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1. Outline - Contributions 
 

 Unsupervised detection of facial events: 

 Head pose, local actions of eyes, mouth, eyebrows etc. 

 Classification of the extreme states; not precise calculation 

 Important in Sign Language comprehension and recognition 

 Lack of annotations; Manual Annotations are expensive 

 

 Face tracking framework using Active Appearance Model 

 Initialization of AAM similarity transform parameters 

 Face detection, skin detection, morphological operators 

 

 Unsupervised method for Extreme States Classification (UnESC) 
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Figure 1. Example of 

pose over the yaw 

angle extreme states 

classification. 
 

2. AAM fitting initialization 
 

 AAM fitting estimates the shape and texture parameters vector q 

that minimizes the error between the reconstructed texture and the 

image texture. 
  

                                               Similarity transform parameters 

                                               Shape parameters 

                           

                                               Texture parameters 

 

 

 

 AAM fitting initialization framework: 

 high pose variation in Sign Language videos 

 need for robust and accurate AAM fitting  

 Initialization on each new video frame; no dynamics 

 Non-occlusion frames; detection from number of skin regions 

Figure 2. AAM initialization framework for similarity transform parameters. 

4. Local AAMs 
 

 Model a specific facial area (mouth, eyes, brows etc.) 

 Decompose the area’s variance from the rest of the face 

 Projection of Global AAM’s fitting parameters to the eigenvectors 

of the Local AAM 

 

 

 

Figure 4. Example of Global AAM projection to various Local AAMs. 

Left: Original image. Central: Global AAM fitting. Right: Local AAMs projection. 

3. Fitting and tracking results 
 

 Comparison between proposed initialization and Viola-Jones face 

detection initialization framework 

 76.7% MSE decrease 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Greek Sign Language (GSL) 

 Subject 012B, Task 4; 720x576; 8082 frames 

 Face resolution: ~2400 pixels; 49x49; 0.6% 

 

 

 

 

 

 

 

 

 

 

 

 
 

 American Sign Language, Univ. of Boston (BU) 

 “Accident” task; 640x480; 16845 frames 

 Face resolution: ~5600 pixels; 75x75; 1.8% 

 

Figure 3. MSE error histogram for comparison between proposed initialization and 

Viola-Jones face detection initialization. 

5. UnESC feature selection 
 

 Possible features: 

 

 Global AAM eigenvectors parameters 

 

 

 
 

  

  

 

 Local AAMs eigenvectors parameters 

 

 

 
  

  

 

 Geometrical measures on the mask’s landmark points 

 

 

 

 

 

 Single-dimensional (1D) feature space 

 

                                          Facial event variation continuity 

                                            wrt. feature value change. 

 

 

5. UnESC training 
 

 Main idea: Partition 1D feature space in 3 representative clusters: 

 Two on the edges corresponding to the extreme states 

 One on the center corresponding to the neutral state 

 

 

 Step 1: Selection of 1D feature that best describes the facial event. 

 

 

 

 

 

 Step 2: Hierarchical Breakdown for density equalization 

 Agglomerative Hierarchical Clustering 

 

 

 

 

 

 Step 3: Maximum-Distance Cluster Selection with Subjective 

Perceived Threshold (SPThres) parameter 

 Some training data points are not classified in any cluster! 

 SPThres controls the edge clusters’ spread towards the central 

 

 

 

 

 

 

 Step 4: Training of three 1D Gaussians, one per cluster 

 

 

6. Experimental results 
 

       I) Qualitative results (GSL) 

 

 

 

 

 

 

 

 

 

 

 

       II) Quantitative results (BU) 
  

 UnESC vs. Supervised Classification vs. Kmeans for pose yaw 

 729 experiments for various values of SPThres 

 Supervised & Kmeans trainig set size =UnESC clusters’ size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 High precision 

 User can achieve high precision or recall through SPThres. 

 

Figure 5. Qualitative results on GSL database. First: Pose over the yaw angle using 

Global AAM’s 1st shape parameter. Second: Mouth open/close using Local AAM’s 

1st shape parameter. Third: Left eye open/close using distance between eyelids. 


