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Problem Statement

We propose a methodology for the automatic construction of both a generative and a discriminative

Automatic Construction of Deformable Models In-The-Wild

Active Appearance Model (AAM) and thus the automatic annotation of images given:

1) two disjoint datasets of images with the object's bounding boxes
- Images downloaded from the web
- Detector as simple as Viola-Jones (embedded in all digital cameras!)

2) a statistical shape model (Point Distribution Model) of the object

- A facial shape model can be created from 40-50 shapes; a generic appearance model requires ~1000 images!

Automatic Construction of Generative AAM

Appearance PCA
Model Training

AAM Fitting

on Database 1
- Cost function:
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- Iteratively finding the optimal subspace that minimizes
the mean L2 norm of the AAM fitting over all images
- Optimization procedure gets stuck in a local minimum!

Fitted Shapes on Dataset 1
- Fit the discriminative AAM on Dataset 1

using the bounding boxes as initialization
- The fitting results are then used to train
the generative AAM at the next step

Statistical Shape Model

Fitted Shapes on Dataset 2
- Fit the generative AAM on Dataset 2

using the bounding boxes as initialization
- The fitting results are then used to train
the discriminative AAM at the next step

Parametric Discriminative AAM Training

- Cascade of K=4 regression steps between shape and
appearance parameters, so that:
Py = Pr—1 T Ry A1+ by, £=1,.. . K
- Each regressor consists of a gradient-descent direction
term and a bias term.
- This step 1s required to boost the generative AAM
towards a better minimum! (similar to random
perturbations in Simulated Annealing)

Dataset 1 Final Shapes

Dataset 2 Final Shapes
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Convergence

- We employ the robust kernel of normalized gradient orientations
that cancels out outliers. It has trhe form:

g(l) = \/N;MS cos ¢, sing]”

- Our experiments on tfaces show that a single application of the

discriminative model (single iteration) is adequate.
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Automatically Trained Appearance Model
Initial Subspace from bounding boxes
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Appearance Model Trained on Manual Annotations
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Experimental Results

- Usage ot 2800 in-the-wild images of LFPW and Helen training sets
- Comparison with models trained on the manual annotations.
- Experiments on AFW, LFPW and Helen test sets (888 images).
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