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Abstract—Lucas-Kanade and Active Appearance Models are
among the most commonly used methods for image alignment
and facial fitting, respectively. They both utilize non-linear
gradient descent, which is usually applied on intensity values.
In this paper, we propose the employment of highly-descriptive,
densely-sampled image features for both problems. We show that
the strategy of warping the multi-channel dense feature image at
each iteration is more beneficial than extracting features after
warping the intensity image at each iteration. Motivated by
this observation, we demonstrate robust and accurate alignment
and fitting performance using a variety of powerful feature
descriptors. Especially with the employment of HOG and SIFT
features, our method significantly outperforms the current state-
of-the-art results on in-the-wild databases.

Index Terms—Lucas-Kanade, Active Appearance Models,
dense image feature descriptors, face alignment, face fitting

I. INTRODUCTION

DUE to their importance in Computer Vision and Human-
Computer Interaction, the problems of face alignment

and fitting have accumulated great research effort during the
past decades. The Lucas-Kanade (LK) algorithm [1] is the
most important method for the problem of aligning a given
image with a template image. The method’s aim is to find the
parameter values of a parametric motion model that minimize
the discrepancies between the two images. Active Appearance
Models (AAMs) are among the most commonly used models
for the task of face fitting. They are generative deformable
statistical models of shape and appearance variation. AAMs
were introduced in [2] and they are descendants of Active
Contour Models [3] and Active Shape Models [4]. Among
the most efficient techniques to optimize AAMs is gradient
descent, which recovers the parametric description of a face
instance. Gradient descent optimization for AAMs is similar
to the LK algorithm, with the difference that the registration is
obtained between the input image and a parametric appearance
model instead of a static template.

The most common choice for both LK and AAMs matching
is the Inverse Compositional (IC) image alignment algo-
rithm [5], [6]. IC is a non-linear, gradient descent optimization
technique that aims to minimize the `2 norm between the
warped image texture and a target texture. The target texture is
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the static template image in the case of LK and a model texture
instance in the case of AAMs. Since IC is a gradient descent
optimization technique, the registration result is sensitive to
initialization and to appearance variation (illumination, object
appearance variation, occlusion etc.) exposed in the input and
the target images [7]. Especially, in the case of intensity-based
AAMs, the model is incapable of adequately generalizing in
order to be robust to outliers. Many approaches have been
proposed to deal with these issues and improve efficiency [5],
[8]–[13], robustness [12], [14]–[19] and generalization [18],
[20], [21]. Many of the proposed methods introduce algorith-
mic improvements. The authors in [8] propose an adaptation
on the fitting matrix and the employment of prior information
to constrain the IC fitting process. In [7], [19] the `2 norm is
replaced by a robust error function and the optimization aims
to solve a re-weighted least squares problem with an iterative
update of the weights. Moreover, the method in [15] aligns two
images by maximizing their gradient correlation coefficient.
However, most of the proposed methods utilize an intensity-
based appearance, which is not suitable to create a generic
appearance model and achieve accurate image alignment, as
is also shown in our experiments.

In this paper, we propose the employment of highly-
descriptive, dense appearance features for both LK and AAMs.
We show that even though the employment of dense features
increases the data dimensionality, there is a small raise in
the time complexity and a significant improvement in the
alignment accuracy. We show that within the IC optimization,
there is no need to compute the dense features at each iteration
from the warped image. On the contrary, we extract the dense
features from the original image once and then warp the
resulting multi-channel image at each iteration. This strategy
gives better results, as shown in our motivating experiment
of Sec. V-A1 and has smaller computational complexity, as
explained in Sec. IV and Tab. II. Motivated by this observation,
we present very accurate and robust experimental results
for both face alignment and fitting with feature-based LK
and AAMs, that prove their invariance to illumination and
expression changes and their generalization ability to unseen
faces. Especially in the case of HOG and SIFT AAMs, we
demonstrate results on in-the-wild databases that significantly
outperform the current state-of-the-art performance.

Feature-based image representation has gained extended
attention for various Computer Vision tasks such as im-
age segmentation and object alignment/recognition. There is
ongoing research on the employment of features for both
LK [11], [15], [16] and AAMs [16], [21]–[31]. The authors
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in [11] use correspondences between dense SIFT descriptors
for scene alignment and face recognition. Various appearance
representations are proposed in [25], [26] to improve the
performance of AAMs. One of the first attempts for feature-
based AAMs is [22]. The authors use novel features based on
the orientations of gradients to represent edge structure within
a regression framework. Similar features are employed in [21]
to create a robust similarity optimization criterion. In [27],
the intensities appearance model is replaced by a mixture of
grayscale intensities, hue channel and edge magnitude.

Recently, more sophisticated multi-dimensional features are
adopted for AAM fitting. The work in [16] proposes to apply
the IC optimization algorithm in the Fourier domain using the
Gabor responses for LK and AAMs. This is different than
the framework proposed in this paper, since in our approach
the optimization is carried out in the spatial domain. In [28],
a new appearance representation is introduced for AAMs by
combining Gabor wavelet and Local Binary Pattern (LBP)
descriptor. The work in [23] is the closest to the proposed
framework in this paper. The authors employ Gabor magnitude
features summed over either orientations or scales or both
to build an appearance model. However, even though the
optimization is based on the IC technique and carried out
in the spatial domain, features are extracted at each iteration
from the warped image. Finally, similarly to [23], the authors
in [24] model the characteristic functions of Gabor magnitude
and phase by using lognormal and Gaussian density functions
respectively and utilize the mean of the characteristics over
orientations and scales.

The framework proposed in this paper differs from the
above works in various aspects. We adopt the concept of
highly-descriptive, densely-sampled features within the IC op-
timization and utilize multi-channel warping at each iteration
of the IC optimization which does not greatly increase the
computational complexity but significantly improves the fitting
performance and robustness. In our previous work [32], we
showed that the combination of AAMs with HOG features re-
sults in a powerful model with excellent performance. Herein,
we apply the above concept for both LK and AAMs by using
a great variety of widely-used features, such as Histograms
of Oriented Gradients (HOG) [33], Scale-Invariant Feature
Transform (SIFT) [34], Image Gradient Orientation kernel
(IGO) [15], [20], Edge Structure (ES) [22], Local Binary
Patterns (LBP) [35]–[37] with variations [38], and Gabor
filters [39]–[41]. We extensively evaluate the performance and
behaviour of the proposed framework on the commonly used
Yale B Database [42] for LK and on multiple in-the-wild
databases (LFPW [43], AFW [44], Helen [45], iBUG [46])
for AAMs. Finally, we compare with the current state-of-the-
art methods [47], [48] and report more accurate results.

To summarize, the contributions of this paper are:
• We propose the incorporation of densely-sampled, highly-

descriptive features in the IC gradient descent frame-
work. We show that the combination of (1) non-linear
least-squares optimization with (2) robust features (e.g.
HOG/SIFT) and (3) generative models can achieve ex-
cellent performance for the task of face alignment.

• We elaborate on the reasons why it is preferable to warp

the features image at each iteration, rather than extracting
features at each iteration from the warped image, as it is
done in the relevant bibliography.

• Our extended experimental results provide solid compar-
isons between some of the most successful and widely-
used features that exist in the current bibliography for the
tasks of interest, by thoroughly investigating the features’
accuracy, robustness, and speed of convergence.

• Our proposed HOG and SIFT AAMs outperform current
state-of-the-art face fitting methods on a series of cross-
database challenging in-the-wild experiments.

• An open-source Python implementation of the described
methods is provided in the Menpo Project1 [49].

The rest of the paper is structured as follows: Section II
briefly describes the used features. Section III elaborates on the
intensity-based IC algorithm for LK and AAMs. Section IV
explains the strategy to combine the IC optimization with
dense features. Finally, Section V presents extended experi-
ments for LK and AAMs.

II. IMAGE FEATURES

A feature-based image representation is achieved with the
application of a feature extraction function that attempts to
describe distinctive and important image characteristics. In this
work, we require the descriptor function to extract densely-
sampled image features, thus compute a feature vector for each
pixel location. This means that it transforms a 2D input image
to a multi-channel image of the same height and width. Given
an input image T with size H × W , the feature extraction
function F(T) is defined as F : RH×W −→ RH×W×D,
where D is the number of channels of the feature image. By
denoting the input image in vectorial form t with size LT ×1,
where LT = HW , the descriptor-based image is f = F(t)
where the feature extraction function is redefined as

F : RLT×1 −→ RLTD×1 (1)

In the rest of the paper, we will denote the images in vectorized
form within the equations.

Many robust multi-dimensional image descriptors have been
proposed and applied to various tasks. They can be divided in
two categories: those extracted based only on the pixel values
and those extracted based on larger spatial neighbourhoods.
They all aim to generate features that are invariant to trans-
lation, rotation, scale and illumination changes and robust to
local geometric distortion. We select nine of the most powerful
and successful descriptors, which are briefly described in the
following subsections (II-A–II-F). Figure 1 shows the feature-
based image representation for each of the employed feature
types. The visualized grayscale images are constructed by
summing all the D channels of the feature images. Notice how
each descriptor handles the illumination changes and the face’s
distinctive edges. Table I summarizes the parameter values,
the number of channels and the neighbourhood size that gets
involved in computing the descriptor at each image location
for all features.

1Open source code of the proposed methods is available as part of the
Menpo Project [49] in www.menpo.org.
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(a) Original (b) ES (c) IGO (d) HOG (e) SIFT (f) OLBP (g) TPLBP (h) FPLBP (i) Gabor Ang. (j) Gabor Mag.

Fig. 1. Examples of the nine employed dense feature types. The feature images have the same height and width as the original image and D channels. In
order to visualize them, we compute the sum over all D channels.

A. Edge Structure (ES)

ES [22] is a measure which captures the orientation of
image structure at each pixel, together with an indication
of how accurate the orientation estimate is. Assume that
g =

√
g2
x + g2

y is the gradient magnitude, where gx and gy

are the local gradients. Then f = f(g)[gx,gy] is evaluated,
where f(g) = |g|/(|g| + ḡ) is a non-linear normalization
function (ḡ is the mean of g). This feature-based representation
has D = 2 channels and is effective at favouring strong and
distinctive edges (Fig. 1b).

B. Image Gradient Orientation (IGO)

IGO is introduced and successfully applied in [15], [20],
[21], [50]. Given the gradients gx, gy of an input image
and their orientation φ, we compute the IGO image as
f = 1√

N
[cosφT , sinφT ]T , where N is the length of the input

image and cosφ = [cosφ(1), . . . , cosφ(N)]
T (the same for

sinφ). The above feature image definition results in D = 2
channels. IGO features are robust to outliers and are also low-
dimensional compared to other robust features (Fig. 1c).

C. Histograms of Oriented Gradients (HOG)

HOG descriptors [33] cluster the gradient orientations in
different bins for localized sub-windows of an input image.
Thus, the shape and texture of the image are described by
histograms of local edge directions, which are also character-
ized by photometric invariance. The HOG features extraction
begins by computing the image gradient. Two spatial neigh-
bourhoods are used at the region of each pixel: cells and
blocks. A cell is a small sub-window from which we create
a histogram of the gradient’s orientations weighted by the
gradient magnitude. The histogram has Nbins bins and trilinear
interpolation is applied between the votes of neighbouring bin
centres with respect to orientation and position. A block is
a larger spatial region that consists of Nblock × Nblock cells.
We apply contrast normalization between the cells that are
grouped within a block, based on the Euclidean norm. The
final descriptor vector extracted from each block is composed
by concatenating the normalized histograms of the cells, thus
it has length D = NbinsN

2
block. We compute dense features,

which means that we use a sampling step of one pixel and
we extract a descriptor vector from the block centered at each
such location. This ends up in a very powerful representation
that is descriptive on the important facial parts and flat on the
rest of the face (Fig. 1d). By using cells of size 8× 8 pixels
with Nblock = 2 and Nbins = 9, we have D = 36 channels.

D. Scale-Invariant Feature Transform (SIFT)

SIFT descriptors [34] are similar to HOGs, with the dif-
ference that the orientations histograms are computed with
respect to each pixel’s dominant orientation. Assume that
L(x, y, σ) is the Gaussian-smoothed image at the scale σ of
the location (x, y). We calculate the gradient magnitude and
direction for every pixel in a neighbourhood around the point
in L and form an orientation histogram, where each orientation
is weighted by the corresponding gradient magnitude and by
a Gaussian-weighted circular window with standard deviation
proportional to the pixel’s σ. Then, we take the orientations
that are within a percentage (80%) of the highest bin. If
these orientations are more than one, then we create multiple
points and assign them each orientation value. Eventually, the
final descriptor vector is created by sampling the neighbouring
pixels at the image L(x, y, σ) with scale closest to the point’s
scale, rotating the gradients and coordinates by the previously
computed dominant orientation, separating the neighbourhood
in Nblock×Nblock sub-regions and create a Gaussian-weighted
orientations histogram for each sub-region with Nbins bins.
Finally, the histograms are concatenated in a single vector with
length D = NbinsN

2
block that is normalized to unit length. In

general, SIFT are invariant to scale, rotation, illumination and
viewpoint (Fig. 1e). We use the same parameters as in HOGs
(Nblock = 2, Nbins = 9 and 8×8 cells), thus D = 36 channels.

E. Local Binary Patterns (LBP)

The basic idea behind LBP [35]–[37] is to encode the local
structure in an image by comparing each pixel’s intensity
value with the pixel intensities within its neighbourhood. For
each pixel, we define a neighbourhood radius r centered at
the pixel and compare the intensities of S circular sample
points to its intensity. The sampling is done clockwise or
counter-clockwise, starting from a specific angle, and we apply
interpolation on sample points that are not discrete. If the
center pixel’s intensity is greater or equal than the sample’s,
then we denote it by 1, otherwise by 0. Thus, we end up with
a binary number (LBP code) for each pixel, with S digits and
2S possible combinations, which is converted to decimal. In
the original LBP formulation, the output is a descriptor vector
describing the whole image with a normalized histogram of
the decimal codes. We instead use Nradius number of values
for the radius parameter, r. Then we sample Nsamples sets of
points S from the circle of each radius value and concatenate
the LBP codes in a vector. This means that our dense feature
image has D = NradiusNsamples channels. We also employ
the extension of rotation-invariant uniform LBPs. Uniform
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TABLE I
FEATURES PARAMETERS, NEIGHBOURHOOD SIZE THAT CONTRIBUTES

IN EACH PIXEL’S COMPUTATION AND NUMBER OF CHANNELS.

Feature
Parameters Values

Neighbourhood Ch.
Type Size (in pixels) (D)

IGO, ES − − 2

HOG Nbins = 9, Ncell = 2
256 36

SIFT cell = 8× 8 pixels

OLBP a Nradius = 8, Nsamples = 8 64 8

TPLBP a Nradius = 8, Nsamples = 8
64 16

FPLBP b Npatch = 2

Gabor Nsc = 4, Nor = 9 − 36
a Radius takes values {1, 2, . . . , 8}, patch sizes are 2 and 4 and for each

radius we sample a single set of 8 points.
b Inner and outer radius are {[1, 5], [2, 6], . . . , [8, 12]}, patch sizes are
2 and 4 and for each radius we sample a single set of 8 points.

LBPs are binary codes with at most two circular 0-1 and 1-
0 transitions. In the computation of the final LBP patterns,
there is a separate label for each uniform code and all the
non-uniform codes are labelled with a single label. By setting
r = {1, 2, . . . , 8} (Nradius = 8) and sampling Nsamples = 8
points for each radius value, we end up with D = 8 channels.

Moreover, apart from the original LBP (OLBP), we also
use the variations of Three-Patch LBP (TPLBP) and Four-
Patch LBP (FPLBP), introduced in [38]. TPLBP and FPLBP
encode in the binary codes the similarities between neigh-
bouring patches (for details, please refer to [38]). Thus, the
number of channels in this case also depends on the em-
ployed number of patches Npatch with different sizes, hence
D = NradiusNsamplesNpatch. With the parameters we use,
we end up with D = 16 channels. The three LBP derivatives
are visualized in Figs. 1f-1h.

F. Gabor Magnitude and Angle
Herein, we employ the log-Gabor filter (wavelet) [39]–

[41]. In the log-polar coordinates of the Fourier domain

(ρ, θ), this is defined as G(s,o)(ρ, θ) = exp

(
− 1

2

(
ρ−ρs
σρ

)2
)

exp

(
− 1

2

(
θ−θ(s,o)
σθ

)2
)

, where σρ and σθ are the bandwidths

in ρ and θ respectively and (s, o) are the indices of each
filter’s scale and orientation. Thus, by using Nsc scales and
Nor orientations, we have a filterbank of log-Gabor filters
with s = 1, . . . , Nsc and o = 1, . . . , Nor. The reason why
log-Gabor filter is preferred over Gabor is that it has no DC
component and its transfer function is extended at a high
frequency range. Given an image, we compute its convolution
with each log-Gabor filter for all scales and orientations. Then,
we create two feature images by concatenating the convolu-
tion’s magnitude and phase respectively (Figs. 1i and 1j). Both
feature versions have D = NscNor channels. We use the log-
Gabor filters implementation available in [51] with Nsc = 4
and Nor = 9, thus D = 36.

G. Features Function Computational Complexity
As mentioned before, the presented features can be sep-

arated in two categories: (1) the ones that are computed in

a pixel-based fashion (e.g. ES, IGO), and (2) the ones that
are computed in a window-based mode, thus they depend
on the values of a larger spatial neighbourhood for each
location (e.g. HOG, SIFT, LBP). Given an image t in vectorial
form with length LT , the computational cost of extracting
dense D-channel features of the first category is O(LTD).
Respectively, the complexity of extracting the features of the
second category, using a window of size h×w for each pixel, is
O(LTLwD), where Lw = hw is the window’s area. However,
since the window’s dimensions h and w take values of the
same order as D, hence hw ≈ D2, the cost of the second
case can also be expressed as

O(LTD
3) (2)

This gives an intuition on the complexity difference between
the two cases. In the following sections, we will use the
window-based features complexity of Eq.2 as the worst-case
scenario, since it is more expensive than the pixel-based one.

III. INVERSE-COMPOSITIONAL ALIGNMENT ALGORITHM

The optimization technique that we employ for both LK and
AAMs is the efficient gradient descent Inverse Compositional
(IC) Image Alignment [5], [6]. In this section, we firstly refer
to the problem of LK (III-A) and then elaborate on AAMs
(III-B). In order to explain the IC algorithm, we first present
the forwards-additive (FA) and forwards-compositional (FC)
ones. Note that all the algorithms in this section are presented
based on pixel intensities, thus we assume that we have images
with a single channel.

The gradient descent image alignment aims to find the
optimal parameters values of a parametric motion model. The
motion model consists of a Warp function W(x,p) which
maps each point x within a target (reference) shape to its cor-
responding location in a shape instance. The identity warp is
defined as W(x,0) = x. In AAMs, we employ the Piecewise
Affine Warp (PWA) which performs the mapping based on the
barycentric coordinates of the corresponding triangles between
the source and target shapes that are extracted using Delaunay
triangulation. In the following sections we will denote the warp
function as W(p) for simplicity.

A. Lucas-Kanade Optimization

Herein, we first define the optimization techniques for the
LK face alignment problem, in order to describe the IC
optimization for AAMs in the following Sec. III-B. The aim of
image alignment is to find the location of a constant template
ā in an input vectorized image t. This is mathematically
expressed as minimizing the `2-norm cost function

argmin
p
‖ā− t(W(p))‖2 (3)

with respect to the motion model parameters p. The pro-
posed gradient descent optimization techniques [5], [7] are
categorized as: (1) forwards or inverse depending on the
direction of the motion parameters estimation and (2) additive
or compositional depending on the way the motion parameters
are updated.



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

1) Forwards-Additive: Lucas and Kanade proposed the FA
gradient descent in [1]. By using an additive iterative update of
the parameters, i.e. p← p+∆p, and having an initial estimate
of p, the cost function of Eq. 3 is expressed as minimizing
argmin∆p ‖ā − t(W(p + ∆p))‖2 with respect to ∆p. The
solution is given by first linearising around p, thus using first
order Taylor series expansion at p + ∆p = p ⇒ ∆p = 0.
This gives t(W(p + ∆p)) ≈ t(W(p)) + Jt|p=p∆p, where
Jt|p=p = ∇t∂W∂p is the image Jacobian, consisting of the
image gradient evaluated at W(p) and the warp jacobian
evaluated at p. The final solution is given by

∆p = H−1JTt |p=p [ā− t(W(p))]

where H = JTt |p=pJt|p=p is the Gauss-Newton approxima-
tion of the Hessian matrix. This method is forwards because
the warp projects into the image coordinate frame and additive
because the iterative update of the motion parameters is com-
puted by estimating a ∆p incremental offset from the current
parameters. The algorithm is very slow with computational
complexity O(NS

3 + NS
2LA), because the computationally

costly Hessian matrix and its inverse depend on the warp
parameters p and need to be evaluated in every iteration.

2) Forwards-Compositional: Compared to the FA version,
in the FC gradient descent we have the same warp direction
for computing the parameters, but a compositional update
of the form W(p) ← W(p) ◦ W(∆p). The minimization
cost function in this case takes the form argmin∆p ‖ā −
t (W(p) ◦W(∆p)) ‖2 and the linearisation is ‖ā−t(W(p))−
Jt|∆p=0∆p‖2, where the composition with the identity warp
is W(p) ◦W(0) =W(p). The image Jacobian in this case is
expressed as Jt|p=0 = ∇t(W(p)) ∂W

∂p

∣∣∣
p=0

. Thus, with this

formulation, the warp Jacobian is constant and can be precom-
puted, because it is evaluated at p = 0. This precomputation
slightly improves the algorithm’s computational complexity
compared to the FA case, even though the compositional
update is more expensive than the additive one.

3) Inverse-Compositional: In the IC optimization, the di-
rection of the warp is reversed compared to the two previous
techniques and the incremental warp is computed with respect
to the template ā [5], [10]. Compared to Eq. 3 the goal in this
case is to minimize

argmin
∆p

‖t(W(p))− ā(W(∆p))‖2 (4)

with respect to ∆p. The incremental warp W(∆p) is com-
puted with respect to the template ā, but the current warp
W(p) is still applied on the input image. By linearising around
∆p = 0 and using the identity warp, we have

‖t(W(p))− ā− Jā|p=0∆p‖2 (5)

where Jā|p=0 = ∇ā ∂W
∂p

∣∣∣
p=0

. Consequently, similar to the

FC case, the increment is ∆p = H−1JTā |p=0 [t(W(p))− ā]
where the Hessian matrix is H = JTā |p=0Jā|p=0. The com-
positional motion parameters update in each iteration is

W(p)←W(p) ◦W(∆p)−1 (6)

Since the gradient is always taken at the template, the warp
Jacobian ∂W

∂p

∣∣∣
p=0

and thus the Hessian matrix’s inverse

remain constant and can be precomputed. This makes the IC
algorithm both fast and efficient with a total computational
complexity of O(N2

S +NSLA).

B. Active Appearance Models Optimization

AAMs are deformable statistical models of shape and
appearance that recover a parametric description of a certain
object through optimization. A shape instance is represented
as s = [x1, y1, . . . , xLS , yLS ]

T , a 2LS × 1 vector consisting
of LS landmark points coordinates (xi, yi), ∀i = 1, . . . , LS .
An appearance instance is expressed as a LA × 1 vector
a(x), x ∈ s consisting of the appearance values of the LA
column-wise pixels inside the shape graph. The shape model
is constructed by first aligning a set of training shapes using
Generalized Procrustes Analysis and then applying Principal
Component Analysis (PCA) on the aligned shapes to find an
orthonormal basis of NS eigenvectors US ∈ R2LS×NS and
the mean shape s̄. The first four eigenshapes correspond to the
similarity transform parameters that control the global rotation,
scaling and translation and the rest are the PCA eigenvectors
with maximum variance. The appearance model is trained
similarly in order to find the corresponding NA eigentextures
subspace UA ∈ RLA×NA and the mean appearance ā. Note
that the training images are warped into the mean shape in
order to apply PCA, thus LA denotes the number of pixels that
belong inside the mean shape, x ∈ s̄. Synthesis is achieved
through linear combination of the eigenvectors weighted by
the according model parameters, thus

sp = s̄ + USp and aλ = ā + UAλ (7)

where p = [p1, . . . , pNS ]
T and λ = [λ1, . . . , λNA ]

T are the
shape and appearance parameters respectively.

The basic difference between the IC algorithm employed
for LK and AAMs is that the template image ā is not static,
but it includes a linear appearance variation controlled by the
appearance parameters λ as shown in Eq. 7. Consequently, the
minimization cost function of Eq. 3 now becomes

argmin
p,λ

‖t(W(p))− ā−UAλ‖2 (8)

We present three algorithms for solving the optimization
problem: Simultaneous, Alternating and Project-Out.

1) Project-Out Inverse-Compositional: The Project-Out IC
(POIC) algorithm [6] decouples shape and appearance by
solving Eq. 8 in a subspace orthogonal to the appearance
variation. This is achieved by “projecting-out” the appearance
variation, thus working on the orthogonal complement of the
appearance subspace ÛA = I−UAU

T
A. The cost function of

Eq. 8 takes the form

argmin
∆p

‖t(W(p))− ā(W(∆p))‖2I−UAUT
A

(9)

and first-order Taylor expansion over ∆p = 0 is ā(W(∆p)) ≈
ā+Jā|p=0∆p. The incremental update of the warp parameters
is computed as ∆p = H−1JTPOIC [t(W(p)) − ā] where
H−1 = JTPOICJPOIC and JPOIC = (I − UAU

T
A)Jā|p=0.
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The appearance parameters can be retrieved at the end of
the iterative operation as λ = UT

A[t(W(p)) − ā] in order to
reconstruct the appearance vector. The POIC algorithm is very
fast with O(NSLA +N2

S) computational complexity, because
the Jacobian, the Hessian matrix and its inverse are constant
and can be precomputed. However, the algorithm is not robust,
especially in cases with large appearance variation or outliers.

2) Simultaneous Inverse-Compositional: In the Simultane-
ous IC (SIC) [18] we aim to optimize simultaneously for p
and λ parameters. Similar to the Eq. 4 of the LK-IC case, the
cost function of Eq. 8 now becomes

argmin
∆p,∆λ

‖t(W(p))− aλ+∆λW(∆p))‖2 (10)

where aλ+∆λ(W(∆p)) = ā(W(∆p)) + UA(W(∆p))(λ +
∆λ). We denote by ∆q = [∆pT ,∆λT ]T the vector of
concatenated parameters increments with length NS + NA.
As in Eq. 5, the linearisation of aλ+∆λ(W(∆p)) around
∆p = 0 consists of two parts: the mean appearance vector ap-
proximation ā(W(∆p)) ≈ ā+ Jā|p=0 ∆p and the linearised
basis UA(W(∆p)) ≈ UA+[Ju1 |p=0∆p, . . . ,JuNA

|p=0∆p],

where Jui |p=0 = ∇ui ∂W∂p
∣∣∣
p=0

denotes the Jacobian with

respect to the ith eigentexture at ∆p = 0. Then the final
solution at each iteration is

∆q = H−1JTSIC [t(W(p))− ā−UAλ] (11)

where the Hessian matrix is H = JTSICJSIC and the Jacobian
is given by JSIC =

[
Jaλ
|p=0 ,UA

]
with Jaλ

|p=0 =

Jā|p=0 +
∑NA
i=1 λiJui |p=0. At every iteration, we apply the

compositional motion parameters update of Eq. 6 of the
LK-IC and an additive appearance parameters update λ ←
λ+∆λ. The individual Jacobians Jā|p=0 and Jui |p=0, ∀i =
1, . . . , NA are constant and can be precomputed. However,
the total Jacobian Jaλ

|p=0 and hence the Hessian matrix
depend on the current estimate of the appearance parame-
ters λ, thus they need to be computed at every iteration.
This makes the algorithm very slow with a total cost of
O((NS +NA)2LA + (NS +NA)3).

3) Alternating Inverse-Compositional: The Alternating IC
(AIC) algorithm, proposed in [8], instead of minimizing the
cost function simultaneously for both shape and appearance
as in the SIC algorithm, it solves two separate minimization
problems, one for the shape and one for the appearance
optimal parameters, in an alternating fashion. That is

argmin
∆p

‖t(W(p))− aλ(W(∆p))‖2I−UAUT
A

argmin
∆λ

‖t(W(p))− aλ+∆λ(W(∆p))‖2
(12)

The minimization in every iteration is achieved by first using
a fixed estimate of λ to compute the current estimate of
the increment ∆p and then using the fixed estimate of p
to compute the increment ∆λ. More specifically, similar to
the previous cases and skipping the linearisation steps, given
the current estimate of λ, the warp parameters increment is
computed from the first cost function as

∆p = H−1JTAIC [t(W(p))− ā−UAλ] (13)

where JAIC = (I−UAU
T
A)[Jā|p=0 +

∑NA
i=1 λiJui |p=0] and

H−1 = JTAICJAIC . Then, given the current estimate of the
motion parameters p, AIC computes the optimal appearance
parameters as the least-squares solution of the second cost
function of Eq. 12, thus

∆λ = UT
A [t(W(p))− ā(W(∆p))−UA(W(∆p))λ] (14)

This alternating optimization is repeated at each iteration. The
motion parameters are compositionally updated as in Eq. 6
and the appearance parameters are updated in an additive
mode, i.e. λ ← λ + ∆λ. AIC algorithm is slower than
POIC, but more accurate as it also optimizes with respect to
the appearance variance. Although the individual Jacobians
Jui |p=0, ∀i = 1, . . . , NA and Jā|p=0 can be precomputed,
the total Jacobian JAIC and the Hessian need to be evaluated
at each iteration. Following the Hessian matrix computation
technique proposed in [8], which improves the cost from
O(N2

SLA) to O(N2
SN

2
A) (usually LA > N2

A) and taking into
account the Hessian inversion (O(N3

S)), the total cost at each
iteration is O(N2

SN
2
A + (NS +NA)LA +N3

S).
Recently it was shown that AIC and SIC are theoretically

equivalent (i.e., Eqs. 13, 14 are exactly the same as Eq. 11) and
that the only difference is their computational costs. That is the
SIC algorithm requires to invert the Hessian of the concate-
nated shape and texture parameters (O((NS +NA)3)). How-
ever, using the fact that minx,yf(x, y) = minx (minyf(x, y))
and solving first for the texture parameter increments, it
was shown that (1) the complexity of SIC can be reduced
dramatically and (2) SIC is equivalent to AIC algorithm [52]
(similar results can be shown by using the Schur’s complement
of the Hessian of texture and shape parameters).

IV. FEATURE-BASED OPTIMIZATION

In this section we describe the combination of the IC
algorithm with the feature-based appearance of Eq. 1. The
keypoint of this combination is that there are two different
ways of conducting the composition of the features function
F and the warp function W on an image. Given an image t
and the warp parameters p, the warped feature-based image f
can be obtained with the two following composition directions:
• Features from warped image:

f = F (t(W(p))) (15)

• Warping on features image:

f = tF (W(p)) where tF = F(t) (16)

The composition order of these two cases is shown in Fig. 2. In
the following subsections we present the incorporation of these
two functions compositions in the IC algorithm and explain
why the second one is preferable. For simplicity, we use the
LK-IC algorithm (Sec. III-A3) for face alignment that does
not include appearance variation.

A. Warp Function Computational Complexity

As shown in Sec. II-G, the computational cost of the
feature extraction function F(t) is O(LTD

3), where LT is
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(a) Features from warped image.

(b) Warping on features image.

Fig. 2. The two possible composition directions of the feature extraction
function F and the warp function W(p).

the resolution of the image t. Regarding the warp function,
we need to consider that the warping of a D-channel image,
t(W(p)), includes the three following steps:

1) Synthesis of the shape model instance sp, as in Eq. 7,
using the weights p, which has a cost of O(2LSNS).

2) Computation of the mapping of each pixel in the mean
shape s̄ to the synthesized shape instance sp. This firstly
involves the triangulation of the shape instance in Ntr
number of triangles (same as the number of triangles of
the mean shape) using Delaunay triangulation. Then, six
affine transformation parameters are computed for each
triangle based on the coordinates of the corresponding
triangles’ vertices. Finally, the transformed location of
each point within each triangle is evaluated. Thus, the
complexity of this step is O(6Ntr

LA
Ntr

) = O(6LA).
3) Copying the values of all channels D for all pixels from

the input image to the reference frame s̄ (O(DLA)).

Consequently, taking into account that (6+D)LA � 2LSNS ,
the overall computational complexity of warping a multi-
channel image is O((6 +D)LA).

B. Optimization with Features from Warped Image

From Eqs. 4 and 15 we get the cost function of minimizing

argmin
∆p

‖F(t(W(p)))−F(ā(W(∆p)))‖2

with respect to ∆p. Thus, the first-order Taylor expansion
of this expression around ∆p = 0 is F(ā(W(∆p))) ≈
F(ā) + ∂F

∂ā∇ā
∂W
∂p

∣∣∣
p=0

∆p. Since it is not possible to com-

pute ∂F
∂ā , we make the approximation ∂F

∂ā∇ā ≈ ∇F(ā) and
the linearisation becomes

F(ā(W(∆p))) ≈ F(ā) +∇F(ā)
∂W
∂p

∣∣∣∣
p=0

∆p (17)

Consequently, in every IC repetition step, the warping is
performed on the intensities image (D = 1) with the current
parameters estimate (O(7LA)) and is followed by the feature
extraction (O(LAD

3)), ending up to a cost of O(LA(7+D3))
per iteration. Hence, by applying k iterations of the algorithm

and given that D3 � 7, the overall complexity of warping and
features extraction is

O(kLAD
3) (18)

Note that this is only a part of the final cost, as the IC algorithm
complexity also needs to be taken into account. Moreover, in
the AAMs case, it is difficult to extract window-based features
(e.g. HOG, SIFT, LBP) from the mean shape template image,
as required from the above procedure. This is because, we
have to pad the warped texture in order to compute features
on the boundary, which requires extra triangulation points.

C. Optimization with Warping on Features Image

The combination of Eqs. 4 and 16 gives the cost function

argmin
∆p

‖tF (W(p))− āF (W(∆p))‖2

where tF = F(t) and āF = F(ā) are the multi-channel
feature-based representations of the input and the template
images respectively. The linearisation around ∆p = 0 has
the same form as in Eq. 17 of the previous case. However, in
contrast with the previous case, the warping is performed on
the feature-based image. This means that the feature extraction
is performed once on the input image and the resulting multi-
channel image is warped during each iteration. Hence, the
computational complexity of feature extraction and warping
is O((6 +D)LA) per iteration and O(k(6 +D)LA +LTD

3)
overall per image for k iterations, where LT is the resolution
of the input image.

The above cost greatly depends on the input image dimen-
sions LT . In order to override this dependency, we firstly resize
the input image with respect to the scaling factor between the
face detection bounding box and the mean shape resolution.
Then, we crop the resized image in a region slightly bigger
than the bounding box. Thus, the resulting input image has
resolution approximately equal to the mean shape resolution
LA, which leads to an overall complexity of

O(kLA(6 +D) + LAD
3) (19)

for k iterations. Another reason for resizing the input image
is to have correspondence on the scales on which the features
are extracted, so that they describe the same neighbourhood.

The computational complexities of Eqs. 18 and 19 are
approximately equal for small number of channels D (e.g.
for ES and IGO). However, this technique of warping the
features image has much smaller complexity for large values
of D (e.g. for HOG, SIFT, LBP, Gabor). This is because
k(D+ 6) < D3 for large values of D, so kLA(6 +D) can be
eliminated in Eq. 19. Consequently, since kLAD3 � LAD,
it is more advantageous to compute the features image once
and then warp the multi-channel image at each iteration. In
the experiments (Sec. V), we report the timings that prove
the above conclusion. Finally, we carried out an extensive
experiment comparing the two methods for face alignment
(LK) in Sec. V-A1 (Fig. 4). The results indicate that warping
the multi-channel features image performs better, which is an
additional reason to choose this composition direction apart
from the computational complexity.
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Fig. 3. Yale B Database images examples. The template image (left) is
corrupted with extreme illumination in the testing images for each subject.

V. EXPERIMENTAL RESULTS

Herein, we present extended experiments for both face
alignment (LK, Sec. V-A) and face fitting (AAMs, Secs. V-B
and V-C) using the IC framework. We employ all the dense
features described in Sec. II with the parameters of Tab. I.

A. Face Alignment (Lucas-Kanade)

In this section, we conduct experiments for the task of face
alignment using the LK-IC algorithm. In Sec. V-A1 we show a
motivating experiment in which we compare the performance
of IC with warping the features image at each iteration vs.
extracting features from the warped image. In Sec. V-A2, we
compare the performance of IC with warping the features
image for all features types. For both experiments, we use the
Yale Face Database B [42], which consists of 10 subjects with
576 images per subject under different viewing conditions. We
select 1 template image and 10 testing images for each subject
(100 image pairs) that are corrupted with extreme illumination
conditions (Fig. 3).

We use the evaluation framework proposed in [5]. Specif-
ically, we define three canonical points within a region of
interest for each image. These points are randomly perturbed
using a Gaussian distribution with standard deviation σ =
{1, 2, . . . , 9}. Then, we create the affine distorted image based
on the affine warp defined between the original and perturbed
points. After applying 30 iterations of the IC optimization
algorithm, we compute the RMS error between the estimated
and the correct locations of the three canonical points. The
optimization is considered to have converged if the final RMS
error is less than 3 pixels. Additionally, for each value of σ, we
perform 100 experiments with different randomly perturbed
warps. We evaluate the performance by plotting the average
frequency of convergence and the average mean RMS error
of the converged cases with respect to each value of σ. The
results are averaged over the 100 experiment repetitions with
different random warps.

1) Warping of features image vs Features from warped
image: In the experiment of Fig. 4 we compare the perfor-
mance of the two possible combination techniques between
the features extraction function and the warp function, as
presented in Sec. IV. The figure shows only HOG, SIFT,
IGO and LBP cases, though we get the same results with
the rest of features types. The comparison indicates that the
method of extracting the features from the original image
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Fig. 4. Comparison between the techniques of warping the features image and
extracting features from the warped image. The plot shows results for HOG,
SIFT, IGO and LBP features, however the rest of the features demonstrate
the same behaviour.
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Fig. 5. Face alignment (Lucas-Kanade) results on Yale B database using
the inverse compositional framework. The figure shows the frequency of
convergence with respect to the standard deviation σ.

outperforms the one of extracting the features from the warped
image, especially for large values of σ. The reason behind
this behaviour is that the warping of an image provokes
some distortion on the texture which partly destroys the local
structure. This has negative consequences on the computation
of all the employed features, because the descriptor of each
pixel depends on the structure of its neighbourhood.

2) Features Comparison: Figure 5 provides an evaluation
of the robustness of each feature by showing the average
frequency of convergence with respect to each value of σ.
This experiment clearly indicates that Intensities or Gabor
Magnitude features are totally inappropriate for such a task.
HOG is the most robust feature with remarkable convergence
frequency, followed by SIFT, IGO and ES. Finally, the LBPs
family and Gabor Angles are not robust, but they can achieve
decent results when the initialization is good.
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(a) Alternating IC
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(b) Project-Out IC

Fig. 6. Face fitting (AAMs) accuracy on in-the-wild databases (3026 test images) using the alternating and project-out inverse compositional frameworks,
evaluated on 68 landmark points.

B. Face Fitting (Active Appearance Models)

In this section we compare the performance of the selected
features using AAMs for the task of face fitting with cross-
database experiments. We investigate which features are more
suitable for the task by comparing them with respect to their
accuracy (Sec. V-B1), speed of convergence (Sec. V-B2) and
computational cost (Sec. V-B3). We also shed light on why
some features perform better by comparing them with respect
to the number of appearance components (Sec. V-B4), the
neighbourhood size per pixel (Sec. V-B5) and the smoothness
of their cost function (Sec. V-B6).

As explained in Sec.III-B3, AIC and SIC algorithms are
theoretically equivalent and the only difference between them
is that SIC is significantly slower. Specifically, the updates
of SIC (Eq. 11) and AIC (Eqs. 13 and 14) are theoretically
guaranteed to be the same [52]. Thus, herein we employ the
AIC and POIC algorithms.

We use four popular in-the-wild databases, which contain
images downloaded from the web that are captured in totally
unconstrained conditions and exhibit large variations in pose,
identity, illumination, expressions, occlusion and resolution.
Specifically, we use the Labelled Faces Parts in the Wild
(LFPW) [43] training set in order to train a model for each
feature type. As some of the database’s images URLs are
invalid, we acquired only 811 training images. The testing
is performed on the very challenging in-the-wild databases
of Annotated Faces in the Wild (AFW) [44], LFPW testing
set [43], Helen training and testing set [45] and iBUG [53]
which consist of 337, 224, 2000, 330 and 135 images re-
spectively. Thus, the testing is performed on 3026 in-the-
wild images. We acquired the groundtruth annotations of
68 points for all databases from the 300 Faces In-The-Wild
Challenge [46], [53], [54].

The fitting process is always initialized by computing the
face’s bounding box using Cascade Deformable Part Models
(CDPM) face detector [55] and then estimating the appropriate
global similarity transform that fits the mean shape within
the bounding box boundaries. Note that this initial similarity

transform only involves a translation and scaling component
and not any in-plane rotation. The accuracy of the fitting
result is measured by the point-to-point RMS error between
the fitted shape and the groundtruth annotations, normal-
ized by the face size, as proposed in [44]. Denoting sf =
[xf1 , y

f
1 , . . . , x

f
LS
, yfLS ]T and sg = [xg1, y

g
1 , . . . , x

g
LS
, ygLS ]T

as the fitted shape and the groundtruth shape respectively,
then the error between them is expressed as RMSE =∑L

i=1

√
(xfi−x

g
i )2+(yfi −y

g
i )2

sfLS
, where sf = (maxxgi − minxgi +

max ygi −min ygi )/2 defines the face’s size.
1) Accuracy: Figures 6a and 6b compare the accuracy of

AIC and POIC respectively on all the databases (3026 testing
images) for all the features types. The fitting procedure is
performed using the methodology of Sec. IV-C and keeping
NS = 15 eigenshapes and NA = 100 eigentextures, regardless
of the feature type. The results are plotted in the form of Cu-
mulative Error Distributions (CED). Note that this experiment
intends to make a fair comparison of the accuracy between the
various features by letting the fitting procedure converge for all
feature types. The results indicate that HOG and SIFT features
are the most appropriate for the task. HOG features perform
better in the case of AIC and the SIFT ones are more robust for
POIC, however the differences between them are very small.
IGO and ES features have a sufficiently good performance.
Moreover, similar to the face alignment case, Gabor Angles are
not robust, but they achieve very accurate fitting result when
they converge, especially in the POIC case. On the contrary,
even though Gabor Magnitude features demonstrate a decent
performance in the AIC, they completely diverge in the POIC
case. This observation, combined with their performance with
the LK algorithm, indicates that they are unsuitable for image
alignment without a linear appearance variation model. The
same fact stands for intensities as well. Finally, the LBPs
family has relatively poor performance. Figure 14 shows some
indicative fitting examples from the very challenging iBUG
database for all features with AIC.

2) Convergence: Herein, we examine the frequency of
convergence achieved by each feature type. We assume that
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(a) Alternating IC
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(b) Project-Out IC

Fig. 7. Mean point-to-point normalized RMS fitting error with respect to iteration number on in-the-wild databases (3026 test images). The plot aims to
compare the speed of convergence of each feature type. Please refer to Table II (columns 5-10) for the computational cost of each feature-based method.
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Fig. 8. Indicative examples of the speed of convergence of each feature. The plots show how fast the 1st parameter value of the shape model moves towards
its ideal (groundtruth) value. The example images are image_0022.png (left) and image_0028.png (right) from LFPW testing set.

a fitting procedure has converged when either the cost func-
tion error incremental or the landmarks mean displacement
are very small. The cost incremental criterion is defined as
abs(errork−1−errork)

errork−1
< ε, where errork is the cost function

error from Eq. 8 at current iteration k and ε = 10−5. The mean
displacement criterion is defined as the mean point-to-point
normalized Euclidean distance between the shapes of current

and previous iterations, thus
∑L
i=1

√
(xki−x

k−1
i )2+(yki −y

k−1
i )2

sfLS
<

ε with ε = 10−4. Figure 7 shows the mean point-to-point
normalized RMS fitting error overall 3026 images with respect
to the iteration number by allowing the optimization procedure
to converge. The results indicate that HOG and SIFT features
converge faster to a more accurate optimum compared to all
the other feature types. Indicative examples of the convergence
speed of each feature are shown in Fig. 8. Specifically, these
plots show how fast the parameter value that corresponds to
the 1st eigenvector of the shape subspace US moves towards
its ideal (groundtruth) value. This eigenshape controls the
face’s pose over the yaw angle. These examples demonstrate
the advantages of HOG and SIFT features, which reach the
ideal value in very few iterations. Note that in all these

experiments we want the algorithms to converge, thus we let
them execute many iterations. However, this is not necessary
in a practical application, because as the iterations advance,
the improvements in the fitted shape get much smaller.

3) Timings: Table II reports the timings for each feature
type using the two compositional scenarios explained in
Sec. IV within the AAMs optimization framework. It presents
the computational cost per iteration and the total cost of
running the optimization for 50 and 100 iterations. Note that
the AAMs framework used for those experiments is developed
without any code optimization. The reference frame (mean
shape s0) has size 170× 170.

The table justifies the computational analysis presented in
Sec. IV. As expected, it is faster to compute the features
once and warp the features image (Eq. 19) rather than ex-
tracting features from each warped image at each iteration
(Eq. 18). This is because, in most features cases, it is more
expensive to extract features than warp a multi-channel image
(O(F) > O(W)). This happens with all the multi-channel
features. The only exception is the SIFT features case, be-
cause the optimized implementation of [56] is faster than the
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TABLE II
COMPUTATIONAL COSTS OF THE FEATURE EXTRACTION FUNCTIONS, THE WARP FUNCTION AND THE AAM FITTING USING BOTH COMPOSITION WAYS

OF THE TWO FUNCTIONS FOR ALL FEATURE TYPES. ALL THE REPORTED TIMES ARE MEASURED IN SECONDS.

Warping on features image Features from warped image

Ch.
Feature Warp Alternating IC Project-Out IC Alternating IC Project-Out IC

Feature function function number of iterations number of iterations number of iterations number of iterations
Type Cost (F ) Cost (W) 1 50 100 1 50 100 1 50 100 1 50 100

Intensities 1 − 0.01 0.02 1.0 2.0 0.02 1.0 2.0 0.02 1.0 2.0 0.02 1.0 2.0

IGO, ES 2 0.01 0.01 0.05 2.0 4.0 0.04 1.5 3.0 0.04 2.0 4.0 0.03 1.5 3.0

OLBP 8 0.07 0.03 0.2 6.6 13.1 0.17 5.1 10.1 0.18 9.0 18.0 0.15 7.5 15.0

TPLBP
16

1.25
0.05

1.48 12.8 24.3 1.43 10.3 19.3 1.44 72.0 144.0 1.39 69.5 139.0
FPLBP 1.82 2.05 13.3 24.8 2.0 10.8 19.8 2.01 100.5 201.0 1.96 98.0 196.0

HOG
36

1.32
0.11

1.84 27.3 53.3 1.72 21.3 41.3 1.74 87.7 174.0 1.62 81.0 162.0
SIFT 0.07 0.59 26.1 52.1 0.47 20.1 40.1 0.49 24.5 49.0 0.37 18.5 37.0

Gabor 0.12 0.64 26.1 52.1 0.52 20.1 40.1 0.54 27.0 54.0 0.42 21.0 42.0
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Fig. 9. Mean point-to-point normalized RMS fitting error with respect to
number of appearance components on the LFPW testset in-the-wild database.
Note that we use logarithmic scale on the horizontal axis.

unoptimized warping of the 36 channels (O(F) < O(W)).
Moreover, the combination of Tab. II with Fig. 7 suggests that
even though high-dimensional features like HOG and SIFT
converge really fast, their computational cost is quite similar
to features with less channels that require multiple iterations
until convergence. Note that it is not in the scope of this
paper to provide an optimized implementation of AAMs or
features. Faster AAM optimization can be achieved with the
framework proposed in [52] and one could also use GPU or
parallel programming to achieve much faster performance and
eliminate the cost difference between various features and also
between the two composition scenarios of F and W .

4) Number of Appearance Components: Figure 9 shows
the mean point-to-point normalized RMS fitting error with
respect to the number of appearance components, i.e. NA, for
LFPW testset using logarithmic scale on the horizontal axis.
The results indicate that for most features, except IGO, ES and
Intensities, the fitting performance is improved by increasing
the number of appearance components. SIFT features can
achieve very accurate results by using very few appearance
components (even less than 10), thus with small computational
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Fig. 10. Mean point-to-point normalized RMS fitting error with respect to
neighbourhood size on the LFPW testset in-the-wild database.

cost. Additionally, note that Gabor Magnitude features can
achieve significantly good accuracy (close to HOG and SIFT)
if one keeps their whole eigenspectrum.

5) Neighbourhood Size: Figure 10 plots the mean point-
to-point normalized RMS fitting error with respect to the
neighbourhood size from which the feature value of each pixel
is computed. For HOG and SIFT this is done by changing
the cell size. In the case of the LBPs family, we alter the
radius values (Nradius). For the rest of features (IGO, ES,
Gabor, Inensities), we simply downscale the image. This
experiment proves that the spatial neighbourhood covered by
each feature does not massively affect its performance. HOG,
SIFT and LBP features are more accurate when applied to
largest regions, as more information is accumulated to their
channels. On the contrary, ES, IGO and Gabor features are
not assisted by increasing the neighbourhood size.

6) Cost Function: Figure 11 illustrates the cost function for
each feature type in 2D contour plots. The plots are generated
by translating the groundtruth shape of an image within a grid
of ±15% (pixels) of the face size along the x and y axis
and evaluating the cost of Eq. 8, where λ are the projection
parameters λ = UT

A(t(W(p)) − ā). The plotted costs are
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(a) Intensities (b) ES (c) IGO (d) HOG (e) SIFT (f) OLBP (g) TPLBP (h) FPLBP (i) Gabor Ang. (j) Gabor Mag.

Fig. 11. Contour plots of the cost function for each feature. The plots show the mean cost function over 100 images after translating the groundtruth shape
over the x and y axis by ±15% (pixels) of the face size.

averaged over 100 images. For each feature we use NA =
100 appearance components, so that the experiment is fair
and can be combined with the accuracy results of Sec. V-B1.
These plots are very informative. The cost functions of IGO,
ES and Gabor Angles have a very narrow region of small
errors, which means that they can be accurate only when their
initialization is close to the global optimum. On the contrary,
Gabor Magnitude features have a very broad low error region,
which means that they can quickly reach a small error but they
will get stuck to a local minimum that is probably far from the
global optimum. This can also be observed in Fig. 7a, where
Gabor Magnitude features converge very fast to a low error
but then start to diverge, due to the multiple local minima
of their cost function. Finally, HOG and SIFT features have a
smooth cost and the region of minimum values is large enough
to facilitate fast and accurate convergence.

C. Comparison with state-of-the-art Face Fitting Methods

Herein we compare the performance of our proposed
feature-based AAMs (both AIC and POIC) against two
state-of-the-art facial trackers: Supervised Descent Method
(SDM) [47] and Robust Discriminative Response Map Fitting
(DRMF) for Constrained Local Models (CLMs) [48]. For
our feature-based AAMs, we employ the HOG and SIFT
features because they proved to be the most accurate and
robust for both face alignment and fitting. We use the same
initialization and experimental setup as in the previous section
(Sec. V-B). Specifically, the AAMs are trained on the 811
images of the LFPW trainset, keeping NS = 15 eigenshapes
and NA = 100 eigentextures. For the other two methods,
we used the implementations provided online by their authors
in [57], [58] with their pre-trained models. Note that both these
methods are trained on thousands of images, much more than
the 811 used to train our AAMs. All methods are initialized
using the (CDPM) face detector [55]. In this experiment we
report results evaluated on 49 landmark points shape mask
instead of 68 points. This is because the SDM framework [57]
computes and returns only these 49 points. The 49-point mask
occurs by removing the 17 points of the boundary (jaw) and
the 2 points the mouth’s corners from the 68 points shape
mask of [46]. Thus this evaluation scheme emphasizes on the
internal facial areas (eyebrows, eyes, nose, mouth).

Figure 13 shows the results on LFPW testset, AFW, iBUG
and Helen train and test databases (3026 images in total).
A main difference between these two methods and AAMs
is that due to their discriminative nature, they both require
many data in order to generalize well, whilst the generative
shape and appearance models of AAMs perform well with
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Fig. 12. Performance (mean and standard deviation) of HOG-AIC and
SDM with respect to the number of training images. The performance is
evaluated on Helen testset and is measured with the mean and standard
deviation of the normalized RMS error. In this experiment we use our SDM
implementation [49].

much fewer training images. This is shown in Fig. 12 which
plots the performance of HOG-AIC and SDM with respect to
the number of training images. Since SDMs’s authors do not
provide any training code [47], for this small experiment we
employ our SDM version developed in the Menpo Project [49].
The training images are randomly selected from the 2811
images of LFPW and Helen trainsets and the evaluation is
applied on Helen testing set. The graph shows that SDM keeps
improving as the number of training images increases whilst
the SIFT AAMs performance remains almost the same.

The results indicate that HOG-AIC and SIFT-AIC signif-
icantly outperform DRMF and are also more accurate than
SDM. They are more accurate especially when they converge
as can be seen from the percentage of images with error less or
equal than 0.02. Even though SDM and DRMF have smaller
computational complexities compared to Tab. II, we find these
results remarkable, considering that our feature-based AAMs
are trained using much fewer training images. Finally, the
results show that the HOG and SIFT POIC models have a
similar performance as DRMF.

D. Results Interpretation and Discussion

In general, it is very difficult to find a strict theoretical
difference between the various employed non-linear features,
such as HOG, SIFT, LBP etc., because the design of features
still remains mainly an empirical art rather than an exact sci-
ence. Nevertheless, we can sketch the difference between the
magnitude of Gabor filters in various scales and orientations
and SIFT features. Gabor features have been used before in
literature [16], [23], however our experiments prove that they
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(a) LFPW Testset
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(b) Helen Trainset & Testset
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(c) AFW

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

30

40

50

60

70

80

90

100

Point−to−point Normalized RMS Error

Im
a
g
e
s
 P

e
rc

e
n
ta

g
e

(d) iBUG

Fig. 13. Comparison between our proposed HOG and SIFT AAMs and two state-of-the-art methods: SDM [47] and DRMF [48]. The evaluation is based on
49 points mask, which means it does not include the face boundary (jaw). For SDM and DRMF we use the code provided by their authors.

are not efficient for generic face alignment and are probably
more suitable for person-specific settings [59], [60].

The difference between the complex response (i.e., having
both the magnitude and the phase) of Gabor filters and other
employed features is that the former are produced by the
convolution of a bank of linear filters, hence they are not
robust to the facial appearance changes [16]. This is the
reason why we prefer to extract non-linear features from
the responses, i.e. the magnitude (modulus) and the phase.
Moreover, the difference between the magnitude of Gabor
filters in various scales and orientations and SIFT features
can be explained using the theory on invariant scattering
networks [61], according to which SIFT features can be very
well approximated by the modulus of the coefficients of the
wavelet transform using a particular family of wavelets (i.e.
partial derivatives of a Gaussian) (for more details please refer
to Section 2.3 of [61]). Convolution with Gabor filters with
different scales and orientations does not constitute a proper
wavelet image transform. In general Gabor filter expansion is
not applied in building a wavelet transform, since this requires
computation of bi-orthogonal wavelets, which may be very
time-consuming. Therefore, usually a filter bank consisting of
Gabor filters with various scales and rotations [59], [60], as we
do in this work, is created and applied for feature extraction.
In general, the results suggest that large-scale features are

very robust and have a high convergence frequency even with
initializations that are too far from groundtruth. However,
when the initialization is close to the optimal solution, higher-
frequency features tend to be more accurate. For example
the phase filter information may have excellent localization
properties when the deformation is small, but it is very
sensitive to noise and small perturbations.

Finally, we believe that the advantages of the employed
features, especially the multi-channel gradient based ones such
as HOG and SIFT, are excellently coupled with the general-
ization ability of generative models. In fact, we believe that
the most important experimental result shown in the previous
section is that the combination of (1) non-linear least-squares
optimization with (2) robust features and (3) generative models
can achieve very good performance without the need of large
training datasets, which emphasizes the main advantage of the
proposed framework over discriminative methods.

VI. CONCLUSIONS

In this paper we present a novel formulation of LK and
AAMs alignment algorithms which employs dense feature
descriptors for the appearance representation. We showed, both
theoretically and experimentally, that by extracting the features
from the input image once and then warping the features image
has better performance and lower computational complexity
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(a) Face Detection Initialization

(b) HOG

(c) SIFT

(d) IGO

(e) ES

(f) Gabor Angles

(g) Gabor Magnitude

(h) OLBP

(i) TPLBP (similar for FPLBP)

(j) Intensities

Fig. 14. Fitting examples using feature-based AIC on very challenging images from iBUG database.
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than computing features from the warped image at each itera-
tion. This allows us to take advantage of the descriptive quali-
ties of various features in order to achieve robust and accurate
performance for the problems of face alignment and fitting.
Our LK experiments prove that feature-based face alignment is
invariant to person ID and extreme lighting variations. Our face
fitting experiments on challenging in-the-wild databases show
that the feature-based AAMs have the ability to generalize
well to unseen faces and demonstrate invariance to expression,
pose and lighting variations. The presented experiments also
provide a comparison between various features and prove that
HOG and SIFT are the most powerful. Finally, we report
face fitting results using AAMs with HOG and SIFT features
that outperform discriminative state-of-the-art methods trained
on thousands of images. We believe that the experimental
results are among the major contributions of this paper, as they
emphasize that the combination of highly-descriptive features
with efficient optimization techniques leads to deformable
models with remarkable performance.
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