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Abstract

The robust estimation of the low-dimensional subspace that spans the data from a set
of high-dimensional, possibly corrupted by gross errors and outliers observations is fun-
damental in many computer vision problems. The state-of-the-art robust principal com-
ponent analysis (PCA) methods adopt convex relaxations of `0 quasi-norm-regularised
rank minimisation problems. That is, the nuclear norm and the `1-norm are employed.
However, this convex relaxation may make the solutions deviate from the original ones.
To this end, the Generalised Scalable Robust PCA (GSRPCA) is proposed, by reformu-
lating the robust PCA problem using the Schatten p-norm and the `q-norm subject to
orthonormality constraints, resulting in a better non-convex approximation of the origi-
nal sparsity regularised rank minimisation problem. It is worth noting that the common
robust PCA variants are special cases of the GSRPCA when p = q = 1 and by properly
choosing the upper bound of the number of the principal components. An efficient al-
gorithm for the GSRPCA is developed. The performance of the GSRPCA is assessed
by conducting experiments on both synthetic and real data. The experimental results in-
dicate that the GSRPCA outperforms the common state-of-the-art robust PCA methods
without introducing much extra computational cost.

1 Introduction
Real world visual data, while typically being very high-dimensional, often lie on a low-
dimensional subspace. This prompts the recovery of the low-dimensional subspace, spanning
the data. Low-rank is an attribute capturing the intrinsic low-dimensional structure of the
data, when they are represented as column vectors of a matrix. Therefore, a natural approach
in low-dimensional subspace recovery is to minimise the rank of the target matrix, subject
to a constraint on the error in fitting the data. For instance, by adopting the least squares
error metric in fitting (i.e., assuming that the errors follow Gaussian distribution with small
variance), the solution of the above mentioned rank minimisation problem is the classical
Principal Component Analysis (PCA) [10].

The notion of low-rank is vital in many computer vision and image analysis problems.
A typical example is Lambertian reflectance. That is, the rank of the matrix which contains
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in its columns a set of images of a Lambertian surface under various lighting conditions is
low [2]. In background subtraction (i.e., the problem of modelling the background in a video
and simultaneously detecting the objects that stand out from the background), the low-rank
constraint is employed to recover the highly correlated content of the background across the
video frames [1, 4]. Furthermore, in image alignment (i.e., the problem of transforming a set
of different images into the same coordinate system), a batch of aligned images should form
a low-rank matrix [15]. The low-rank constraint has also been enforced in image restoration
[5] and visual salience detection [16].

Visual data obeying postulated low-rank models contain also gross errors and outliers.
Gross errors are often in abundance due to incorrect localisation and tracking, presence of
partial occlusion, etc. and rarely follow a Gaussian distribution [1, 4]. Unfortunately, the
least squares metric is very sensitive to gross errors and outliers [11] and thus the estimation
obtained by the PCA could be arbitrarily away from the true subspace which the data are
sampled from. To overcome the aforementioned drawbacks of the PCA, robust to gross but
sparsely supported errors/outliers variants of the PCA have been proposed. Such methods
include the Robust PCA (RPCA) [4], the Inductive RPCA (IRPCA) [1], the active subspace
RPCA [13]. In particular, the aforementioned methods adopt convex relaxation of suitable `0
quasi-norm-regularised rank minimisation problems. That is, by surrogating, the `0 quasi-
norm of the fitting error matrix and the rank of the target matrix are replaced with their
closest convex approximants, namely the `1-norm [6] and the nuclear norm [7], respectively.

Although the above mentioned nuclear norm minimisation-based RPCA methods involve
convex problems with global solutions, the relaxation may make the solutions seriously de-
viate from the original ones. Consequently, a better approximation of the `0 quasi-norm-
regularised rank minimisation problem is necessary. In this paper, the Generalised Scalable
Robust PCA (GSRPCA) is proposed, by reformulating the robust PCA problem using the
Schatten p-norm and the `q-norm subject to orthonormality constraints. When p is chosen to
be close to zero, the Schatten p-norm is a better approximation to the rank function than the
nuclear norm. Also, the choice of `q-norm (0< q≤ 1) as a measure for fitting error, improves
the robustness of the method to sparse errors/outliers. Furthermore, by utilising the unitary
invariance of the Schatten p-norm, the low-rank target matrix is represented in a factorised
form (i.e., a product of an orthonormal matrix with a low-rank one) which reduces the mem-
ory and the computational time complexity of learning (especially when p = 1). It is worth
mentioning that the state-of-the-art robust variants of the PCA in [1, 4, 13], are all special
cases of the GSRPCA when p = 1 and by properly choosing the upper bound of the num-
ber of the principal components. Although the GSRPCA involves a non-convex objective
function, an efficient alternating directions-based algorithm is developed. The performance
of the GSRPCA is assessed by conducting experiments on both synthetic and real data. The
experimental results indicate that the GSRPCA outperforms the robust PCA methods [1, 4]
to which it is compared, without introducing much extra computational cost.

The paper is organised as follows. In Section 2, notation conventions are introduced. The
GSRPCA is detailed in Section 3. The experimental results are presented in Section 4 while
conclusions are drawn in Section 5.

2 Notations
Throughout the paper, vectors (matrices) are denoted by lowercase (uppercase) boldface
letters, e.g. x (X). XT is the transpose of X and Xi j is its entry at position (i, j). I is the
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identity matrix of compatible dimensions. The set of real numbers is denoted by R. The sign
function is denoted by sgn(x).

A variety of norms on real-valued matrices will be used. The `0 quasi-norm counting the
number of nonzero entries in X is denoted by ‖X‖0. If | · | denotes the absolute value operator,
‖X‖q =

(
∑i ∑ j

∣∣Xi j
∣∣q)1/q is the elementwise `q-norm, of which the Frobenius norm ‖X‖F is

a special case for q = 2. If σi (X) is the ith singular value of X, ‖X‖Sp
= (∑i σi (X)p)

1/p is
the Schatten p-norm of X, of which the nuclear norm1 ‖X‖∗ is a special case for p = 1.
Finally, 〈X,Y〉 = ∑i ∑ j Xi jYi j is the standard matrix inner product between X and Y. Note
that 〈X,X〉= ‖X‖2

F .

3 Generalised Scalable Robust Principal Component
Analysis

3.1 Formulation as optimisation problem
Let X ∈ RF×N be the data matrix, with each column being a data point in RF (e.g. a vec-
torised image) and assume that it can be decomposed into a low-rank matrix A ∈ RF×N and
a sparse matrix accounting for gross errors/outliers E ∈ RF×N . Motivated by the RPCA [4],
the objective is to recover A and E from X by solving:

min
E,A

rank(A)+λ ‖E‖0 s.t. X = A+E, (3.1)

where λ > 0 is a regularisation parameter. Due to the discrete nature of the rank and the `0
quasi-norm, problem (3.1) is NP-hard and thus intractable. To overcome this, the RPCA [4]
attempts a convex relaxation and minimises ‖A‖∗+λ ‖E‖1 instead. Similarly, the IRPCA
[1] rewrites A = PX and minimises ‖P‖∗+λ ‖E‖1 subject to X = PX+E. The active sub-
space RPCA [13] follows an interesting approach by factorising A into an orthogonal matrix
and a low-rank one, which is exploited to improve scalability. Let U ∈ RF×k be column-
orthogonal, such that k ≤ F and UT U = I, and rewrite A = UV. The column vectors of U
can be thought of as the principal components (base vectors) spanning the principal subspace
and V as the projection of X onto the principal subspace. Due to the unitary invariance of
the nuclear norm, ‖UV‖∗ = ‖V‖∗ and (3.1) is relaxed to

min
E,V,U

‖V‖∗+λ ‖E‖1 s.t.
X = UV+E
UT U = I. (3.2)

We go one step further, noticing that the nuclear norm is a special case of the Schatten p-
norm (which is also unitary invariant) and that the elementwise `1-norm is a special case of
the elementwise `q-norm, for p = 1 and q = 1 respectively. We generalise (3.2) to

min
E,V,U

‖V‖p
Sp
+λ ‖E‖q

q s.t.
X = UV+E
UT U = I. (3.3)

The advantage of (3.3) is that, for p→ 0 and q→ 0, one can achieve a closer approximation
to the original rank minimisation problem in (3.1), by allowing the optimisation function to

1Also known as the trace norm.
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become non-convex, while retaining the scalability benefit introduced with the factorisation
of A. For this reason, we refer to (3.3) as the Generalised Scalable Robust PCA problem. In
the following, we describe an algorithm for solving (3.3).

3.2 Solution based on the method of Augmented Lagrange Multipliers
We develop an efficient algorithm for solving the GSRPCA problem, based on the method
of Augmented Lagrange Multipliers (ALM) [3]. The (partial) augmented Lagrangian of the
GSRPCA problem in (3.3) is

L(E,V,U,Y,µ) = ‖V‖p
Sp
+λ ‖E‖q

q + 〈X−UV−E,Y〉+ µ

2
‖X−UV−E‖2

F (3.4)

where Y ∈ RF×N is the Lagrange multiplier matrix for the first equality constraint in (3.3)
and µ > 0 is a positive parameter. Consequently, to solve (3.3), we need to minimise L with
respect to E, V, and U, subject to UT U = I. It is possible to take advantage of the sepa-
rability of L with respect to its arguments and employ an Alternating Directions approach,
i.e. minimise L with respect to each argument separately, keeping all other arguments fixed.
The procedure is detailed in the following subsections.

3.2.1 Minimisation with respect to E

The minimisation of L with respect to E is written as follows

E∗ = argmin
E

λ ‖E‖q
q + 〈X−UV−E,Y〉+ µ

2
‖X−UV−E‖2

F

= argmin
E

α ‖E‖q
q +

1
2
‖E−Z‖2

F , (3.5)

where α = λ µ−1 and Z = X−UV+µ−1Y. We note that (3.5) is separable with respect to
the elements of E and therefore can be decomposed into F×N problems of the form

min
Ei j

α
∣∣Ei j
∣∣q + 1

2
(Ei j−Zi j)

2. (3.6)

Define h(Ei j) = α
∣∣Ei j
∣∣q + 1

2 (Ei j−Zi j)
2, c1 = [αq(1−q)]

1
2−q and c2 = c1 + αq |c1|q−1.

Then, according to [14], the minimiser of (3.6) for q ∈ (0,1] is given analytically by

E∗i j =


0 if

∣∣Zi j
∣∣≤ c2

argminEi j∈{0,ρ1} h(Ei j) if Zi j > c2

argminEi j∈{0,ρ2} h(Ei j) if Zi j <−c2,
(3.7)

where ρ1 and ρ2 are the roots of h′ (Ei j) = αq
∣∣Ei j
∣∣q−1 sgn(Ei j)+Ei j −Zi j = 0 in [c1,Zi j]

and [Zi j,−c1] respectively. The roots ρ1 and ρ2 can easily be obtained using the iterative
Newton-Raphson root-finding method initialised at Zi j [14]. We will refer to the element-
wise application of (3.7) as generalised q-shrinkage and denote it by Sq

a {·}. Therefore, the
solution of (3.5) is given by

E∗ = Sq
λ µ−1

{
X−UV+µ

−1Y
}

(3.8)
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3.2.2 Minimisation with respect to V

Taking into account the orthonormality of U and the fact that the Frobenius norm is unitary-
invariant, the minimisation of L with respect to V is written as follows

V∗ = argmin
V
‖V‖p

Sp
+ 〈X−UV−E,Y〉+ µ

2
‖X−UV−E‖2

F

= argmin
V

µ
−1 ‖V‖p

Sp
+

1
2
‖UV‖2

F −
〈
UV,X−E+µ

−1Y
〉

= argmin
V

µ
−1 ‖V‖p

Sp
+

1
2
‖V‖2

F −
〈
V,UT (X−E+µ

−1Y
)〉

= argmin
V

µ
−1 ‖V‖p

Sp
+

1
2

∥∥V−UT (X−E+µ
−1Y

)∥∥2
F (3.9)

Assume the Singular Value Decomposition (SVD) UT
(
X−E+µ−1Y

)
= USDSVT

S . Then,
as it has been shown in [14], the optimiser of L for p ∈ (0,1] is given by

V∗ = USS p
µ−1 {DS}VT

S . (3.10)

3.2.3 Minimisation with respect to U

Minimising L with respect to U, subject to UT U = I, can be rewritten as follows

U∗ = argmin
U
〈X−UV−E,Y〉+ µ

2
‖X−UV−E‖2

F

= argmin
U

1
2

∥∥(X−E+µ
−1Y

)
−UV

∥∥2
F s.t. UT U = I (3.11)

Assume the following SVD (
X−E+µ

−1Y
)

VT = USDSVT
S (3.12)

Then, due to the Reduced Rank Procrustes Theorem [17], the solution of the aforementioned
problem is given by

U∗ = USVT
S . (3.13)

3.3 Algorithm and implementation
Algorithm 3.1 describes the GSRPCA in detail. Following [4], we use λ = 1/

√
max(F,N) and

we initialise µ = FN/4‖X‖1. Also, for updating µ , we use ξ = 1.2 and a maximum value of
µmax = 109. In order to determine convergence, we use ε = 10−7. Finally, we use a “warm”
initialisation for U, setting it to the k leftmost singular vectors of X, which is equivalent to
applying classical PCA on X and initialising U with the resulting principal components.

3.4 Discussion and connections to previous works
Algorithm 3.1 is particularly attractive in that, in addition to decomposing a data matrix X
into a low-rank and a sparse component, it also recovers the principal subspace U. As such,
unlike the RPCA [4], it is essentially an inductive method. To see this, note that V = UT X
and take P = UUT to be the projection matrix onto the principal subspace. Since the low-
rank component of X can be written as A = PX, GSRPCA subsumes both the RPCA [4]
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Algorithm 3.1: Generalised Scalable Robust PCA
Input: Data matrix X, number of principal components k, norm parameters p and q.
Initialise: U = [k leftmost singular vectors of X], E = Y = 0, µ = FN/4‖X‖1.

1 while not converged do
2 Compute the SVD: UT

(
X−E+µ−1Y

)
= USDSVT

S .

3 Update: V← USS p
µ−1 {DS}VT

S .

4 Update: E←Sq
λ µ−1

{
X−UV+µ−1Y

}
.

5 Compute the SVD:
(
X−E+µ−1Y

)
VT = USDSVT

S .
6 Update: U← USVT

S .
7 Update: Y← Y+µ (X−UV−E).
8 Update: µ ←min(µξ ,µmax).
9 Check convergence: ‖X−UV−E‖F ≤ ε ‖X‖F .

10 end while
Output: Principal components U, projections V and sparse errors E.

and the IRPCA [1], as it both recovers the low-rank component A and the projection matrix
P. Note that the latter can be subsequently used for efficiently projecting previously unseen
data points onto the principal subspace, without the need for repeating the decomposition
procedure. This is an additional advantage of the GSRPCA compared to the RPCA.

Furthermore, our method shows flexibility in the choice of the number of principal com-
ponents k. For k = F , the result of algorithm 3.1 for p = q = 1 is equivalent to that of
the RPCA and the IRPCA. However, since rank(A) ≤ rank(P) = k, k serves as a control-
lable upper bound to the rank of the low-rank component. This property can be exploited in
applications where an upper bound of rank value is desirable or the rank is known a priori.

An interesting special case of Algorithm 3.1 is for p = q = 1, which corresponds to solv-
ing the convex relaxation problem in (3.2). It is easy to see that, in this case, the generalised
p-shrinkage operator reduces to the elementwise application of the well-known shrinkage
operator, defined by

Sa {x}= sgn(x)max(|x|−a,0) (3.14)

Therefore, our framework subsumes the active subspace RPCA [13] as a special case. Fur-
thermore, our work extends [13] to p,q < 1 by removing the need for convexity of the
objective function. In fact, perhaps the most attractive feature of GSRPCA is that it can
circumvent the intractability of the NP-hard minimisation problem in (3.3) by allowing a
tighter approximation as p and q approach zero.

One of the main characteristics of GSRPCA is the non-convexity of its optimisation
problem in (3.3). This non-convexity comes from both the factorisation A = UV and the us-
age of the Schatten p-norm and the elementwise `q-norm, which become non-convex when
p,q < 1. In contrast, both the RPCA and the IRPCA involve convex optimisation problems.
The non-convexity of GSRPCA allows for both recovering the principal subspace and better
approximating the original intractable rank minimisation problem in (3.1). On the downside,
only local optimality of the solution can be guaranteed, unlike the RPCA and IRPCA which,
due to their convexity, attain globally optimal solutions. In GSRPCA, initialisation is there-
fore critical in obtaining a good solution. Our suggestion is initialising U with the k leftmost
singular vectors of data matrix X, which is equivalent to first performing classical PCA on X
and then initialising U with the resulting principal components. Empirically, we have found
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that using this “warm” initialisation scheme yields respectable results in most cases, as the
experiments in Section 4 corroborate.

Finally, it is worth discussing the good scalability properties of algorithm 3.1 and com-
pare it to similar approaches. For the convex case where p = q = 1, the generalised p-
shrinkage operator becomes particularly efficient as it reduces to elementwise shrinkage
and the computational cost per iteration is dominated by 2 SVDs of size k×N and F × k.
Since for most applications it is typical that k� min(F,N), the 2 SVDs can be computed
in O

(
kN2 + k3

)
and O

(
kF2 + k3

)
respectively [9]. In comparison, the RPCA requires one

SVD of size F×N, which isO
(
NF2 +N3

)
per iteration2 and the IRPCA requires one SVD

of size F×F , which is O
(
F3
)

per iteration. Therefore, as long as k remains low, GSRPCA
scales well to problems where F and/or N become large, contrary to RPCA and IRPCA.

4 Experiments
We compare the GSRPCA with (a) the classical PCA (b) the RPCA [4], and (c) the IR-
PCA [1]. In all experiments, the regularisation parameter is set for the RPCA equal to
λ = 1/

√
max(F,N), as suggested in [4], and for the IRPCA equal to λ = 0.0001, similar to

the experiments in [1]. Three versions of the GSRPCA are considered, corresponding to
p = q ∈ {1, 0.5, 0.1}. Results are reported on both real and synthetic data.

4.1 Synthetic data
We first validate our approach on synthetic data. We randomly generate a low-rank ma-
trix A ∈ R1000×1000 with rank(A) = 50 as the product A = XYT , where the entries of
X,Y ∈ R1000×50 are i.i.d. Gaussian variables with mean 0 and variance 10−3. We then form
data matrix X = A+E, where E is sparse with independent Bernoulli ±1 nonzero entries.
The percentage of nonzero entries of E is denoted as ρE = ‖E‖0/106. Fig. 1 shows the re-
construction error for each method calculated as ‖Â−A‖1/‖A‖1, where Â is the reconstructed
low-rank component of X, for (a) ρE = 5%, (b) ρE = 15% and (c) ρE = 30%. It can be
seen that the GSRPCA outperforms all other methods, with the difference in performance
becoming particularly evident for large values of ρE . It is noteworthy that the performance
of the GSRPCA increases as p and q approach 0.

4.2 Real data: reconstruction of facial images
We evaluate our approach on the Extended Yale B database of cropped face images [8, 12],
taken under various illumination conditions. This set of images is intrinsically of low rank,
making it suitable for the application of rank minimisation techniques. We use N = 256
images and we rescale them to size 48×42, i.e. F = 2016.

We test all methods both on the original images and on synthetically corrupted versions
thereof. For synthetic corruption we consider two scenarios. The first consists of corrupting
a certain percentage of each image with random salt & pepper noise, in which case the value
of the corrupted pixels is set to 0 or 1 with equal probability. The second, more challenging
case, involves corrupting each image with a spatially continuous rectangular patch of random
noise. The horizontal and vertical patch sizes are uniformly chosen between 1 and 40 pixels
independently and the patch itself consists of random pixel values taken from {0,1}.

2Assuming without loss of generality that F ≥ N.
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(a) ρE = 5% (b) ρE = 15% (c) ρE = 30%
Figure 1: Reconstruction error for each method versus the number of principal components
k on synthetic data. For RPCA and IRPCA the error is constant since they do not consider k.
The percentage ρE of nonzero entries in E is (a) 5%, (b) 15% and (c) 30%.

Fig. 2 shows the result of reconstruction of example images over all methods and for
various noise corruptions, both natural (i.e. cast shadows) and synthetic. The number of
components k used for the PCA and the GSRPCA is 20 for the 1st row (shadow removal),
50 for the 2nd and 3rd rows (salt & pepper noise) and 30 for the 4th row (corruption with
a random patch). It can be seen that the GSRPCA reconstructs the original image with
increased fidelity, even in the case of heavy corruption where the other methods fail. The
reconstruction becomes sharper and more accurate as p and q approach 0, even though the
number of principal components is kept low.

Fig. 3 plots the reconstruction error versus the number of principal components k for
the cases where the images were corrupted by (a) 10% salt & pepper noise, (b) 30% salt &
pepper noise and (c) a random patch of maximum size 40× 40. The error is computed as
‖X̂−X‖1/N‖X‖1, where X is the original data matrix with the N vectorised images as columns
and X̂ is the reconstructed one. Note that cases (b) and (c) correspond to particularly heavy
corruption. Nevertheless, it can be seen that the GSRPCA outperforms other methods, espe-
cially when p and q approach 0, achieving good reconstruction rates for small k.

Finally, Table 1 shows the time performance of each algorithm (except PCA which is
as fast as a single SVD) for the case where no corruption was considered and the number
of components was set to k = 10. The implementation was done in MATLAB and the ex-
periments were performed on an 8-core i7 Intel CPU at 3.40 GHz with 16 GB RAM. The
GSRPCA with p = q = 1 is particularly efficient to compute as it takes only 48 iterations to
converge and it outperforms the RPCA (the second fastest) by a factor of ×3.5. This advan-

RPCA IRPCA GSRPCA(1.0) GSRPCA(0.5) GSRPCA(0.1)
Time [sec] 3.562 401.968 1.048 21.809 69.017
Iterations 49 82 48 95 375

Table 1: Time in seconds and number of iterations until convergence for each algorithm.
Experiment performed on the Extended Yale B database, without added noise. For PCA and
GSRPCA, k = 10 principal components were used.
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Original PCA RPCA IRPCA p = q = 1 p = q = 0.5 p = q = 0.1
Figure 2: Comparison among different methods on the Extended Yale B database corrupted
by noise. 1st row: shadow removal; 2nd row: 10% salt & pepper noise; 3rd row: 30% salt &
pepper noise; 4th row: random patch of maximum size 40×40. 1st column: original image;
2nd column: PCA; 3rd column: RPCA; 4th column: IRPCA; 5th–7th columns: GSRPCA with
p = q ∈ {1, 0.5, 0.1} respectively.

tage is both due to the efficient version of the generalised p-shrinkage operator for p = 1 and
due to the small size of required SVDs for a small k.

5 Conclusions
This work identified two key elements of robust low rank subspace recovery. Firstly, over-
coming the convexity constraint for the objective function can lead to closer approxima-
tion of the original robust rank minimisation problem. Secondly, recovering the principal
subspace places an upper bound to the rank constraint and allows for efficient algorithmic
implementation which scales well to large problems. Exploiting the above, we introduced
Generalised Scalable Robust PCA. We verified that the GSRPCA can achieve respectable re-
sults in computer vision applications such as facial image reconstruction, even under heavy
corruptions that weaken the performance of state-of-the-art methods.
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