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ABSTRACT
Mood disorders are inherently related to emotion. In partic-
ular, the behaviour of people suffering from mood disorders
such as unipolar depression shows a strong temporal corre-
lation with the affective dimensions valence and arousal. In
addition, psychologists and psychiatrists base their evalua-
tion of a patient’s condition to a large extent on the obser-
vation of expressive facial and vocal cues, such as dampened
facial expressions, avoiding eye contact, and using short sen-
tences with flat intonation. It is in this context that we
present the third Audio-Visual Emotion recognition Chal-
lenge (AVEC 2013). The challenge has two goals logically
organised as sub-challenges: the first is to predict the contin-
uous values of the affective dimensions valence and arousal
at each moment in time. The second sub-challenge is to
predict the value of a single depression indicator for each
recording in the dataset. This paper presents the challenge
guidelines, the common data used, and the performance of
the baseline system on the two tasks.
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1. INTRODUCTION
According to EU Green Papers dating from 2005 [12] and
2008 [13], mental health problems affect one in four citizens
at some point during their lives and too often lead to sui-
cide. As opposed to many other illnesses, mental ill health
often affects people of working age, causing significant losses
and burdens to the economic system, as well as the social,
educational, and justice systems. It is therefore somewhat
surprising that despite the scientific and technological revo-
lutions of the last half century remarkably little innovation
has occurred in the clinical care of mental health disorders.

Affective Computing and Social Signal Processing are two
of the more recent technological revolutions that promise to
change this situation. Affective Computing is the science of
automatically analysing affect and expressive behaviour [17].
By their very definition, mood disorders are directly related
to affective state. Social Signal Processing addresses all ver-
bal and non-verbal communicative signalling that goes on
during social interactions, be they of an affective nature or
not [24]. And although the measurement and assessment of
behaviour is a central component of mental health practice
it is severely constrained by individual subjective observa-
tion and lack of any real-time naturalistic measurements. It
is thus only logical that researchers in affective computing
and social signal processing, which aim to quantify aspects
of expressive behaviour such as facial muscle activations and
speech rate, have started looking at ways in which their com-



munities can help mental health practitioners.
In the first published efforts towards this, the University

of Pennsylvania has already applied a basic facial expres-
sion analysis algorithm to distinguish between patients with
Schizophrenia and healthy controls [25, 11]. Besides diagno-
sis, affective computing and social signal processing would
also allow quantitative monitoring of the progress and ef-
fectiveness of treatment. Early studies that addressed the
topic of depression are e.g. [25, 3].

More recently, Girard et al. [9] performed a longitudi-
nal study of manual and automatic facial expressions during
semi-structured clinical interviews of 34 clinically depressed
patients. They found that for both manual and automatic
facial muscle activity analysis, participants with high symp-
tom severity produced more expressions associated with con-
tempt, smile less, and the smiles that were made were more
likely to be related to contempt. Yang et al [26] analysed
the vocal prosody of 57 participants of the same study. They
found moderate predictability of the depression scores based
on a combination of F0 and switching pauses. Both stud-
ies used the Hamilton Rating Scale for Depression, which
is a multiple choice questionnaire filled in by a clinician
and used to provide an indication of depression, and as a
guide to evaluate recovery. Scherer et al. [18] studied the
correlation between automatic gaze, head pose, and smile
detection and three mental health conditions (Depression,
Post-Traumatic Stress Disorder and Anxiety). Splitting 111
participants into three groups based on their self-reported
distress, they found significant differences for the automat-
ically detected behavioural descriptors between the highest
and lowest distressed groups.

Dimensional affect recognition aims to improve the under-
standing of human affect by modelling affect as a small num-
ber of continuously valued, continuous time signals. Com-
pared to the more limited categorical emotion description
(e.g. six basic emotions), and the for contemporary compu-
tational modelling techniques intractable appraisal theory,
dimensional affect modelling has the benefit of being able
to: a. encode small changes in affect over time, and b.
distinguish between many more subtly different displays of
affect, while remaining within the reach of current signal
processing and machine learning capabilities.

The 2013 Audio-Visual Emotion Challenge and Workshop
(AVEC 2013) will be the third competition event aimed at
comparison of multimedia processing and machine learning
methods for automatic audio, video and audiovisual emotion
analysis, with all participants competing under strictly the
same conditions. The goal of the AVEC Challenges series
is to provide a common benchmark test set for individual
multimedia processing and to bring together the audio and
video emotion recognition communities, to compare the rel-
ative merits of the two approaches to emotion recognition
under well-defined and strictly comparable conditions and
establish to what extent fusion of the approaches is possi-
ble and beneficial. In addition, AVEC 2013 has the goal to
accelerate the development of behavio-medical technologies
that can aid the mental health profession in their aim to
help people with mood disorders.

Following up from AVEC 2011 [22] and AVEC 2012 [21],
which respectively used a categorical description of affect
and automatic continuous affect recognition from audio and
video on the SEMAINE database of natural dyadic inter-
actions [15], we now aim to extend the analysis of affective

behaviour to infer a more complex mental state, to wit, de-
pression. Both the dimensional affect and the depression
recognition problems are posed as a regression problem, and
can thus be considered to be both challenging and reward-
ing. A major difference between this AVEC and the previous
two is that the first two had as task making only very short-
term predictions (either for every video frame or per spoken
word), whereas AVEC 2013 extends this to include event
recognition in the form of inferring a measure of depression
for every recording.

Different from the continuous dimensional affect predic-
tion, event-based recognition provides a single label over
some pre-defined period of time rather than at every mo-
ment in time. In essence, continuous prediction is used for
relatively fast-changing variables such as valence or arousal,
while event-based recognition is more suitable for slowly
varying variables such as mood or level of depression. One
important aspect is that agreement must exist on what con-
stitutes an event in terms of a logical unit in time. In this
challenge, an event is defined as a participant performing a
single experiment from beginning to end.

We are calling for teams to participate in emotion and
depression recognition from video analysis, acoustic audio
analysis, linguistic audio analysis, or any combination of
these. As benchmarking database the Depression database
of naturalistic video and audio of participants partaking
in a human-computer interaction experiment will be used,
which contains labels for the two target affect dimensions
arousal and valence, and Beck Depression Index (BDI), a
self-reported 21 multiple choice inventory [2].

Two Sub-Challenges are addressed in AVEC 2013:

• The Affect Recognition Sub-Challenge (ASC) involves
fully continuous affect recognition of the dimensions
valence and arousal (VA), where the level of affect has
to be predicted for every moment of the recording.

• The Depression Recognition Sub-Challenge (DSC) re-
quires participants to predict the level of self-reported
depression as indicated by the BDI for every experi-
ment session, that is, one continuous value per multi-
media file.

For the ASC, two regression problems need to be solved
for Challenge participation: prediction of the continuous di-
mensions Arousal and Valence. The ASC competition
measure is the Pearson’s correlation coefficient averaged over
all sessions and both dimensions. For the DSC, a single re-
gression problem needs to be solved. The DSC competition
measure is root mean square error over all sessions.

Both Sub-Challenges allow contributors to find their own
features to use with their regression algorithm. In addition,
standard feature sets are provided (for audio and video sep-
arately), which participants are free to use. The labels of
the test partition remain unknown to the participants, and
participants have to stick to the definition of training, devel-
opment, and test partition. They may freely report on re-
sults obtained on the development partition, but are limited
to five trials per Sub-Challenge in submitting their results
on the test partition.

To be eligible to participate in the challenge, every entry
has to be accompanied by a paper presenting the results and
the methods that created them, which will undergo peer-
review. Only contributions with an accepted paper will be



eligible for Challenge participation. The organisers preserve
the right to re-evaluate the findings, but will not participate
in the Challenge themselves.

We next introduce the Challenge corpus (Sec. 2) and la-
bels (Sec. 3), then audio and visual baseline features (Sec.
4), and baseline results (Sec. 5), before concluding in Sec.6.

2. DEPRESSION DATABASE
The challenge uses a subset of the audio-visual depressive
language corpus (AViD-Corpus), which includes 340 video
clips of subjects performing a Human-Computer Interaction
task while being recorded by a webcam and a microphone.
There is only one person per clip and the total number of
subjects is 292, i.e. some subjects feature in more than
one clip. The speakers were recorded between one and four
times, with a period of two weeks between the measure-
ments. Five subjects appears in four recordings, 93 in 3, 66
in 2, and 128 in only one sessions. The length of the clips is
between 50 minutes and 20 minutes (mean = 25 minutes).
The total duration of all clips is 240 hours. The mean age
of subjects was 31.5 years, with a standard deviation of 12.3
years and a range of 18 to 63 years. The recordings took
place in a number of quiet settings.

The behaviour within the clips consisted of different tasks
which were Power Point guided: i.e., sustained vowel phona-
tion, sustained loud vowel phonation, and sustained smiling
vowel phonation; speaking out loud while solving a task;
Counting from 1 to 10; Read speech: excerpts of the novel
“Homo” Faber by Max Frisch and the fable “Die Sonne und
der Wind” (The North Wind and the Sun); singing: a Ger-
man nursery rhyme “Guten Abend, gute Nacht” and “Aber
bitte mit Sahne” by Udo Jörgens; telling a story from the
subject’s own past: best present ever and sad event in the
childhood; Telling an imagined story applying the Thematic
Apperception Test (TAT), containing e.g. pictures of a man
and a woman in bed, or a housewife and children who are
trying to reach the cookies.

The audio was recorded using a headset connected to the
built-in sound card of a laptop, at a sampling rate of 41
KHz, 16 bit. The original video was recorded using a va-
riety of codecs and frame rates, and was resampled to a
uniform 30 frames per second at 640 × 480 pixels, with 24
bits per pixels. The codec used was H.264, and the videos
were embedded in an mp4 container.

For the organisation of the challenge, the recordings were
split into three partitions: a training, development, and test
set of 50 recordings each. The audio and audio-visual source
files and the baseline features (see section 4) can be down-
loaded for all three partitions, but the labels are available
only for the training and development partitions. All data
can be downloaded from a special user-level access controlled
website (http://avec2013-db.sspnet.eu).

3. CHALLENGE LABELS
The affective dimensions used in the challenge were selected
based on their relevance to the task of depression estima-
tion. These are the dimensions Arousal and Valence,
which form a well-established basis for emotion analysis in
the psychological literature [8].

Arousal (Activity) is the individual’s global feeling of
dynamism or lethargy. It subsumes mental activity, and
physical preparedness to act as well as overt activity. Va-

lence is an individual’s overall sense of “weal or woe”: Does
it appear that, on balance, the person rated feels positive or
negative about the things, people, or situations at the focus
of his/her emotional state?

A team of 23 naive raters annotated all human-computer
interactions. The raters annotated the two dimensions in
continuous time and continuous value using a tool developed
especially for this task. The annotations are often called
traces after the early popular system that performed a sim-
ilar function called FeelTrace [4]. Instantaneous annotation
value is controlled using a two-axis joystick.

Every video was annotated by only a single rater for every
dimension, due to time constraints. To reduce the annota-
tors’ cognitive load (and hence improve annotation accu-
racy) each dimension (valence and arousal) was annotated
separately. The annotation process resulted in a set of trace
vectors {vai ,vvi } ∈ R for every rater i and dimension a
(Arousal) and v (Valence). Every annotator was made to
annotate a common reference video, which can be used to
construct models that can compensate for inter-annotator
variability in the remaining (singly-annotated) traces.

Sample values are obtained by polling the joystick in a
tight loop. As such, inter-sample spacing is irregular (though
minute, as implementation is in C++). These original traces
are binned in temporal units of the same duration as a sin-
gle video frame (i. e., 1/30 seconds). The raw joystick data
for Arousal, and Valence lies in the range [−1000, 1000]
labels, which is normalised to the range [−1, 1]. The anno-
tation tool used will be made available in the near-future.

The level of depression is labelled with a single value
per recording using a standardised self-assessed subjective
depression questionnaire, the Beck Depression Inventory-II
(BDI-II, [2]). BDI-II contains 21 questions, where each is
a forced-choice question scored on a discrete scale with val-
ues ranging from 0 to 3. Some items on the BDI-II have
more than one statement marked with the same score. For
instance, there are two responses under the Mood heading
that score a 2: (2a) I am blue or sad all the time and I can’t
snap out of it and (2b) I am so sad or unhappy that it is very
painful. The final BDI-II scores range from 0 – 63: 0–13:
indicates minimal depression, 14–19: indicates mild depres-
sion, 20–28: indicates moderate depression, 29–63: indicates
severe depression.

The average BDI-level in the AVEC 2013 partitions was
15.1 for the training partition and 14.8 for the develop-
ment partition (standard deviations = 12.3 and 11.8, respec-
tively). For every recording in the training and development
partitions a separate file with a single value is provided for
the DSC, together with two files containing the affective di-
mension labels.

To evaluate any possible correlation between depression
and the affective dimensions, the average (mean) arousal
and valence values were calculated across the duration of
each recording in the training and development partitions.
These values were then compared against their respective
BDI ratings.

We observed a non-linear correlation between the depres-
sion and affect labels. Figures 1 and 2 show all data points
for the training and development sets, where each data point
is the mean arousal or valence over the whole video. The
figures also show a 3 and a 5 degree polynomial for mean
arousal respectively valence fit to BDI. Note what appears
to be outliers in the mean valence for high BDI. While this



Figure 1: Cubic Polynomial correlation between Mean

Arousal and BDI, demonstrated across a) Dataset mean

values and b) Full raw dataset (with 95% confidence in-

tervals).

seems to contradict the theory that depressed people have
low valence, it is not uncommon for people with a high de-
pression to display expressions of high valence.

4. BASELINE FEATURES
In the following sections we describe how the publicly avail-
able baseline feature sets are computed for either the audio
or the video data. Participants could use these feature sets
exclusively or in addition to their own features.

4.1 Video Features
The bulk of the features extracted from the video streams
of the character interactions are dense local appearance de-
scriptions. The descriptors that generate these features are
most effective if they are applied to frontal faces of uniform
size. Since the head pose and distance to the camera vary
over time in the Depression recordings, we first detect the
location of the face, and within that the locations of the
eyes to help reduce the pose variance. The information de-

Figure 2: Quintic Polynomial correlation between Mean

Valence and BDI, demonstrated across a) Dataset mean

values and b) Full raw dataset (with 95% confidence in-

tervals).

Figure 3: Video feature extraction overview: a) detec-

tion of face and eyes b) face normalised based on eye

locations, c) extraction of LPQ features, d) divided in 4

x 4 blocks from which histograms of separate blocks are

computed and catenated into a single histogram.



scribing the position and pose of the face and eyes are in
themselves valuable for recognising the dimensional affect
and are thus included with the set of video features together
with the appearance descriptors. Fig. 3 gives an overview
of the video feature extraction processing steps.

To obtain the face position, we employ the open-source
implementation of the Viola & Jones face detector that is
included in OpenCV. This returns a four-valued descriptor
of the face position and size. To wit, it provides the posi-
tion of the top-left corner of the detected face area (fx, fy),
followed by its width fw and height fh. The height and
width output of this detector is rather unstable: Even in a
video in which a face hardly moves the values for the height
and width vary significantly (approximately 5 % standard
deviation). The face detector also doesn’t provide any in-
formation about the head pose.

To refine the detected face region, and allow the appear-
ance descriptor to correlate better with the shown expression
rather than variations in head pose and face detector output,
we proceed with detection of the locations of the eyes. This
is again done with the OpenCV implementation of a Haar-
cascade object detector, trained for either a left or a right
eye. Let us define the detected left and right eye locations
as pl respectively pr, and the line connecting pl and pr as le.
The angle between le and the horizontal is then defined as α.
The registered image is now obtained by rotating it so that
α = 0 degrees, then scaled to make the distance between the
eye locations ||pl − pr|| = 100 pixels, and finally cropped to
be 200 by 200 pixels, with pr at position {pxr , pyr} = {80, 60}
to obtain the registered face image.

In AVEC 2011 and 2012, uniform Local Binary Patterns
[16] were used as dense local appearance descriptors. For
AVEC 2013, we chose instead to use Local Phase Quan-
tisation (LPQ) as that was found to attain higher perfor-
mance in facial expression recognition tasks [14]. The dy-
namic appearance descriptor LPQ-TOP was found to be
even more accurate, but that descriptor depends on a near-
perfect alignment of faces in subsequent frames, which is
not possible in a near-real time automatic fashion on the
AViD-Corpus dataset.

LPQs have been used extensively for face analysis in re-
cent years, e. g., for face recognition [1], emotion detection
[23], or detection of facial muscle actions (FACS Action
Units) [14]. The LPQ descriptor extracts local phase in-
formation using the 2-D DFT or, more precisely, a short-
term Fourier transform (STFT) computed over a rectangu-
lar M-by-M neighbourhood Nx at each pixel position x of
the image f(x) defined by

F (u,x) =
∑

y∈Nx

f(x-y)e−j2πu
T y = wT

u fx (1)

where wu is the basis vector of the 2-D DFT at frequency
u, and fx is the vector containing all M2 samples from Nx.

The local Fourier coefficients are computed at four fre-
quency points: u1 = [a, 0]T , u2 = [0, a]T , u3 = [a, a]T , and
u4 = [a,−a]T , where a is a sufficiently small scalar (a = 1/M
in our experiments). For each pixel position this results in
a vector Fx = [F (u1, x), F (u2, x), F (u3, x), F (u4, x)]. The
phase information in the Fourier coefficients is recorded by
examining the signs of the real and imaginary parts of each
component in Fx. This is done by using a simple scalar

Table 1: 32 low-level descriptors.
Energy & spectral (32)
loudness (auditory model based),
zero crossing rate,
energy in bands from 250 – 650 Hz, 1 kHz – 4 kHz,
25 %, 50 %, 75 %, and 90 % spectral roll-off points,
spectral flux, entropy, variance, skewness, kurtosis,
psychoacousitc sharpness, harmonicity, flatness,
MFCC 1-16
Voicing related (6)
F0 (sub-harmonic summation, followed by Viterbi
smoothing), probability of voicing,
jitter, shimmer (local), jitter (delta: “jitter of jitter”),
logarithmic Harmonics-to-Noise Ratio (logHNR)

quantiser

qj =

{
1 if gj ≥ 0 is true
0 otherwise

(2)

where gj(x) is the jth component of the vector Gx and Gx =
[Re{Fx}, Im{Fx}]. The resulting eight bit binary coefficients
qj(x) are represented as integers using binary coding:

fLPQ(x) =

8∑
j=1

qj2
j−1. (3)

As a result, a histogram of these values from all posi-
tions is composed to form a 256-dimensional feature vector.
Histograms discard all information regarding the spatial ar-
rangement of the patterns. In order to preserve some of this
information, we divide the face region into 4 × 4 local re-
gions, from which LPQ histograms are extracted and then
concatenated into a single feature histogram (see Fig. 3).
In the case of no face/eyes detected, the corresponding fea-
ture vector is set to all zeros so that it could be excluded
in the training process or hold the last value when doing
prediction.

4.2 Audio Features
In this Challenge, as was the case for AVEC 2012 and AVEC
2011, an extended set of features with respect to the INTER-
SPEECH 2009 Emotion Challenge (384 features) [19] and
INTERSPEECH 2010 Paralinguistic Challenge (1 582 fea-
tures) [20] is given to the participants, again using the freely
available open-source Emotion and Affect Recognition (ope-
nEAR) [6] toolkit’s feature extraction backend openSMILE
[7]. In contrast to AVEC 2011, the AVEC 2012 feature set
was reduced by 100 features that were found to carry very
little information, as they were zero or close to zero most
of the time. In the AVEC 2013 feature set bugs in the ex-
traction of jitter and shimmer were corrected, the spectral
flatness was added to the set of spectral low-level descriptors
(LLDs) and the MFCCs 11–16 were included in the set.

Thus, the AVEC 2013 audio baseline feature set consists
of 2 268 features , composed of 32 energy and spectral re-
lated low-level descriptors (LLD) x 42 functionals, 6 voic-
ing related LLD x 32 functionals, 32 delta coefficients of
the energy/spectral LLD x 19 functionals, 6 delta coeffi-
cients of the voicing related LLD x 19 functionals, and 10
voiced/unvoiced durational features. Details for the LLD
and functionals are given in tables 1 and 2 respectively. The



Table 2: Set of all 42 functionals. 1Not applied to
delta coefficient contours. 2For delta coefficients the
mean of only positive values is applied, otherwise the
arithmetic mean is applied. 3Not applied to voicing
related LLD.

Statistical functionals (23)

(positive2) arithmetic mean, root quadratic mean,
standard deviation, flatness, skewness, kurtosis,
quartiles, inter-quartile ranges,
1 %, 99 % percentile, percentile range 1 %–99 %,
percentage of frames contour is above:
minimum + 25%, 50%, and 90 % of the range,
percentage of frames contour is rising,
maximum, mean, minimum segment length1,3,
standard deviation of segment length1,3

Regression functionals1 (4)
linear regression slope, and corresponding
approximation error (linear),
quadratic regression coefficient a, and
approximation error (linear)

Local minima/maxima related functionals1 (9)
mean and standard deviation of rising
and falling slopes (minimum to maximum),
mean and standard deviation of inter
maxima distances,
amplitude mean of maxima, amplitude
range of minima, amplitude range of maxima

Other1,3 (6)
LP gain, LPC 1 – 5

set of LLD covers a standard range of commonly used fea-
tures in audio signal analysis and emotion recognition.

The audio features are computed on short episodes of au-
dio data. As the data in the Challenge contains long con-
tinuous recordings, a segmentation of the data had to be
performed. A set of baseline features is provided for three
different versions of segmentation: First, a voice activity de-
tector [5] was applied to obtain a segmentation based on
speech activity. Pauses of more than 200 ms are used to
split speech activity segments. Functionals are then com-
puted over each detected segment of speech activity. These
features can be used both for the emotion and depression
tasks. The second segmentation method considers over-
lapping short fixed length segments (3 seconds) which are
shifted forward at a rate of one second. These features are
intended for the emotion task. The third method also uses
overlapping fixed length segments shifted forward at a rate
of one second, however, the windows are 20 seconds long
to capture slow changing, long range characteristics. These
features are expected to perform best in the depression task.

5. CHALLENGE BASELINES
For transparency and reproducibility, we use standard al-
gorithms. We conducted two separate baselines: one using
video features only, and the other using only audio features.

For the video-based baseline, a combination of geometric
features (head location, head motion, head pose) and ap-
pearance features ( LPQ) is employed. The geometric fea-
tures are the head location (with respect to the first frame),
head motion (with respect the previous frame), head pose
(roll), and head pose changes (with respect to the previous

Table 3: Baseline results for affect recognition. Per-
formance is measured in Pearson’s correlation coef-
ficient averaged over all sequences.

Partition Modality Valence Arousal Average
Development Audio 0.338 0.257 0.298
Development Video 0.337 0.157 0.247
Test Audio 0.089 0.090 0.089
Test Video 0.076 0.134 0.105

Table 4: Baseline results for depression recognition.
Performance is measured in mean absolute error
(MAE) and root mean square error (RMSE) over
all sequences.

Partition Modality MAE RMSE
Development Audio 8.66 10.75
Development Video 8.74 10.72
Test Audio 10.35 14.12
Test Video 10.88 13.61

frame). The geometric features are computed using the face
and eye detection results included in the baseline features.
As appearance features we used the LPQ features included
in the baseline features.

To deal with the large amount of frames in the training
set, for the ASC we randomly selected 200 examples from
each video sequence, which results in 10000 training exam-
ples in total. To deal with variability in appearance and reg-
istration errors, at each selected training example we used a
window of 100 frames, taking the mean of the extracted fea-
tures over these frames as the feature vector. The baseline
method uses correlation based feature selection (CFS) [10]
and ε-Support Vector Machine Regressors (ε-SVR) with an
intersection kernel. This means only two variables need to
be optimised, that is, the slack variable C and ε itself. For
results on the development set, optimisation is done in a 5-
fold cross-validation loop on the training data. The results
of the affect recognition are shown in Table 3.

As the DSC has a single label per video, we created a sin-
gle feature vector per video by taking the median value of
all video features. Again, CFS was used to reduce the num-
ber of features, in conjunction with SVRs with intersection
kernels. Results for video are shown in Table 4. Please note
that participants in the challenge will be ranked based on
their RMSE results. We compared the baseline predictions
to a naive or chance level error. This was obtained by cal-
culating the average BDI value over either the training set
(for prediction on the development partition) or over both
the training and development sets (for prediction on the test
partition), and using that as the predicted depression level
for all sessions we test on. For depression prediction on the
development partition, chance levels would be an error of
11.90 RMSE and 10.28 MAE.

For the audio-based baseline, features extracted from short
3-second segments performed best for valence, while for arou-
sal features from automatically detected voice activity [5]
segments worked better. For audio, SVRs with a linear ker-
nel were used. For depression recognition best results were
obtained by computing the audio features over longer 20
second non-overlapping segments, which were subsequently



averaged over the entire recording. Results are shown in
Tables 3 and 4.

6. CONCLUSION
We introduced AVEC 2013 – the first combined open Au-
dio/Visual Emotion and Depression recognition Challenge.
It addresses in two sub-challenges the detection of dimen-
sional affect in continuous time and value, and the estima-
tion of self-reported depression. This manuscript describes
AVEC 2013’s challenge conditions, data, baseline features
and results. By intention, we opted to use open-source soft-
ware and the highest possible transparency and realism for
the baselines by refraining from feature space optimisation
and optimising on test data. This should improve the repro-
ducibility of the baseline results.
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