2 shows
this structure.

Figure 2: The ‘template’ Bayesian network of a forward
model. The question marks represent the part of the struc-
ture which needs to be learnt: the causal association between
the motor commands and the state of the robot, and which ob-
servations are associated with each object in the scene. Rect-
angular nodes correspond to observed nodes.

The N motor random variables represent specific low-level
motor commands of the robot. They could be discrete, e.g.
‘open’ or ‘close’ robot’s gripper, or continuous, e.g. to set
the height of the gripper. When the robot is issuing these
commands there is no uncertainty as to their value, so they
can be modelled as observed nodes. Alternatively, when the
robot is observing the actions of another robot, or a human,
whilst using its own forward model, they will be hidden nodes
because the Bayesian network will receive no direct evidence
of their value.

The P observations of the state-space O[t] are represented
with square nodes descended from S[t] on figure 2. The
model treats O[t] as noisy observations of the actual state
space so that noise from the vision system and other uncer-
tainty can be modelled. Evidence about the actual state of the
robot therefore enters the system here. How the state space,
S[t], of the robot will be represented depends on the infor-
mation received from the computer vision system. The state

variables are all hidden nodes, because the robot’s knowledge
of itself only comes from noisy observations of the state, O[t].

3 How a robot can learn and use forward
models

The structure for a forward model described in section 2 re-
quire several aspects to be learnt. Firstly, a representation of
the state of the robot or the environment is needed. The rich-
est source of this information comes from the robot’s own
vision system. However, this is also the most challenging
source: information comes in the low-level format of pixels.
Furthermore, if the robot is seeking to learn its forward mod-
els it has no prior information about what to track, because
the environment is unknown. To extract information from a
scene, a method is needed of automatically initialising and
tracking the objects in it. The system presented here works
by clustering tracked low-level features in the image accord-
ing to their position and dynamics. This allows the position
of objects in the scene to be tracked without any knowledge
of the objects having to be supplied.

Figure 3: The vision system finds moving objects in the scene
by clustering together optical flow points.

The low-level point features used are tracked using the
Lucas-Kanade optical flow algorithm [Lucas and Kanade,
1981]. The tracked points are clustered using the k-means
algorithm according to their position and velocity. One draw-
back of this method of clustering is that the number of clus-
ters must be known beforehand. This is overcome by first ex-
cluding stationary points and extracting increasing numbers
of clusters. The error of a particular number of clusters is
then taken to be the average squared distance of the optical
flow points from the centre of the cluster they are part of.
The cluster number used is the one at which the curvature of
this error with respect to the number of clusters is minimised
[Hoppner et al., 1999]. The positions, velocities and sizes of
each of these clusters can now be used as the observations,
O[t], of objects for the forward model learning system. The
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Figure 4: How the robot can learn about its environment. The
stages 1-5 involved in the experiment are outlined in the text.

actual state of the motor system, S[t], is taken to be a hidden
discrete node for each object in the scene found by the vision
system, and this will be connected to a continuous observa-
tion.

With all the possible nodes in the Bayesian network spec-
ified, the final task is to learn how the motor commands in-
teract with the state, and train the parameters of the Bayesian
network so that its predictions are as accurate as possible. To
train a Bayesian network, a set of evidence is required: a data
set containing actual observed values of the observed nodes in
the network. This is a set of N motor commands executed at
each time step, M1:N [t− d], together with the P observations
of the state O1:P [t], the size, position or velocity of an object.
The problem now is how to use this data to learn the struc-
ture and parameters of the Bayesian network. An inspiration
for solving the problem of how to learn this Bayesian net-
work can be taken from developmental psychology. Gopnik
and Meltzoff compare the mechanism an infant uses to learn
to that of a scientist: scientists form theories, make observa-
tions, perform experiments, make generalisations and revise
existing theories [Gopnik and Meltzoff, 1998]. The notion of
forming theories about the world is already dealt with here:
a forward model can be seen as a theory of the robot’s own
world. The process a robot uses to obtain its data and infer a
forward model from it is its experiment. An outline of what a
robot’s experiment involves is as follows, and is highlighted
in figure 4:

1. A particular motor command, M1[t] is chosen;

2. A value for this motor command is sent to the robot’s
motor system;

3. The vision system returns a set of observations of the
scene, O1:P [t+d], for example, moving forward v ms-1
in direction x;

4. This training set of data, M1[t] and O1:P [t+d], is used to
train the Bayesian network to develop a forward model;

5. The whole process is repeated, either with a different
value for the current motor command, or a different mo-
tor command altogether.

The open issues here relate to the last two stages. Firstly,
if the structure of the Bayesian network is not completely

known, how should the data be used to learn the structure and
parameters of the network? Most methods for learning struc-
ture from data are based on performing a search through the
space of possible structures, with the goal of finding the one
that maximises the log-likelihood of the model given the data
[Friedman, 1997; Neapolitan, 2004]; the higher the log likeli-
hood, the more accurate a particular network is at predicting
the data. This is subject to a constraint on the complexity of
the model, as the structure with the highest likelihood will be
the one with connections between every node. In this paper
the network structure is learnt as part of the experiment by
performing a search through the set of possible structures and
choosing the one which maximises the log-likelihood. This
search is performed online by training and evaluating simul-
taneously a set of candidate models. The search space is the
set of models with different delays in motor commands and
different observation nodes for each possible object.

The second issue is how particular motor commands and
their values should be chosen so as to learn the most ac-
curate forward model. Unlike most machine learning situa-
tions, with a forward model the robot is an active part of the
Bayesian network structure it is attempting to learn. This sit-
uation, referred to as active learning, has received relatively
little attention in Bayesian networks literature. Active learn-
ing for Bayesian networks has been discussed for unknown
parameters and unknown structure [Tong and Koller, 2000;
2001]. The method of choosing motor commands in the ex-
periment in this paper was inspired by the idea of babbling in
infant motor skill learning [Meltzoff and Moore, 1997]; the
motor commands were chosen from a random walk through
a Markov model.

4 Experiments to learn a forward model
An experiment was carried out to show how forward models
can be autonomously learnt and used. The robot used was an
ActivMedia PeopleBot, as shown in figure 5. The task was
to learn the forward model for the movement of the robot’s
grippers; the robot needed to learn to predict the effects of
the motor commands. No prior information about the appear-
ance of the grippers or the nature of the motor commands
was specified. The robot was to perform an experiment: it
babbled with its motor commands, observed what happened,
and then learnt the relationship between the motor command
and the observation using a Bayesian network; this process
was repeated until an accurate model had been learnt.

The motor command in this case was limited to just one
degree of freedom: the robot’s grippers, which could be ei-
ther opened, closed or halted. The motor commands were
decided at random using a random walk through the Markov
model shown in figure 6. Motor commands were sent accord-
ing to the current state of the Markov model, and the state
would change each time-step according to the transition prob-
abilities shown on the figure. The parameters of the Markov
model were chosen so that the motor system stays in one bab-
bling state just long enough to get enough information to train
its forward model before moving to the next state.

When the motor commands were sent, the grippers moved;
the vision system correctly calculated and tracked the posi-
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Figure 5: An ActivMedia PeopleBot.

Open gripper

Stop gripper

0.05 0.4

Close gripper

0.30.05

Figure 6: Markov model of gripper babbling. The values on
the arcs represent the transition probabilities of going from
one state to the next; self transitions are not shown.

tions of the moving grippers in the scene: figure 7 shows the
two grippers being located and tracked. The tracking sys-
tem worked well in this situation: black objects are automat-
ically being tracked even against the black background of the
robot’s base.

The vision system provided the random variables for the
states S[t] and observations O[t] in the Bayesian network
for the forward model. In this situation the two objects, the
grippers, were automatically added to the Bayesian network.
Each gripper was represented as a discrete node for the state,
and a set of continuous nodes for the observation, both of
which were represented as a Gaussian distribution. The set
of possible observations, O[t], was the velocity, VEL[t], the
position, POS[t], or size, SIZE[t] of the tracked objects. The
basic template for the structure of the forward models to be
learnt is shown by the Bayesian network in figure 8.

Even though the forward model of the robot’s gripper was
relatively simple, this example highlighted how much the
robot needed to learn: all the parameters and two important
properties of the structure needed to be learnt. Firstly, it is
not known how long the delay is between the motor com-
mand being issued and the gripper changing state. This is
shown in figure 8 as the multiple possible motor commands
connected to each state; only the four previous commands
are shown to keep the diagram simple. Secondly, it was not
known which observation from the vision system is the best

Figure 7: The tracking system working on the grippers. The
system has correctly identified two moving objects, which are
identified as grouped primitives shown with the same colour.

Figure 8: The template Bayesian network for the gripper for-
ward model. The vision system has supplied the information
that two objects can be interacted with: the two grippers. The
robot still has to learn what the delay, d, is from action to ef-
fect and which of the observations the change of state of each
object represents, a translation or a change in velocity, and
all the parameters that specify the Bayesian network.

one to use as part of the forward model: the velocity, posi-
tion or size. The task of the structure learning algorithm here
is therefore to maximise the log-likelihood of the data given
the model, which in this case is log (P (M, O | G)), where M
is the set of motor commands over the experiment, O the set
of corresponding observations and G is the directed acyclic
graph representing the structure of the model, together with
the parameters of the model. This value is calculated as part
of the parameter learning process, as a particular model is
trained to the data.

For each model, the parameters of the Bayesian network
were learnt using the expectation maximisation (EM) algo-
rithm, with the inference stage being performed with the
junction-tree algorithm [Pearl, 1988]. In this experiment,
the search space is small enough for the robot to consider
each possible candidate structure simultaneously. If the pre-
vious 20 motor commands are considered and 6 possible
combinations of observation variables (VEL[t], POS[t] and
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Figure 9: How the log-likelihoods of the Bayesian networks
using VEL[t] as the observation node evolve over the course
of a typical experiment. The maximum log-likelihood is for
the Bayesian network with a motor delay of 11 time steps, or
550 ms

SIZE[t], for each gripper), the search space contains 120 pos-
sible models. Figure 9 shows how the log-likelihoods for the
Bayesian networks with varying motor delays and the veloc-
ity observation change over time. As the figure shows, the
motor delay which maximise the log-likelihood, d, was 11
time-steps, which is about 550 ms. Following the search, the
learnt forward model for the grippers is shown in figure 10.
The motor command was learnt to be M[t-11], and the best
observation was learnt to be the velocity of the grippers. This
was correct since the motor commands do control the grip-
pers’ velocities.

M[t-11]

S1[t] S2[t]

VEL1[t] VEL2[t]

Figure 10: The learnt forward model of the grippers.

5 Using the Bayesian network as a forward model

Once the Bayesian network in figure 10 has been learnt, it
can be used as a forward model to give a prediction of the
consequences of the motor command. For the forward mod-
els of the grippers, the predicted output is the velocity of the
grippers, calculated from the conditional probability distri-
bution: P(VEL[t]|M[t-4]=m). Because the observations here
are modelled as Gaussians, the most likely values will be the
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Figure 11: Evaluating the predictive abilities of a learnt for-
ward model. The predicted gripper movements (dashed) are
close to the actual ones (solid). The differences are princi-
pally because the variation in gripper velocities for each of
the three motor commands are modelled as noise in the for-
ward model.

Figure 12: Using the learnt Bayesian network as an inverse
model. Evidence is supplied to the observations or the state,
and the task is to infer the probability distribution of motor
commands.

means of the observations, VEL1[t] and VEL2[t]. The in-
ference algorithm used to calculate this marginal distribution
was the junction-tree algorithm [Pearl, 1988]. To evaluate the
quality of the learnt forward model the grippers were babbled
in a similar way as before, using a different Markov model.
Figure 11 shows how the most likely predicted observation
compares with the actual observation. Only the x-coordinate
predictions are plotted because the grippers’ movements are
predominantly in this plane. The prediction is shown to be
very accurate.

The learnt Bayesian network can also be used as an in-
verse model by calculating the most likely motor command
given the current velocity observation for each time-step, as
shown in figure 12. One use of this inverse model is for imi-
tation: by replacing the robot’s observations of its own move-
ment with its observations of a human’s hand movements in
the inverse model, the robot is able to reproduce the motor
commands that would be most likely to recreate that human
movement in its own gripper system. The same principle is
used by Demiris to switch from imitation to recognition, al-
beit in a multiple paired inverse and forward model system
[Demiris, 2002]. Figure 13 shows the results of the imitation
experiment: the robot is able to imitate a simple hand wav-
ing motion. The human’s hand movements are tracked and
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recognised using the vision system, which is able to correctly
track the two hands. The observations are used as evidence
for the Bayesian network already learnt by the robot. This
network is then used as an inverse model to predict the most
likely motor commands that would produce this observation.
These motor commands are sent to the robot’s motor system
enabling it to perform the action that best replicates the ob-
served movement.
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Figure 13: Imitation using a single inverse model. The top im-
ages are corresponding frames from the demonstration (left)
and imitating (right) sequences. The graphs show the tra-
jectory of the demonstrating hands, and the corresponding
imitating trajectory of the grippers.

6 Conclusion

Forward models relate a robot’s motor commands to their ef-
fect on its motor system and the robot’s environment. The
system presented here allows a robot to autonomously learn
forward models of its motor system, using feedback from its
vision system, by babbling with its motor commands. By
representing the forward model with a Bayesian network, the
uncertainty in its prediction can also be represented. An ex-
periment was implemented showing how a robot can learn a
forward model of its gripper system. The forward model was
subsequently used to allow the robot to imitate a simple ‘wav-
ing hand’ gesture of a human. This imitation occurred with-
out any prior information having to be supplied by a human:
the robot learns how to control its motor system, then uses
this information to imitate a human gesture. Future work will
involve extending the system to learn forward models with
more degrees of freedom and interaction with objects.
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