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CONTRIBUTIONS Original Image
We propose a facial landmark points localization techniqgue in-the-wild that combines:
1) Dense Histogram of Oriented Gradients (HOG) descriptors
2) with the Inverse Compositional optimization of Active Appearance Models AAMs)
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This results in a generic facial model that outperforms current state-of-the-art techniques. N mermEt

DENSE HOG DESCRIPTORS
For each pixel location of the image we apply the following:
1) Create a histogram of the gradient's orientations for a rectangular neighbourhood
around the pixel, weighted by the gradient magnitude. Without normalization.  without nermalizaton
2) Apply contrast normalization to the histogram based on the Euclidean norm. e R
Thus, for an input image of size HxW, the output image has size HXWxC where C is the
number of channels.

ACTIVE APPEARANCE MODELS
AAMs are generative, statistical, parametric models of an object's shape and appearance.
- The shape model is built by aligning the training shapes wrt their similarity transform and applying PCA.
- The appearance model is built by extracting HOG features from the training images, warping the multichannel
texture onto a common reference shape (i.e. ‘mean shape) and apply PCA.
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We employ two Gauss-Newton optimization technigues:
Alternating Inverse Compositional

- Optimizes alternatingly wrt the shape and appearance parameters - Only uses the mean apperance vector
- La.rge parametric space - Small parametric space (shape parameters only)
- Fairly fast and very accurate - Very fast but poor accuracy
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During fitting, we extract the HOG features once and then warp the
multichannel appearance at each iteration.
This iIs much faster than extracting features at each iteration.
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EXPERIMENTAL RESULTS

- Training on 811 images of LFPW
database

- 15 eigenshapes, 100 eigentextures

- Initialization using method in [3].

The proposed methods proves to be
accurate even with challenging
Initializations!
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