
Int J Comput Vis
DOI 10.1007/s11263-016-0916-3

A Unified Framework for Compositional Fitting
of Active Appearance Models

Joan Alabort-i-Medina1 · Stefanos Zafeiriou1

Received: 5 October 2015 / Accepted: 18 May 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Active appearance models (AAMs) are one of
the most popular and well-established techniques for mod-
eling deformable objects in computer vision. In this paper,
we study the problem of fitting AAMs using compositional
gradient descent (CGD) algorithms. We present a unified
and complete view of these algorithms and classify them
with respect to three main characteristics: (i) cost function;
(ii) type of composition; and (iii) optimization method. Fur-
thermore, we extend the previous view by: (a) proposing a
novel Bayesian cost function that can be interpreted as a gen-
eral probabilistic formulation of the well-known project-out
loss; (b) introducing two new types of composition, asym-
metric and bidirectional, that combine the gradients of both
image and appearance model to derive better convergent and
more robust CGD algorithms; and (c) providing new valu-
able insights into existent CGD algorithms by reinterpreting
them as direct applications of the Schur complement and the
Wiberg method. Finally, in order to encourage open research
and facilitate future comparisons with our work, we make
the implementation of the algorithms studied in this paper
publicly available as part of the Menpo Project (http://www.
menpo.org).

Keywords Active appearance models · Non-linear
optimization · Compositional gradient descent · Bayesian

Communicated by Sven J. Dickinson.

B Joan Alabort-i-Medina
ja310@imperial.ac.uk

Stefanos Zafeiriou
s.zafeiriou@imperial.ac.uk

1 Department of Computing, Imperial College London, 180
Queen’s Gate, London SW7 2AZ, UK

inference · Asymmetric and bidirectional composition ·
Schur complement · Wiberg algorithm

1 Introduction

Active appearance models (AAMs) (Cootes et al. 2001;
Matthews and Baker 2004) are one of the most popular and
well-established techniques for modeling and segmenting
deformable objects in computer vision. AAMs are genera-
tive parametric models of shape and appearance that can be
fitted to images to recover the set of model parameters that
best describe a particular instance of the object being mod-
eled.

Fitting AAMs is a non-linear optimization problem that
requires the minimization (maximization) of a global error
(similarity)measure between the input image and the appear-
ance model. Several approaches (Cootes et al. 2001; Hou
et al. 2001;Matthews andBaker 2004;Batur andHayes 2005;
Gross et al. 2005; Donner et al. 2006; Papandreou andMara-
gos 2008; Liu 2009; Saragih and Göcke 2009; Amberg et al.
2009; Tresadern et al. 2010; Martins et al. 2010; Sauer et al.
2011; Tzimiropoulos and Pantic 2013; Kossaifi et al. 2014;
Antonakos et al. 2014) have been proposed to define and
solve the previous optimization problem. Broadly speaking,
they can be divided into two different groups:

– Regression based (Cootes et al. 2001; Hou et al. 2001;
Batur and Hayes 2005; Donner et al. 2006; Saragih and
Göcke 2009; Tresadern et al. 2010; Sauer et al. 2011)

– Optimization based (Matthews and Baker 2004; Gross
et al. 2005; Papandreou and Maragos 2008; Amberg
et al. 2009;Martins et al. 2010; Tzimiropoulos and Pantic
2013; Kossaifi et al. 2014)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-016-0916-3&domain=pdf
http://www.menpo.org
http://www.menpo.org

Int J Comput Vis

Regression based techniques attempt to solve the prob-
lem by learning a direct function mapping between the error
measure and the optimal values of the parameters. Most
notable approaches include variations on the original (Cootes
et al. 2001) fixed linear regression approach of Hou et al.
(2001), Donner et al. (2006), the adaptive linear regres-
sion approach of Batur and Hayes (2005), and the works
of Saragih and Göcke (2009) and Tresadern et al. (2010)
which considerably improved upon previous techniques by
using boosted regression. Also, Cootes and Taylor (2001)
and Tresadern et al. (2010) showed that the use of non-linear
gradient-based and Haar-like appearance representations,
respectively, lead to better fitting accuracy in regressionbased
AAMs.

Optimization based methods for fitting AAMs were pro-
posed by Matthews and Baker in Matthews and Baker
(2004). These techniques are known as compositional gra-
dient decent (CGD) algorithms and are based on direct
analytical optimization of the error measure. Popular CGD
algorithms include the very efficient project-out Inverse
Compositional (PIC) algorithm (Matthews and Baker 2004),
the accurate but costly Simultaneous Inverse Compositional
(SIC) algorithm (Gross et al. 2005), and the more efficient
versions of SIC presented in Papandreou andMaragos (2008)
and Tzimiropoulos and Pantic (2013). Lucey et al. (2013)
extended these algorithms to the Fourier domain to efficiently
enable convolutionwithGaborfilters, increasing their robust-
ness; and the authors of Antonakos et al. (2014) showed that
optimization based AAMs using non-linear feature based
(e.g. SIFT Lowe 1999 and HOG Dalal and Triggs 2005)
appearance models were competitive with modern state-of-
the-art techniques in non-rigid face alignment (Xiong and
De la Torre 2013; Asthana et al. 2013) in terms of fitting
accuracy.

AAMs have often been criticized for several reasons: (i)
the limited representational power of their linear appearance
model; (ii) the difficulty of optimizing shape and appear-
ance parameters simultaneously; and (iii) the complexity
involved in handling occlusions. However, recent works in
this area (Papandreou andMaragos 2008; Saragih andGöcke
2009; Tresadern et al. 2010; Lucey et al. 2013; Tzimiropou-
los and Pantic 2013; Antonakos et al. 2014) suggest that
these limitations might have been over-stressed in the liter-
ature and that AAMs can produce highly accurate results if
appropriate training data (Tzimiropoulos and Pantic 2013),
appearance representations (Tresadern et al. 2010; Lucey
et al. 2013; Antonakos et al. 2014) and fitting strategies
(Papandreou and Maragos 2008; Saragih and Göcke 2009;
Tresadern et al. 2010; Tzimiropoulos and Pantic 2013) are
employed.

In this paper, we study the problem of fitting AAMs using
CGD algorithms thoroughly. Summarizing, our main contri-
butions are:

– To present a unified and complete overview of the most
relevant and recently published CGD algorithms for fit-
ting AAMs (Matthews and Baker 2004; Gross et al.
2005; Papandreou and Maragos 2008; Amberg et al.
2009; Martins et al. 2010; Tzimiropoulos et al. 2012;
Tzimiropoulos and Pantic 2013; Kossaifi et al. 2014).
To this end, we classify CGD algorithms with respect
to three main characteristics: (i) the cost function defin-
ing the fitting problem; (ii) the type of composition used;
and (iii) the optimization method employed to solve the
non-linear optimization problem.

– To review the probabilistic interpretation of AAMs and
propose a novelBayesian formulation1 of thefitting prob-
lem. We assume a probabilistic model for appearance
generationwith bothGaussian noise and aGaussian prior
over a latent appearance space. Marginalizing out the
latent appearance space, we derive a novel cost func-
tion that only depends on shape parameters and that
can be interpreted as a valid and more general proba-
bilistic formulation of the well-known project-out cost
function (Matthews and Baker 2004). Our Bayesian for-
mulation is motivated by seminal works on probabilistic
component analysis and object tracking (Moghaddam
and Pentland 1997; Roweis 1998; Tipping and Bishop
1999).

– To propose the use of two novel types of composition
for AAMs: (i) asymmetric; and (ii) bidirectional. These
types of composition have beenwidely used in the related
field of parametric image alignment (Malis 2004;Mégret
et al. 2008;Autheserre et al. 2009;Mégret et al. 2010) and
use the gradients of both image and appearance model
to derive better convergent and more robust CGD algo-
rithms.

– To provide valuable insights into existent strategies used
to derive fast and exact simultaneous algorithms for fit-
ting AAMs by reinterpreting them as direct applications
of the Schur complement (Boyd andVandenberghe 2004)
and the Wiberg method (Okatani and Deguchi 2006;
Strelow 2012).

The remainder of the paper is structured as follows. Sec-
tion 2 introduces AAMs and reviews their probabilistic
interpretation. Section 3 constitutes the main section of the
paper and contains the discussion and derivations related to
the cost functions Sect. 3.1; composition types Sect. 3.2; and
optimization methods Sect. 3.3. Implementation details and
experimental results are reported in Sect. 5. Finally, conclu-
sions are drawn in Sect. 6.

1 A preliminary version of this work (Alabort-i-Medina and Zafeiriou
2014) was presented at CVPR 2014.

123

Int J Comput Vis

2 Active Appearance Models

AAMs (Cootes et al. 2001; Matthews and Baker 2004) are
generative parametric models that explain visual variations,
in terms of shape and appearance, within a particular object
class. AAMs are built from a collection of images (Fig. 1)
for which the spatial position of a sparse set of v land-
mark points xi = (xi , yi)T ∈ R

2 representing the shape
s = (x1, y1, . . . , xv, yv)T ∈ R

2v×1 of the object being mod-
eled have been manually defined a priori.

AAMs are themselves composed of three different mod-
els: (i) shape model; (ii) appearance model; and (iii) motion
model.

The shape model, which is also referred to as Point
Distribution Model (PDM), is obtained by typically apply-
ing Principal Component Analysis (PCA) to the set of
object’s shapes. The resulting shapemodel is mathematically
expressed as:

s = s̄ +
n∑

i=1

pi si

= s̄ + Sp

(1)

where s̄ ∈ R
2v×1 is the mean shape, and S ∈ R

2v×n and
p ∈ R

n×1 denote the shape bases and shape parameters,
respectively. In order to allow a particular shape instance s
to be arbitrarily positioned in space, the previous model can
be augmented with a global similarity transform. Note that
this normally requires the initial shapes to be normalized
with respect to the same type of transform (typically using
ProcrustesAnalysis (PA)) before PCA is applied. This results
in the following expression for each landmark point of the
shape model:

xi = sR (x̄i + Xip) + t (2)

where s,R ∈ R
2×2 and t ∈ R

2 denote the scale, rotation and
translation applied by the global similarity transform, respec-
tively. Using the orthonormalization procedure described in
Matthews and Baker (2004) the final expression for the shape
model can be compactly written as the linear combination of
a set of bases:

s = s̄ +
4∑

i=1

p∗
i s

∗
i +

n∑

i=1

pi si

= s̄ + Sp

(3)

where S = (s∗1, . . . , s∗4, s1, . . . , sn) ∈ R
2v×(4+n) and p =

(p∗
1, . . . , p

∗
4, p1, . . . , pn)

T ∈ R
(4+n)×1 are redefined as the

concatenation of the similarity bases s∗i and similarity para-
meters p∗

i with the original S and p, respectively.
The appearance model is obtained by warping the original

images onto a common reference frame (typically defined in
terms of the mean shape s̄) and applying PCA to the obtained
warped images. Mathematically, the appearance model is
defined by the following expression:

A(x) = Ā(x) +
m∑

i=1

ci Ai (x) (4)

where x ∈ Ω denote all pixel positions on the reference
frame, and Ā(x), Ai (x) and ci denote the mean texture, the
appearance bases and appearance parameters, respectively.
Denoting a = vec(A(x)) as the vectorized version of the
previous appearance instance, Eq. 4 can be concisely written
in vector form as:

a = ā + Ac (5)

where a ∈ R
F×1 is the mean appearance, and A ∈ R

F×m

and c ∈ R
m×1 denote the appearance bases and appearance

parameters, respectively.
The role of the motion model, denoted by W(x;p), is

to extrapolate the position of all pixel positions x ∈ Ω

from the reference frame to a particular shape instance s
(and vice-versa) based on their relative position with respect
to the sparse set of landmarks defining the shape model
(for which direct correspondences are always known). Clas-
sic motion models for AAMs are PieceWise Affine (PWA)
(Cootes andTaylor 2004;Matthews andBaker 2004) and thin
plate splines (TPS) (Cootes andTaylor 2004; Papandreou and
Maragos 2008) warps.

Given an image I containing the object of interest, its
manually annotated ground truth shape s, and a particular

Fig. 1 Exemplar images from the Labelled Faces Parts in-the-Wild (LFPW) dataset (Belhumeur et al. 2011) for which a consistent set of sparse
landmarks representing the shape of the object being model (human face) has been manually defined (Sagonas et al. 2013a, b)

123

Int J Comput Vis

motion model W(x,p); the two main assumptions behind
AAMs are:

1. The ground truth shape of the object can be well approx-
imated by the shape model

s ≈ s̄ + Sp (6)

2. The object’s appearance can be well approximated by
the appearance model after the image is warped, using
the motion model and the previous shape approximation,
onto the reference frame:

i[p] ≈ ā + Ac (7)

where i[p] = vec(I (W(x;p))) denotes the vectorized
version of thewarped image. Note that, thewarpW(x;p)

which explicitly depends on the shape parameters p,
relates the shape and appearance models and is a cen-
tral part of the AAMs formulation.

Because of the explicit use of the motion model, the two
previous assumptions provide a concise definition of AAMs.
At this point, it is worth mentioning that the vector notation
of Eqs. 6 and 7 will be, in general, the preferred notation in
this paper.

2.1 Probabilistic Formulation

A probabilistic interpretation of AAMs can be obtained by
rewriting Eqs. 6 and 7 assuming probabilistic models for
shape and appearance generation. In this paper, motivated by
seminalworks on Probabilistic ComponentAnalysis (PPCA)
and object tracking (Tipping and Bishop 1999; Roweis 1998;
Moghaddam and Pentland 1997), we will assume probabilis-
tic models for shape and appearance generation with both
Gaussian noise and Gaussian priors over the latent shape and
appearance spaces2:

s = s̄ + Sp + ε

p ∼ N (0,�)

ε ∼ N
(
0, ς2I

)
(8)

i[p] = ā + Ac + ε

c ∼ N (0, �)

ε ∼ N
(
0, σ 2I

)
(9)

where the diagonal matrices � = diag(λs1 , . . . , λsm) and
� = diag(λa1, . . . , λam) contain the eigenvalues associated

2 This formulation is generic and one could assume other probabilis-
tic generative models (van der Maaten and Hendriks 2010; Bach and
Jordan 2005; Prince et al. 2012; Nicolaou et al. 2014) to define novel
probabilistic versions of AAMs.

to shape and appearance eigenvectors respectively andwhere
ς2 and σ 2 denote the estimated shape and image noise3

respectively.
This probabilistic formulation will be used to derive

Maximum-Likelihood (ML), MaximumA Posteriori (MAP)
and Bayesian cost functions for fitting AAMs in Sects. 3.1.1
and 3.1.2.

3 Fitting Active Appearance Models

Several techniques have beenproposed tofitAAMs to images
(Cootes et al. 2001; Hou et al. 2001; Matthews and Baker
2004; Batur and Hayes 2005; Gross et al. 2005; Donner et al.
2006; Papandreou andMaragos 2008; Liu 2009; Saragih and
Göcke 2009; Amberg et al. 2009; Tresadern et al. 2010;Mar-
tins et al. 2010; Sauer et al. 2011; Tzimiropoulos and Pantic
2013; Kossaifi et al. 2014; Antonakos et al. 2014). In this
paper, we will center the discussion around compositional
gradient descent (CGD) algorithms (Matthews and Baker
2004; Gross et al. 2005; Papandreou and Maragos 2008;
Amberg et al. 2009; Martins et al. 2010; Tzimiropoulos and
Pantic 2013; Kossaifi et al. 2014) for fitting AAMs. Conse-
quently, we will not review regression based approaches. For
more details on these type of methods the interested reader
is referred to the existent literature (Cootes et al. 2001; Hou
et al. 2001; Batur and Hayes 2005; Donner et al. 2006; Liu
2009; Saragih and Göcke 2009; Tresadern et al. 2010; Sauer
et al. 2011.

The following subsections present a unified and complete
view of CGD algorithms by classifying them with respect to
their three main characteristics: (a) cost function (Sect. 3.1);
(b) type of composition (Sect. 3.2); and (c) optimization
method (Sect. 3.3).

3.1 Cost Function

AAM fitting is typically formulated as the (regularized)
search over the shape and appearance parameters that mini-
mize a global error measure between the vectorized warped
image and the appearance model:

p∗, c∗ = argmin
p,c

R(p, c) + D(i[p], c) (10)

whereD is a data term that quantifies the global errormeasure
between the vectorized warped image and the appearance
model andR is an optional regularization term that penalizes
complex shape and appearance deformations.

3 Theoretically, the optimal value for ς2 and σ 2 is the average value of
the eigenvalues associated to the discarded shape and appearance eigen-
vectors respectively i.e.ς2 = 1

N−n

∑N
i=n λsi andσ 2 = 1

M−m

∑M
i=m λai

(Moghaddam and Pentland 1997)

123

Int J Comput Vis

3.1.1 Sum of Squared Differences

Arguably, the most natural choice for the previous data term
is the Sum of Squared Differences (SSD) between the vec-
torized warped image and the linear appearance model4.
Consequently, the classic AAM fitting problem is defined
by the following non-linear optimization problem5:

p∗, c∗ = argmin
p,c

1

2
rT r

= argmin
p,c

1

2
‖i[p] − (ā + Ac)‖2

︸ ︷︷ ︸
D(i[p],c)

(11)

On the other hand, considering regularization, the most
natural choice forR is the sum of �2

2-norms over the shape
and appearance parameters. In this case, the regularized
AAM fitting problem is defined as follows:

p∗, c∗ = argmin
p,c

1

2
||p||2 + 1

2
||c||2 + 1

2
rT r

= argmin
p,c

1

2
||p||2 + 1

2
||c||2

︸ ︷︷ ︸
R(p,c)

+ 1

2
||i[p] − (ā + Ac)||2

︸ ︷︷ ︸
D(i[p],c)

(12)

Probabilistic Formulation

A probabilistic formulation of the previous cost function can
be naturally derived using the probabilistic generativemodels
introduced in Sect. 2.1. Denoting the models’ parameters as
Θ = {s̄,S,�, ā,A, �, σ 2} aML formulation can be derived
as follows:

p∗, c∗ = argmax
p,c

p(i[p]|p, c,Θ)

= argmax
p,c

ln p(i[p]|p, c,Θ)

= argmin
p,c

1

2σ 2 ||i[p] − (ā + Ac)||2
︸ ︷︷ ︸

D(i[p],c)

(13)

and a MAP formulation can be similarly derived by taking
into account the prior distributions over the shape and appear-
ance parameters:

4 This choice ofD is naturally given by secondmain assumption behind
AAMs, Eq. 7 and by the linear generative model of appearance defined
by Eq. 9.
5 The residual r in Eq. 11 is linear with respect to the appearance
parameters c and non-linear with respect to the shape parameters p
through the warp W(x; p)

p∗, c∗ = argmax
p,c

p(p, c, i[p]|Θ)

= argmax
p,c

p(p|�)p(c|�)p(i[p]|p, c,Θ)

= argmax
p,c

ln p(p|�) + ln p(c|�)

+ ln p(i[p]|p, c,Θ)

= argmin
p,c

1

2
||p||2

�−1 + 1

2
||c||2

�−1

︸ ︷︷ ︸
R(p,c)

+ 1

2σ 2 ||i[p] − (ā + Ac)||2
︸ ︷︷ ︸

D(i[p],c)

(14)

wherewehave assumed the shape and appearance parameters
to be independent6.

The previous ML and MAP formulations are weighted
version of the optimization problem defined by Eqs. 11
and 12. In both cases, the maximization of the conditional
probability of the vectorized warped image given the shape,
appearance and model parameters leads to the minimization
of the data term D and, in the MAP case, the maximization
of the prior probability over the shape and appearance para-
meters leads to the minimization of the regularization term
R.

3.1.2 Project-Out

Matthews and Baker showed in Matthews and Baker (2004)
that one could express the SSD between the vectorized
warped image and the linear PCA-based7 appearance model
as the sum of two different terms:

1

2
rT r = 1

2
rT

(
AAT + I − AAT)

r

= 1

2
rT

(
AAT)

r + 1

2
rT

(
I − AAT)

r

= 1

2
‖i[p] − (ā + Ac)‖2AAT

+ 1

2
‖i[p] − (ā + Ac)‖2I−AAT

= f1(p, c) + f2(p, c)

(15)

The first term defines the distancewithin the appearance sub-
space and it is always 0 regardless of the value of the shape
parameters p:

6 This is a common assumption in CGD algorithms (Matthews and
Baker 2004), however, in reality, some degree of dependence between
these parameters is to be expected (Cootes et al. 2001).
7 The use of PCA ensures the orthonormality of the appearance bases
and, consequently,ATA = I (where I denotes the identitymatrix). Sim-
ilarly, the use ofPCAalso ensures orthogonality between the appearance
mean and the appearance bases and, hence, AT ā = 0.

123

Int J Comput Vis

f1(p, c) = 1

2
‖i[p] − (ā + Ac)‖2AAT

= 1

2

⎛

⎜⎜⎝i[p]TA︸ ︷︷ ︸
cT

AT i[p]︸ ︷︷ ︸
c

− 2

cT︷ ︸︸ ︷
i[p]TA

0︷︸︸︷
AT ā︸ ︷︷ ︸

0

− 2 i[p]TA︸ ︷︷ ︸
cT

I︷︸︸︷
ATAc︸ ︷︷ ︸

c

+
0T︷︸︸︷
āTA

0︷︸︸︷
AT ā︸ ︷︷ ︸
0

+ 2

0T︷︸︸︷
āTA

I︷︸︸︷
ATAc︸ ︷︷ ︸
0

+ cT
I︷︸︸︷

ATA︸ ︷︷ ︸
cT

I︷︸︸︷
ATAc︸ ︷︷ ︸

c

⎞

⎟⎟⎠

= 1

2
(cT c − 2cT c + cT c)

= 0

(16)

The second term measures the distance to the appearance
subspace i.e. the distance within its orthogonal complement.
After some algebraic manipulation, one can show that this
term reduces to a function that only depends on the shape
parameters p:

f2(p, c) = 1

2
‖i[p] − (ā + Ac)‖2Ā

= 1

2

(
i[p]T Āi[p] − 2i[p]T Āā

− 2i[p]T ĀAc︸ ︷︷ ︸
0

+āT Āā

+ 2 āT ĀAc︸ ︷︷ ︸
0

+ cTAT ĀAc︸ ︷︷ ︸
0

⎞

⎠

= 1

2
(i[p]T Āi[p] − 2i[p]T Āā + āT Āā)

= 1

2
‖i[p] − ā‖2

Ā

(17)

where, for convenience,we have defined the orthogonal com-
plement to the appearance subspace as Ā = I − AAT . Note
that, as mentioned above, the previous term does not depend
on the appearance parameters c:

f2(p, c) = f̂2(p) = 1

2
‖i[p] − ā‖2

Ā
(18)

Therefore, using the previous project-out trick, the mini-
mization problems defined by Eqs. 11 and 12 reduce to:

p∗ = argmin
p

1

2
||i[p] − ā||2

Ā︸ ︷︷ ︸
D(i[p])

(19)

and

p∗ = argmin
p

1

2
||p||2

︸ ︷︷ ︸
R(p)

+ 1

2
||i[p] − ā||2

Ā︸ ︷︷ ︸
D(i[p])

(20)

respectively.

Probabilistic Formulation

Assuming the probabilistic models defined in Sect. 2.1,
a Bayesian formulation of the previous project-out data
term can be naturally derived by marginalizing over the
appearance parameters to obtain the following marginalized
density:

p(i[p]|p,Θ) =
∫

c
p(i[p]|p, c,Θ)p(c|�)dc

= N (ā,A�AT + σ 2I)
(21)

and applying the Woodbury formula8 Woodbury (1950) to
decompose the natural logarithm of the previous density into
the sum of two different terms:

ln p(i[p]|p,Θ) = 1

2
||i[p] − ā||2

(A�AT +σ 2I)−1

= 1

2
||i[p] − ā||2AD−1AT

+ 1

2σ 2 ||i[p] − ā||2
Ā

(22)

where D = diag(λa1 + σ 2, . . . , λam + σ 2).
As depicted by Fig. 2, the previous two terms define

respectively: (i) the Mahalanobis distance within the lin-
ear appearance subspace; and (ii) the Euclidean distance
to the linear appearance subspace (i.e. the Euclidean dis-
tance within its orthogonal complement) weighted by the
inverse of the estimated image noise. Note that when the
variance � of the prior distribution over the latent appear-
ance space increases (and especially as � → ∞) c becomes
uniformly distributed and the contribution of the first term
1
2 ||i[p] − ā||2AD−1AT vanishes; in this case, we obtain a

8 Using the Woodbury formula:

(A�AT + σ 2I)−1 = 1

σ 2 I − 1

σ 4A (�−1 + 1

σ 2 I)
−1

︸ ︷︷ ︸
reapply Woodbury

AT

= 1

σ 2 I − 1

σ 4A(σ 2I − σ 4(� + σ 2I)−1)AT

= 1

σ 2 I − 1

σ 4A(σ 2I − σ 4D−1)AT

= AD−1AT + 1

σ 2 (I − AAT)

123

Int J Comput Vis

Fig. 2 The fits AAMs by minimizing two different distances: (i) the
Mahalanobis distancewithin the linear appearance subspace; and (ii) the
Euclidean distance to the linear appearance subspace (i.e. the Euclidean
distance within its orthogonal complement) weighted by the inverse of
the estimated image noise

weighted version of the project-out data term defined by
Eq. 19. Hence, given our Bayesian formulation, the project-
out loss arises naturally by assuming a uniform prior over the
latent appearance space.

The probabilistic formulations of the minimization prob-
lems defined by Eqs. 19 and 20 can be derived, from the
previous Bayesian Project-Out (BPO) cost function, as

p∗ = argmax
p

ln p(i[p]|p,Θ)

= argmin
p

1

2σ 2 ||i[p] − ā||2Q
︸ ︷︷ ︸

D(i[p])

(23)

and

p∗ = argmax
p

p(p, i[p]|Θ)

= argmax
p

p(p|�)p(i[p]|p,Θ)

= argmax
p

ln p(p|�) + ln p(i[p]|p,Θ)

= argmin
p

1

2
||p||2

�−1

︸ ︷︷ ︸
R(p)

+ 1

2σ 2 ||i[p] − ā||2Q
︸ ︷︷ ︸

D(i[p])

(24)

respectively. Where we have defined the BPO operator as
Q = I − A(I − σ 2D−1)AT .

3.2 Type of Composition

Assuming, for the time being, that the true appearance
parameters c∗ are known, the problem defined by Eq. 11
reduces to a non-rigid image alignment problem (Baker and

Matthews 2004; Muñoz et al. 2014) between the particular
instance of the object present in the image and its optimal
appearance reconstruction by the appearance model:

p∗ = argmin
p

1

2
‖i[p] − a‖2 (25)

where a = ā + Ac∗ is obtained by directly evaluating Eq. 4
given the true appearance parameters c∗.

CGD algorithms iteratively solve the previous non-linear
optimization problem with respect to the shape parameters p
by:

1. Introducing an incremental warpW(x;Δp) according to
the particular composition scheme being used.

2. Linearizing the previous incremental warp around the
identity warpW(x;Δp) = W(x; 0) = x.

3. Solving for the parameters Δp of the incremental warp.
4. Updating the current warp estimate by using an appro-

priate compositional update rule.
5. Going back to Step 1 until a particular convergence cri-

terion is met.

Existent CGD algorithms for fitting AAMs have intro-
duced the incremental warp either on the image or the model
sides in what are known as forward and inverse composi-
tional frameworks (Matthews and Baker 2004; Gross et al.
2005; Papandreou and Maragos 2008; Amberg et al. 2009;
Martins et al. 2010; Tzimiropoulos and Pantic 2013) respec-
tively. Inspired by related works in field of image alignment
(Malis 2004; Mégret et al. 2008; Autheserre et al. 2009;
Mégret et al. 2010), we notice that novel CGDalgorithms can
be derived by introducing incremental warps on both image
and model sides simultaneously. Depending on the exact
relationship between these incremental warps we define two
novel types of composition: asymmetric and bidirectional.

The following subsections explain how to introduce the
incremental warp into the cost function and how to update
the current warp estimate for the four types of composi-
tion considered in this paper: (i) forward; (ii) inverse; (iii)
asymmetric; and (v) bidirectional. These subsections will
be derived using the non-regularized expression in Eq. 11
and the regularized expression in Eq. 14. Furthermore, to
maintain consistency with the vector notation used through
out the paper, we will abuse the notation and write the
operations of warp composition9 W(x;p) ◦ W(x;Δp) and
inversion1. W(x;q)−1 as simplyp◦Δp andq−1 respectively.

9 Further details regarding composition, p ◦ Δp, and inversion, Δq−1,
of typical AAMs’ motion models such as PWA and TPS warps can be
found inMatthews and Baker (2004), Papandreou andMaragos (2008).

123

Int J Comput Vis

3.2.1 Forward

In the forward compositional framework the incremental
warp Δp is introduced on the image side at each iteration
by composing it with the current warp estimate p. For the
non-regularized case in Eq. 11 this leads to:

Δp∗ = argmin
Δp

1

2
‖i[p ◦ Δp] − (ā + Ac)‖2 (26)

Once the optimal values for the parameters of the incre-
mental warp are obtained, the current warp estimate is
updated according to the following compositional update
rule:

p ← p ◦ Δp (27)

On the other hand, using Eq. 14, forward composition can
be expressed as:

Δp∗ = argmin
Δp

1

2σ 2 ||i[p ◦ Δp] − (ā + Ac)||2

+ 1

2
||p||2

�−1 + ||c||2
�−1

(28)

Because of the inclusion of the prior term over the shape
parameters 1

2 ||p||2
�−1 , we cannot update the current warp

estimate using the update rule in Eq. 27. Instead, as noted
by Papandreou and Maragos in Papandreou and Maragos
(2008), we need to compute the forward compositional to
forward additive parameter update Jacobian matrix Jp ∈
R

(4+n)×(4+n)10. This matrix is used to map the forward com-
positional increment Δp to its first order additive equivalent
JpΔp. In this case, the current estimate of the warp is com-
puted using the following update rule:

p ←
(
�−1 + (

JpHJp
)−1

)−1

((
JpHJp

)−1 (
p + JpΔp

)) (29)

where H denotes the approximate or true Hessians of the
residual ||i[p ◦ Δp] − (a + Ac)||2 with respect to the incre-
mental parametersΔp andΔp itself is the optimal solution of
the non-regularized problem in Eq. 26. Note that, in Sect. 3.3,

10 Note that, Papandreou and Maragos derived the inverse com-
positional to forward additive parameter update Jacobian matrix
Jq, however, it is straightforward to modify their original formu-
lation to obtain Jp. Further details regarding the computation of
the previous parameter update Jacobian matrices can be found in
Papandreou and Maragos (2008), its appendix: http://www.stat.ucla.
edu/~gpapan/pubs/confr/PapandreouMaragos_AAM_supmat-cvpr08.
pdf and posterior correction http://www.stat.ucla.edu/~gpapan/pubs/
confr/PapandreouMaragos_AAM_typo-cvpr08.pdf

we derive H for all the optimization methods studied in this
paper.

3.2.2 Inverse

On the other hand, the inverse compositional framework
inverts the roles of the image and the model by introduc-
ing the incremental warp on the model side. Using Eq. 11:

Δq∗ = argmin
Δq

1

2
||i[p] − (ā + Ac)[Δq]||2 (30)

Note that, in this case, the model is the one we seek to deform
using the incremental warp.

Because the incremental warp is introduced on the model
side, the solution Δq needs to be inverted before it is com-
posed with the current warp estimate:

p ← p ◦ Δq−1 (31)

Simarly, using the regularized expression in Eq. 14,
inverse compositon is expressed as:

Δq∗ = argmin
Δq

1

2σ 2 ||i[p] − (ā + Ac)[Δq]||2

+ 1

2
||p||2

�−1 + ||c||2
�−1

(32)

And the update of the current warp estimate is obtained
using:

p ←
(
�−1 + (

JqHJq
)−1

)−1

((
JqHJq

)−1 (
p + JqΔq

)) (33)

where, in this case, Jq denotes the inverse compositional
to forward additive parameter update Jacobian matrix Jq ∈
R

(4+n)×(4+n) originally derived by Papandreou andMaragos
(2008).

3.2.3 Asymmetric

Asymmetric composition introduces two related incremental
warps onto the cost function; one on the image side (forward)
and the other on the model side (inverse). Using Eq. 11 this
is expressed as:

Δp∗ = argmin
Δp

1

2
||i[p ◦ αΔp]

− (ā + Ac)[βΔp−1]||2
(34)

Note that the previous two incremental warps are defined to
be each others inverse. Consequently, using the first order

123

http://www.stat.ucla.edu/~gpapan/pubs/confr/PapandreouMaragos_AAM_supmat-cvpr08.pdf
http://www.stat.ucla.edu/~gpapan/pubs/confr/PapandreouMaragos_AAM_supmat-cvpr08.pdf
http://www.stat.ucla.edu/~gpapan/pubs/confr/PapandreouMaragos_AAM_supmat-cvpr08.pdf
http://www.stat.ucla.edu/~gpapan/pubs/confr/PapandreouMaragos_AAM_typo-cvpr08.pdf
http://www.stat.ucla.edu/~gpapan/pubs/confr/PapandreouMaragos_AAM_typo-cvpr08.pdf

Int J Comput Vis

approximation to warp inversion for typical AAMs warps
Δp−1 = −Δp defined in Matthews and Baker (2004), we
can rewrite the previous asymmetric cost function as:

Δp∗ = argmin
Δp

1

2
||i[p ◦ αΔp]

− (ā + Ac)[−βΔp||2
(35)

Although this cost function will need to be linearized around
both incremental warps, the parameters Δp controlling both
warps are the same. Also, note that the parameters α ∈ [0, 1]
and β = (1 − α) control the relative contribution of both
incremental warps in the computation of the optimal value
for Δp.

In this case, the update rule for the current warp esti-
mate is obtained by combining the previous forward and
inverse compositional update rules into a single composi-
tional update rule:

p ← p ◦ αΔp ◦ βΔp (36)

In this case, using Eq. 14, asymmetric compositon is
expressed as:

Δp∗ = argmin
Δq

1

2σ 2 ||i[p ◦ αΔp]

− (ā + Ac)[−βΔp]||2

+ 1

2
||p||2

�−1 + ||c||2
�−1

(37)

And the current warp estimate is updates using:

p ←
(
�−1 + (

JpHJp
)−1

)−1

((
JpHJp

)−1 (
p + α JpΔp + β JpΔp

)) (38)

which reduces the forward update rule in Eq. 29 because
α + β = 1.

Note that, the special case in which α = β = 0.5 is also
referred to as symmetric composition (Mégret et al. 2008;
Autheserre et al. 2009; Mégret et al. 2010) and that the pre-
vious forward and inverse compositions can also be obtained
from asymmetric composition by setting α = 1 , β = 0 and
α = 0 , β = 1 respectively.

3.2.4 Bidirectional

Similar to the previous asymmetric composition, bidirec-
tional composition also introduces incrementalwarps onboth
image and model sides. However, in this case, the two incre-
mental warps are assumed to be independent from each other.
Based on Eq. 11:

Δp∗,Δq∗ = argmin
Δp,Δq

1

2
||i[p ◦ Δp]

− (ā + Ac)[Δq]||2
(39)

Consequently, in Step 4, the cost function needs to be lin-
earized around both incremental warps and solved with
respect to the parameters controlling both warps, Δp and
Δq.

Once the optimal value for both sets of parameters is
recovered, the current estimate of the warp is updated using:

p ← p ◦ Δp ◦ Δq−1 (40)

For Eq. 14, bidirectional compositon is written as:

Δp∗,Δq∗ = argmin
Δp,Δq

1

2σ 2 ||i[p ◦ Δp]

− (ā + Ac)[Δq]||2

+ 1

2
||p||2

�−1 + ||c||2
�−1

(41)

And, in this case, the update rule for the current warp
estimate is:

p ←
(
�−1 + (

JpHJp + JqHJq
)−1

)−1

((
JpHJp + JqHJq

)−1 (
p + JpΔp + JqΔq

)) (42)

which reduces the forward update rule in Eq. 29 because
α + β = 1.

3.3 Optimization Method

Step 2 and 3 in CGD algorithms, i.e. linearizing the cost
and solving for the incremental warp respectively, depend
on the specific optimization method used by the algorithm.
In this paper, we distinguish between three main optimiza-
tion methods11: (i) Gauss-Newton (Boyd and Vandenberghe
2004; Matthews and Baker 2004; Gross et al. 2005; Martins
et al. 2010; Papandreou and Maragos 2008; Tzimiropou-
los and Pantic 2013); (ii) Newton (Boyd and Vandenberghe
2004; Kossaifi et al. 2014); and (iii) Wiberg (Okatani and
Deguchi 2006; Strelow 2012; Papandreou and Maragos
2008; Tzimiropoulos and Pantic 2013).

These methods can be used to iteratively solve the non-
linear optimization problems defined by Eqs. 14 and 22. The
main differences between them are:

11 Amberg et al. proposed the use of the Steepest Descent method
(Boyd and Vandenberghe 2004) in Amberg et al. (2009). However,
their approach requires a special formulation of the motion model and
it performs poorly using the standard independent AAM formulation
(Matthews and Baker 2004) used in this work.

123

Int J Comput Vis

1. The term being linearized. Gauss-Newton and Wiberg
linearize the residual rwhileNewton linearizes thewhole
data term D.

2. Theway inwhich eachmethod solves for the incremental
parameters Δc, Δp and Δq. Gauss-Newton and Newton
can either solve for them simultaneously or in an alter-
nated fashion while Wiberg defines its own procedure to
solve for different sets of parameters12.

The following subsections thoroughly explain how the
previous optimization methods are used in CGD algorithms.
In order to simplify their comprehension full derivations will
be given for allmethods using theSSDdata term (Eq. 11)with
both asymmetric (Sect. 3.2.3) and bidirectional (Sect. 3.2.4)
compositions13 while only direct solutions will be given for
the Project-Out data term (Eq. 19). Note that, in Sect. 3.2,
we already derived update rules for the regularized expres-
sion in Eq. 14 and, consequently, there is no need to consider
regularization throughout this section.14

3.3.1 Gauss-Newton

When asymmetric composition is used, the optimization
problem defined by the SSD data term is:

Δc∗,Δp∗ = argmin
Δc,Δp

1

2
rTa ra (43)

with the asymmetric residual ra defined as:

ra = i[p ◦ αΔp] − (ā + A(c + Δc))[βΔp−1] (44)

and where we have introduced the incremental appearance
parameters Δc15. The Gauss-Newton method solves the
previous optimization problem by performing a first order
Taylor expansion of the residual:

ra(Δ�) ≈ r̂a(Δ�)

≈ ra + ∂ra
∂Δ�

Δ�
(45)

and solving the following approximation of the original prob-
lem:

12 Wiberg reduces to Gauss-Newton when only a single set of parame-
ters needs to be inferred.
13 These represent the most general cases because the derivations for
forward, inverse and symmetric compositions can be directly obtained
from the asymmetric one and they require solving for both shape and
appearance parameters.
14 The derivation of regularized solutionswith respect to the appearance
parameters Δc is straightforward and, hence, omitted throughout this
section.
15 Thevalue of the current estimate of appearance parameters is updated
at each iteration using the following additive update rule: c ← c + Δc

Δ�∗ = argmin
Δ�

1

2
r̂Ta r̂a (46)

where, in order to unclutter the notation, we have defined
Δ� = (ΔcT ,ΔpT)T and the partial derivative of the residual
with respect to the previous parameters, i.e. the Jacobian of
the residual, is defined as:

∂ra
∂Δ�

=
(

∂ra
∂Δc

,
∂ra
∂Δp

)

=
(

−A,∇t
∂W
∂Δp

)

= (−A, Jt)

(47)

where ∇t = (α∇i[p] + β∇(ā + Ac)).
When bidirectional composition is used, the optimization

problem is defined as:

Δc∗,Δp∗,Δq∗ = argmin
Δc,Δp,Δq

1

2
rTb rb (48)

where the bidirectional residual rb reduces to:

rb = i[p ◦ Δp] − (ā + A(c + Δc))[Δq] (49)

The Gauss-Newton method proceeds in exactly the same
manner as before, i.e. performing a first order Taylor expan-
sion:

rb(Δ�) ≈ r̂b(Δ�)

≈ rb + ∂rb
∂Δ�

Δ�
(50)

and solving the approximated problem:

Δ�∗ = argmin
Δ�

1

2
r̂Tb r̂b (51)

where, in this case, Δ� = (ΔcT ,ΔpT ,ΔqT)T and the Jaco-
bian of the residual is defined as:

∂rb
∂Δ�

=
(

∂rb
∂Δc

,
∂rb
∂Δp

,
∂rb
∂Δq

)

= (−A, Ji,−Ja)
(52)

where Ji = ∇i[p] ∂W
∂Δp and Ja = ∇(ā + Ac) ∂W

∂Δq .

Simultaneous

The optimization problem defined by Eqs. 46 and 51 can
be solved with respect to all parameters simultaneously by
simply equating their derivative to 0:

123

Int J Comput Vis

0 = ∂ 1
2 r̂

T r̂

∂Δ�

= ∂ 1
2 (r + ∂r

∂Δ�
Δ�)T (r + ∂r

∂Δ�
Δ�)

∂Δ�

=
(
r + ∂r

∂Δ�
Δ�

) (
∂r

∂Δ�

)T

(53)

The solution is given by:

Δ�∗ = −
((

∂r
∂Δ�

)T
∂r

∂Δ�

)−1 (
∂r

∂Δ�

)T

r (54)

where
((

∂r
∂Δ�

)T ∂r
∂Δ�

)
is known as theGauss-Newton approx-

imation to the Hessian matrix.
Directly inverting

((
∂r

∂Δ�

)T ∂r
∂Δ�

)
has complexity16 O((n+

m)3) for asymmetric composition and O((2n+m)3) for bidi-
rectional composition. However, one can take advantage of
the problem structure and derive an algorithm with smaller
complexity by using the Schur complement17 (Boyd andVan-
denberghe 2004).

For asymmetric composition we have:

−
((

∂ra
∂Δ�

)T
∂ra
∂Δ�

)
Δ� =

(
∂ra
∂Δ�

)T

r

⎛

⎝
−ATA︸︷︷︸

I

AT Jt

JTt A −JTt Jt

⎞

⎠
(

Δc
Δp

)
=

(−AT

JTt

)
ra

(55)

Applying the Schur complement, the solution forΔp is given
by:

−(JTt Jt + JTt AA
T JTt)Δp = JTt r − JTt AA

T ra

−JTt (I − AAT)JtΔp = JTt (I − AAT)ra

−JTt ĀJtΔp = JTt Āra

Δp∗ = −
(
JTt ĀJt

)−1

JTt Āra

(56)

16 m and n denote the number of shape and appearance parameters
respectively while F denotes the number of pixels on the reference
frame.
17 Applying the Schur complement to the following system of equa-
tions:

Ax + By = a

Cx + Dy = b

the solution for x is given by:

(A − BD−1C)x = a − BD−1b

and the solution for y is obtained by substituting the value of x into the
original system.

and plugging the solution for Δp into Eq. 55 the optimal
value for Δc is obtained by:

−Δc + AT JtΔp = −AT ra

Δc∗ = AT (ra + JtΔp)
(57)

Using the above procedure the complexity17 of solving each
Gauss-Newton step is reduced to:

O(nmF︸ ︷︷ ︸
JTt Ā

+ n2F + n3︸ ︷︷ ︸
(
JTt ĀJt

)−1

)
(58)

Using bidirectional composition, we can apply the Schur
complement either one or two times in order to take advan-

tage of the 3×3block structure of thematrix

((
∂rb
∂Δ�

)T
∂rb
∂Δ�

)
:

−
((

∂rb
∂Δ�

)T
∂rb
∂Δ�

)
Δ� =

(
∂rb
∂Δ�

)T

rb

−
((

∂rb
∂Δ�

)T
∂rb
∂Δ�

)⎛

⎝
Δc
Δp
Δq

⎞

⎠ =
⎛

⎝
−AT

JTi−JTa

⎞

⎠ rb

(59)

where

−
((

∂rb
∂Δ�

)T
∂rb
∂Δ�

)
=

⎛

⎜⎜⎝

−ATA︸︷︷︸
I

AT Ji −AT Ja

JTi A −JTi Ji JTi Ja−JTa A JTa Ji −JTa Ja

⎞

⎟⎟⎠ (60)

Applying the Schur complement once, the combined solution
for (ΔpT ,ΔqT)T is given by:

(−JTi ĀJi JTi ĀJa
JTa ĀJi −JTa ĀJa

)(
Δp
Δq

)
=

(
JTi Ā

−JTa Ā

)
rb

(
Δp∗
Δq∗

)
=

(−JTi ĀJi JTi ĀJa
JTa ĀJi −JTa ĀJa

)−1 (
JTi Ā

−JTa Ā

)
rb

(61)

Note that the complexity of inverting this new approxima-
tion to the Hessian matrix is O((2n)3).18 Similar to before,
plugging the solutions for Δp and Δq into Eq. 60 we can
infer the optimal value for Δc using:

Δc∗ = AT (rb − JiΔp + JaΔq) (62)

The total complexity per iteration of the previous approach
is:

O(2nmF︸ ︷︷ ︸
(
JTi Ā

−JTa Ā

)
+ (2n)2F + (2n)3︸ ︷︷ ︸

(−JTi ĀJi JTi ĀJa
JTa ĀJi −JTa ĀJa

)−1

)

(63)

18 This is an important reduction in complexity because usuallym >>

n in CGD algorithms.

123

Int J Comput Vis

The Schur complement can be re-applied to Eq. 61 to
derive a solution forΔq that only requires inverting aHessian
approximation matrix of size n × n:

(
JTa PJa

)
Δq = JTa Prb

Δq∗ =
(
JTa PJa

)−1
JTa Prb

(64)

where we have defined the projection matrix P as:

P = Ā − ĀJi
(
JTi ĀJi

)−1
JTi Ā (65)

and the solutions forΔp andΔc can be obtained by plugging
the solutions forΔq into Eq. 61 and the solutions forΔq and
Δp into Eq. 60 respectively:

Δp∗ = −
(
JTi ĀJi

)−1
JTi Ā (rb − JaΔq)

Δc∗ = AT (rb + JiΔp − JaΔq)

(66)

The total complexity per iteration of the previous approach
reduces to:

O(2nmF︸ ︷︷ ︸
JTa P& JTi Ā

+ 2n2F + 2n3︸ ︷︷ ︸
(JTa PJa)

−1 &
(
JTi ĀJi

)−1

)
(67)

Note that because of their reduced complexity, the solutions
defined by Eqs. 64 and 66 are preferred over the ones defined
by Eqs. 61 and 62.

Finally, the solutions using the Project-Out cost function
are:

– For asymmetric composition:

Δp∗ = −
(
JTt ĀJt

)−1
JTt Ār (68)

with complexity19 given by Eq. 58.
– For bidirectional composition:

Δq∗ =
(
JTā PJā

)−1
JTā Pr

Δp∗ = −
(
JTi ĀJi

)−1
JTi Ā (r − JaΔq)

(69)

with complexity20 given by Eq. 67.

where, in both cases, r = i[p] − ā.

19 In practice, the solutions for the Project-Out cost function can be
computed slightly faster than those for the SSD because they do not
need to explicitly solve forΔc. This is specially important in the inverse
compositional case because expressions of the form (JTUJ)−1JTU can
be completely precomputed and the computational cost per iteration
reduces to O(nF).

Alternated

Another way of solving optimization problems with two or
more sets of variables is to use alternated optimization (De la
Torre 2012). Hence, instead of solving the previous problem
simultaneously with respect to all parameters, we can update
one set of parameters at a time while keeping the other sets
fixed.

More specifically, using asymmetric composition we can
alternate between updating Δc given the previous Δp and
then updateΔp given the updatedΔc in an alternate manner.
Taking advantage of the structure of the problem defined by
Eq. 55, we can obtain the following system of equations:

−Δc + AT JtΔp = −AT ra

JTt AΔc − JTt JtΔp = JTt ra
(70)

which we can rewrite as:

Δc∗ = AT (ra + JtΔp)

Δp∗ = −
(
JTt Jt

)−1
JTt (ra − AΔc)

(71)

in order to obtain the analytical expression for the previous
alternated update rules. The complexity at each iteration is
dominated by:

O(n2F + n3︸ ︷︷ ︸
(JTt Jt)

−1

)
(72)

In the case of bidirectional compositionwe can proceed in
two different ways: (a) updateΔc given the previousΔp and
Δq and then update (ΔpT ,ΔqT)T from the updated Δc, or
(b) update Δc given the previous Δp and Δq, then Δp given
the updated Δc and the previous Δq and, finally, Δq given
the updated Δc and Δp.

From Eq. 60, we can derive the following system of equa-
tions:

−Δc + AT JiΔp − AT JaΔq = −AT rb

JTi AΔc − JTi JiΔp + JTi JaΔq = JTi rb

−JTa AΔc + JTa JiΔp − JTa JaΔq = −JTa rb

(73)

from which we can define the alternated update rules for the
first of the previous two options:

Δc∗ =AT (rb + JiΔp − JaΔq)
(

Δp∗
Δq∗

)
=

(−JTi Ji JTi Ja
JTa Ji −JTa Ja

)−1

(
JTi−JTa

)
(rb − AΔc)

(74)

123

Int J Comput Vis

with complexity:

O((2n)2F + (2n)3︸ ︷︷ ︸
(−JTi Ji JTi Ja
JTa Ji −JTa Ja

)−1

)

(75)

The rules for the second option are:

Δc∗ = AT (rb + JiΔp − JaΔq)

Δp∗ = −(JTi Ji)
−1JTi (rb − AΔc − JaΔq)

Δq∗ = (JTa Ja)
−1JTa (rb − AΔc + JiΔp)

(76)

and their complexity is dominated by:

O(2n2F + 2n3︸ ︷︷ ︸
(JTi Ji)

−1 & (JTa Ja)−1

)
(77)

On the other hand, the alternated update rules using the
Project-Out cost function are:

– For asymmetric composition: There is no proper alter-
nated rule because the Project-Out cost function only
depends on one set of parameters, Δp.

– For bidirectional composition:

Δq∗ =
(
JTā ĀJā

)−1
JTā Ā (r + JiΔp)

Δp∗ = −
(
JTi ĀJi

)−1
JTi Ā (r − JaΔq)

(78)

with equivalent complexity to the one given by Eq. 58

because, in this case, the term
(
JTā ĀJā

)−1
JTā Ā can be

completely precomputed.

Note that all previous alternatedupdate rules, Eqs. 71, 74, 76
and 107, are similar but slightly different from their simul-
taneous counterparts, Eqs. 56 and 57, 61 and 62, 64 and 66,
and 69.

3.3.2 Newton

The Newton method performs a second order Taylor expan-
sion of the entire data term D:

D(Δ�) ≈ D̂(Δ�)

≈ D + ∂D
∂Δ�

Δ� + 1

2
Δ�T

∂2D
∂Δ�2

Δ�
(79)

and solves the approximate problem:

Δ�∗ = argmin
Δ�

D̂ (80)

Assuming asymmetric composition, the previous data
term is defined as:

Da(Δ�) = 1

2
rTa ra (81)

and the matrix containing the first order partial derivatives
with respect to the parameters, i.e. the data term’s Jacobian,
can be written as:

∂Da

∂Δ�
=

(
∂Da

∂Δc
,

∂Da

∂Δp

)

=
(
−AT ra, JTt ra

) (82)

On the other hand, the matrix ∂2Da
∂Δ�2

of the second order par-
tial derivatives, i.e. the Hessian of the data term, takes the
following form:

∂2Da

∂Δ�2
=

⎛

⎝
∂2Da
∂Δc2

∂2Da
∂Δc∂Δp

∂2Da
∂Δp∂Δc

∂2Da
∂Δp2

⎞

⎠

=
⎛

⎝
∂2Da
∂Δc2

∂2Da
∂Δc∂Δp(

∂2Da
∂Δc∂Δp

)T
∂2Da
∂Δp2

⎞

⎠

(83)

Note that the Hessian matrix is, by definition, symmetric.
The definition of its individual terms is provided in Appen-
dix 2(a).

A similar derivation can be obtained for bidirectional
composition where, as expected, the data term is defined as:

Db(Δ�) = 1

2
rTb rb (84)

In this case, the Jacobian matrix becomes:

∂Db

∂Δ�
=

(
∂Db

∂Δc
,

∂Db

∂Δp
,

∂Db

∂Δq

)

=
(
−AT ra, JTi ra,−JTa ra

) (85)

and the Hessian matrix takes the following form:

∂2Db

∂Δ�2
=

⎛

⎜⎜⎜⎝

∂2Db
∂Δc2

∂2Db
∂Δc∂Δp

∂2Db
∂Δc∂Δq

∂2Db
∂Δp∂Δc

∂2Db
∂Δp2

∂2Db
∂Δp∂Δq

∂2Db
∂Δq∂Δc

∂2Db
∂Δq∂Δp

∂2Db
∂Δq2

⎞

⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

∂2Db
∂Δc2

∂2Db
∂Δc∂Δp

∂2Db
∂Δc∂Δq

(
∂2Db

∂Δc∂Δp

)T
∂2Db
∂Δp2

∂2Db
∂Δp∂Δq

(
∂2Db

∂Δc∂Δq

)T (
∂2Db

∂Δp∂Δq

)T
∂2Db
∂Δq2

⎞

⎟⎟⎟⎟⎠
(86)

123

Int J Comput Vis

Notice that the previous matrix is again symmetric. The def-
inition of its individual terms is provided in Appendix 2(a).

Simultaneous

Using the Newton method we can solve for all parameters
simultaneously by equating the partial derivative of Eq. 80
to 0:

0 = ∂D̂
∂Δ�

=
∂

(
D + ∂D

∂Δ�
Δ� + 1

2Δ�T ∂2D
∂2Δ�

Δ�
)

∂Δ�

= ∂D
∂Δ�

+ ∂2D
∂Δ�2

Δ�

(87)

with the solution given by:

Δ�∗ = − ∂2D
∂Δ�2

−1
∂D
∂Δ�

(88)

Note that, similar to the Gauss-Newton method, the com-
plexity of inverting the Hessian matrix ∂2D

∂Δ�2
is O((n +m)3)

for asymmetric composition and O((2n + m)3) for bidirec-
tional composition. As shown by Kossaifi et al. (2014)20, we
can take advantage of the structure of the Hessian in Eqs. 83
and 86 and apply the Schur complement to obtain more effi-
cient solutions.

The solutions for Δp and Δc using asymmetric composi-
tion are given by the following expressions:

Δp∗ =
(

∂2Da

∂Δp2
− ∂2Da

∂ΔpΔc
∂2Da

∂ΔcΔp

)−1

(
∂Da

∂Δp
− ∂2Da

∂ΔpΔc
∂Da

∂Δc

)

Δc∗ = ∂Da

∂Δc
− ∂2Da

∂Δc∂Δp
Δp∗

(89)

with complexity:

O(nmF︸ ︷︷ ︸
∂2Da

∂Δp∂Δc

+ n2m︸︷︷︸
∂2Da

∂Δp∂Δc
∂2Da

∂Δc∂Δp

+ 2n2F︸ ︷︷ ︸
∂2Da
∂Δp2

+ n3︸︷︷︸
H−1

)
(90)

where we have defined H =
(

∂2Da
∂Δp2 − ∂2Da

∂ΔpΔc
∂2Da

∂ΔcΔp

)−1
in

order to unclutter the notation.

20 In (2014), Kossaifi et al. applied the Schur complement to the New-
ton method using only inverse composition while we apply it here using
themore general asymmetric (which includes forward, inverse and sym-
metric) and bidirectional compositions.

On the other hand, the solutions for bidirectional compo-
sition are given either by:

(
Δp∗
Δq∗

)
=

(
V WT

W U

)−1 (
v
u

)

Δc∗ = ∂Db

∂Δc
− ∂2Db

∂Δc∂Δp
Δp − ∂2Db

∂Δc∂Δq
Δq

(91)

or

Δq∗ =
(
U − WV−1WT

)−1 (
u − WV−1v

)

Δp∗ = V−1
(
v − WTΔq

)

Δc∗ = ∂Db

∂Δc
− ∂2Db

∂Δc∂Δp
Δp − ∂2Db

∂Δc∂Δq
Δq

(92)

where we have defined the following auxiliary matrices

V = ∂2Db

∂Δp2
− ∂2Db

∂ΔpΔc
∂2Db

∂ΔcΔp

W = ∂2Db

∂Δq∂Δp
− ∂2Db

∂ΔqΔc
∂2Db

∂ΔcΔp

U = ∂2Db

∂Δq2
− ∂2Db

∂ΔqΔc
∂2Db

∂ΔcΔq

(93)

and vectors

v = ∂Db

∂Δp
− ∂2Db

∂ΔpΔc
∂Db

∂Δc

u = ∂Db

∂Δq
− ∂2Db

∂ΔqΔc
∂Db

∂Δc

(94)

The complexity of the previous solutions is of:

O(nmF︸ ︷︷ ︸
v

+ 2nmF︸ ︷︷ ︸
u

+ 4n2F + 2n2m︸ ︷︷ ︸
U&V

+ 2n2F + n2m︸ ︷︷ ︸
W

+ (2n)3︸ ︷︷ ︸
(
V WT

W U

)−1

) (95)

and

O(nmF︸ ︷︷ ︸
v

+ 2nmF︸ ︷︷ ︸
u

+

4n2F + 2n2m︸ ︷︷ ︸
U&V

+ 2n2F + n2m︸ ︷︷ ︸
W

+ 4n3︸︷︷︸
V−1 & (U−WV−1WT)

−1

)

(96)

respectively.
The solutions using the Project-Out cost function are:

123

Int J Comput Vis

– For asymmetric composition:

Δp∗ = −
(

∂W
Δp

T

∇2t
∂W
Δp

Ār + JTt ĀJt

)−1

JTt Ār

(97)

with complexity21 given by Eq. 90.
– For bidirectional composition:

Δq∗ =
(

∂W
Δp

T

∇2ā
∂W
Δp

Ār + JTā P̃Jā

)−1

JTā P̃r

Δp∗ = −H−1
i JTi Ā (r − JaΔq)

(98)

where the projection operator P̃ is defined as:

P̃ = Ā − ĀJTi H
−1
i JiĀT (99)

and where we have defined:

Hi =
(

∂W
Δp

T

∇2i[p]∂W
Δp

Ār + JTi ĀJi

)
(100)

to unclutter the notation. The complexity per iteration22

is given by Eq. 96.

Note that, the derivations of the previous solutions, for
both types of composition, are analogous to the ones shown in
Sect. 3.3.1 for the Gauss-Newton method and, consequently,
have been omitted here.

Alternated

Alternated optimization rules can also be derived for the
Newton method following the strategy shown in Sect. 3.3.1
for the Gauss-Newton case. Again, we will simply provide
update rules and computational complexity for both types of
composition and will omit the details of their full derivation.

For asymmetric composition the alternated rules are
defined as:

Δc∗ = ∂Da

∂Δc
− ∂2Da

∂Δc∂Δp
Δp

Δp∗ = ∂2Da

∂Δp2

−1 (
∂Da

∂Δp
− ∂2Da

∂Δp∂Δc
Δc

) (101)

21 In practice, the solutions for the project-out cost function can also
be computed slightly faster because they do not need to explicitly
solve for Δc. However, in this case, using inverse composition we can
only precompute terms of the form JTU and JTUJ but not the entire
H−1JTU because of the explicit dependence betweenH and the current
residual r.

with complexity:

O(nmF︸ ︷︷ ︸
∂2Da

∂Δp∂Δc

+ 2n2F + n3︸ ︷︷ ︸
∂2Da
∂Δp2

−1

)

(102)

The alternated rules for bidirectional composition case are
given either by:

Δc∗ = ∂Db

∂Δc
− ∂2Db

∂Δc∂Δp
Δp

− ∂2Db

∂Δc∂Δq
Δq

(
Δp∗
Δq∗

)
=

⎛

⎝
∂2Db
∂Δp2

∂2Db
∂Δp∂Δq

∂2Db
∂Δq∂Δp

∂2Db
∂Δp2

⎞

⎠
−1

(
∂Db
∂Δp − ∂2Db

∂Δp∂ΔcΔc
∂Db
∂Δq − ∂2Db

∂Δq∂ΔcΔc

)

(103)

with complexity:

O(nmF︸ ︷︷ ︸
∂2D

∂Δp∂Δp

+ 4n2F︸ ︷︷ ︸
∂2D
∂Δp2

& ∂2D
∂Δq2

+

(2n)3︸ ︷︷ ︸
⎛

⎜⎝
∂2Db
∂Δp2

∂2Db
∂Δp∂Δq

∂2Db
∂Δq∂Δp

∂2Db
∂Δp2

⎞

⎟⎠

−1

) (104)

or:

Δc∗ = ∂Db

∂Δc
− ∂2Db

∂Δc∂Δp
Δp − ∂2Db

∂Δc∂Δq
Δq

Δp∗ = ∂2Db

∂Δp2

−1

(
∂Db

∂Δp
− ∂2Db

∂Δp∂Δc
Δc − ∂2Db

∂Δp∂Δq
Δq

)

Δq∗ = ∂2Db

∂Δq2

−1

(
∂Db

∂Δq
− ∂2Db

∂Δq∂Δc
Δc − ∂2Db

∂Δq∂Δp
Δp

)

(105)

with complexity:

O(nmF︸ ︷︷ ︸
∂2D

∂Δp∂Δp

+ 4n2F︸ ︷︷ ︸
∂2D
∂Δp2

& ∂2D
∂Δq2

+ 2n3︸︷︷︸
∂2Db
∂Δp2

−1
&

∂2Db
∂Δq2

−1

)

(106)

On the other hand, the alternated update rules for theNew-
ton method using the project-out cost function are:

123

Int J Comput Vis

– For asymmetric composition: Again, there is no proper
alternated rule because the project-out cost function only
depends on one set of parameters, Δp.

– For bidirectional composition:

Δq∗ = H−1
a JTā Ā (r + JiΔp)

Δp∗ = −H−1
i JTi Ā (r − JaΔq)

(107)

where we have defined:

Ha =
(

∂W
Δp

T

∇2ā
∂W
Δp

Ār + JTā ĀJā

)
(108)

and the complexity at every iteration is given by the fol-
lowing expression complexity:

O(nmF︸ ︷︷ ︸
JTi Ā

+ 3n2F + 2n3︸ ︷︷ ︸
H−1
i &H−1

a

)
(109)

Note that Newton algorithms are true second order opti-
mizations algorithms with respect to the incremental warps.
However, as shown in this section, this property comes at
expenses of a significant increase in computational complex-
ity with respect to (first order) Gauss-Newton algorithms.
In Appendix 1, we show that some of the Gauss-Newton
algorithms derived in Sect. 3.3.1, i.e. the Asymmetric Gauss-
Newton algorithms, are, in fact, true Efficient Second order
Minimization (ESM) algorithms that effectively circumvent
thie previous increase in computational complexity.

3.3.3 Wiberg

The idea behind theWiberg method is similar to the one used
by the alternated Gauss-Newton method in Sect. 3.3.1, i.e.
solving for one set of parameters at a time while keeping the
other sets fixed. However, Wiberg does so by rewriting the
asymmetric ra(Δc,Δp) and bidirectional rb(Δc,Δp,Δq)

residuals as functions that only depend onΔp andΔq respec-
tively.

For asymmetric composition, the residual r̄a(Δp) is
defined as follows:

r̄a(Δp) = ra(Δ̄c,Δp)

= i[p ◦ αΔp] − (ā + A(c + Δ̄ca))[βΔp] (110)

where the function Δ̄ca(Δp) is obtained by solving for Δc
while keeping Δp fixed:

Δ̄ca(Δp) = AT ra (111)

Given the previous residual, the Wiberg method proceeds to
define the following optimization problem with respect to
Δp:

Δp∗ = argmin
Δp

r̄Ta r̄a (112)

which then solves approximately by performing a first order
Taylor of the residual around the incremental warp:

Δp∗ = argmin
Δp

∥∥∥∥r̄a(Δp) + ∂ r̄a
∂Δp

Δp

∥∥∥∥
2

(113)

In this case, the Jacobian ∂ r̄
∂Δp can be obtain by direct appli-

cation of the chain rule and it is defined as follows:

d r̄a
dΔp

= ∂ r̄a
∂Δp

+ ∂ r̄a
∂Δ̄ca

∂Δ̄ca
∂Δp

= Jt − AAT Jt

= ĀJt

(114)

The solution for Δp is obtained as usual by equating the
derivative of 112 with respect to Δp to 0:

Δp∗ = −
((
ĀJt

)T
ĀJt

)−1 (
ĀJt

)T
r̄a

= −
(
JTt ĀJt

)−1
JTt Ār̄a

(115)

wherewehave used the fact that thematrix Ā is idempotent22.
Therefore, the Wiberg method solves explicitly, at each

iteration, forΔp using the previous expression and implicitly
for Δc (through Δ̄ca(Δp)) using Eq. 111. The complexity
per iteration of the Wiberg method is the same as the one of
the Gauss-Newton method after applying the Schur comple-
ment, Eq. 58. In fact, note that the Wiberg solution for Δp
(Eq. 115) is the same as the one of the Gauss-Newtonmethod
after applying the Schur complement, Eq. 56; and also note
the similarity between the solutions for Δc of both methods,
Eqs. 111 and 57. Finally, note that, due to the close relation
between the Wiberg and Gauss-Newton methods, Asymmet-
ric Wiberg algorithms are also ESM algorithms for fitting
AAMs.

On the other hand, for bidirectional composition, the
residual r̄b(Δp) is defined as:

22 Ā is idempotent:

ĀĀ =
(
I − AAT

) (
I − AAT

)

= IT I − 2AAT + AATA︸︷︷︸
I

AT

= I − 2AAT + AAT

= I − AAT

= Ā

123

Int J Comput Vis

r̄b(Δq) = rb(Δ̄cb, Δ̄pb,Δq)

= i[p ◦ Δ̄pb] − (ā − A(c + Δ̄cb))[Δq] (116)

where, similarly as before, the function Δ̄cb(Δp,Δq) is
obtained solving forΔcwhile keeping bothΔp andΔqfixed:

Δ̄cb(Δp,Δq) = AT rb (117)

and the function Δ̄pb(Δ̄cb,Δq) is obtained by solving for
Δp using the Wiberg method while keeping Δq fixed:

Δ̄pb(Δ̄cb,Δq) = −
(
JTi ĀJi

)−1
JTi Ār̄b (118)

At this point, the Wiberg method proceeds to define the fol-
lowing optimization problem with respect to Δq:

Δq∗ = argmin
Δq

r̄Tb r̄b (119)

which, as before, then solves approximately by performing
a first order Taylor expansion around Δq:

Δq∗ = argmin
Δq

∥∥∥∥r̄b(Δq) + ∂ r̄b
∂Δq

Δq

∥∥∥∥
2

(120)

In this case, the Jacobian of the residual can also be obtained
by direct application of the chain rule and takes the following
form:

d r̄b
dΔq

= ∂ r̄b
∂Δq

+ ∂ r̄b
∂Δ̄pb

∂Δ̄pb
∂Δq

+
(

∂ r̄b
∂Δ̄cb

+ ∂ r̄b
∂Δ̄pb

∂Δ̄pb
∂Δ̄c

)
∂Δ̄cb
∂Δq

= −Ja + Ji
(
JTi ĀJi

)−1
JTi ĀJa

+
(
A − Ji

(
JTi ĀJi

)−1
JTi ĀA

)
AT Ja

= −Ja + AAT Ja

+ Ji
(
JTi ĀJi

)−1
JTi ĀJa

− Ji
(
JTi ĀJi

)−1
JTi ĀAA

T Ja

= −
(
I − AAT

)
Ja

+ Ji
(
JTi ĀJi

)−1
JTi Ā

(
I − AAT

)
Ja

= −ĀJa + Ji
(
JTi ĀJi

)−1
JTi ĀĀJa

=
(

−I + Ji
(
JTi ĀJi

)−1
JTi Ā

)
ĀJa

= −PJa

(121)

And, again, the solution forΔq is obtained as usual by equat-
ing the derivative of 120 with respect to Δq to 0:

Δq∗ =
(
(PJt)T PJt

)−1
(PJt)T r̄a (122)

In this case, the Wiberg method solves explicitly, at each
iteration, forΔp using the previous expression and implicitly
for Δp and Δc (through Δ̄pb(Δ̄cb,Δq) and Δ̄cb(Δp,Δq))
using Eqs. 118 and 117 respectively. Again, the complexity
per iteration is the same as the one of the Gauss-Newton
method after applying the Schur complement, Eq. 67; and the
solutions for bothmethods are almost identical, Eqs. 122, 118
and 117 and Eqs. 61, 62 and 64.

On the other hand, theWiberg solutions for the project-out
cost function are:

– For asymmetric composition: Because the project-out
cost function only depends on one set of parameters,Δp,
in this case Wiberg reduces to Gauss-Newton.

– For bidirectional composition:

Δp∗ = −
(
JTi ĀJi

)−1
JTi Ār

Δq∗ =
(
JTā PJā

)−1
JTā Pr

(123)

Again, in this case, the solutions obtainedwith theWiberg
method are almost identical to the ones obtained using
Gauss-Newton after applying the Schur complement,
Eq. 69.

4 Relation to Prior Work

In this section we relate relevant prior work on CGD algo-
rithms for fitting AAMs (Matthews and Baker 2004; Gross
et al. 2005; Papandreou and Maragos 2008; Amberg et al.
2009; Martins et al. 2010; Tzimiropoulos and Pantic 2013;
Kossaifi et al. 2014) to the unified and complete view intro-
duced in the previous section.

4.1 Project-Out algorithms

In their seminal work (2004), Matthews and Baker proposed
the first CGD algorithm for fitting AAMs, the so-called
Project-out Inverse Compositional (PIC) algorithm. This
algorithmusesGauss-Newton to solve the optimization prob-
lem posed by the project-out cost function using inverse
composition. The use of the project-out norm removes the
need to solve for the appearance parameters and the use
of inverse composition allows for the precomputation of
the pseudo-inverse of the Jacobian with respect to Δp,
i.e.

(
JTā ĀJā

)−1
JāĀ. The PIC algorithm is very efficient

123

Int J Comput Vis

(O(nF)) but it has been shown to perform poorly in generic
and unconstrained scenarios (Gross et al. 2005; Papandreou
and Maragos 2008). In this paper, we refer to this algorithm
as the Project-Out Inverse Gauss-Newton algorithm.

The forward version of the previous algorithm, i.e. the
Project-Out Forward Gauss-Newton algorithm, was pro-
posed by Amberg et al. in 2009. In this case, the use of
forward composition prevents the precomputation of the
Jacobian pseudo-inverse and its complexity increases to
O(nmF + n2F + n3). However, this algorithm has been
shown to largely outperform its inverse counterpart, and
obtains good performance under generic and unconstrained
conditions (Amberg et al. 2009; Tzimiropoulos and Pantic
2013).23

To the best of our knowledge, the rest of Project-Out algo-
rithms derived in Sect. 3, i.e.:

– Project-Out Forward Newton
– Project-Out Inverse Newton
– Project-Out Asymmetric Gauss-Newton
– Project-Out Asymmetric Newton
– Project-Out Bidirectional Gauss-Newton Schur
– Project-Out Bidirectional Gauss-Newton Alternated
– Project-Out Bidirectional Newton Schur
– Project-Out Bidirectional Newton Alternated
– Project-Out Bidirectional Wiberg

have never been published before and are a significant con-
tribution of this work.

4.2 SSD algorithms

In Gross et al. (2005) Gross et al. presented the Simultane-
ous Inverse Compositional (SIC) algorithm and show that it
largely outperforms the Project-Out Inverse Gauss-Newton
algorithm in terms of fitting accuracy. This algorithm uses
Gauss-Newton to solve the optimization problem posed by
the SSD cost function using inverse composition. In this case,
the Jacobianwith respect toΔp, depends on the current value
of the appearance parameters and needs to be recomputed
at every iteration. Moreover, the inclusion of the Jacobian
with respect to the appearance increments δc, increases the
size of the simultaneous Jacobian to ∂r

∂Δ�
= (−A,−Ja) ∈

R
F×(m+n) and, consequently, the computational cost per iter-

ation of the algorithm is O((m + n)2F + (m + n)3).
As we shown in Sections 3.3.1, 3.3.1 and 3.3.3 the pre-

vious complexity can be dramatically reduced by taking

23 Notice that, in Amberg et al. (2009), Amberg et al. also introduced a
hybrid forward/inverse algorithm, coined CoLiNe. This algorithm is a
compromise between the previous two algorithms in terms of both com-
plexity and accuracy. Due to its rather ad-hoc derivation, this algorithm
was not considered in this paper.

advantage of the problem structure in order to derive more
efficient and exact algorithm by: (a) applying the Schur com-
plement; (b) adopting an alternated optimization approach;
or (c) or using the Wiberg method. Papandreou and Mara-
gos (2008) proposed an algorithm that is equivalent to the
solution obtained by applying the Schur complement to the
problem, as described in Sect. 3.3.1. The same algorithm
was reintroduced in Tzimiropoulos and Pantic (2013) using
a somehow ad-hoc derivation (reminiscent of the Wiberg
method) under the name Fast-SIC. This algorithm has a com-
putational cost per iteration of O(nmF + n2F + n3). In this
paper, followingour unifiedviewonCGDalgorithm,we refer
to the previous algorithm as the SSD Inverse Gauss-Newton
Schur algorithm. The alternated optimization approach was
used in Tzimiropoulos et al. (2012) and Antonakos et al.
(2014) with complexity O(n2F + n3) per iteration. We refer
to it as the SSD Inverse Gauss-Newton Alternated algorithm.

On the other hand, the forward version of the previous
algorithm was first proposed by Martins et al. in (2010).24

In this case, the Jacobian with respect to Δp depends on
the current value of the shape parameters p through the
warped image i[p] and also needs to be recomputed at every
iteration. Consequently, the complexity if the algorithm is
the same as in the naive inverse approach of Gross et al.
In this paper, we refer to this algorithm as the SSD For-
ward Gauss-Newton algorithm. It is important to notice that
Tzimiropoulos and Pantic (2013) derived a more efficient
version of this algorithm (O(nmF+n2F+n3)), coined Fast-
Forward, by applying the same derivation used to obtain their
Fast-SIC algorithm. They showed that in the forward case
their derivation removed the need to explicitly solve for the
appearance parameters. Their algorithm is equivalent to the
previous Project-Out Forward Gauss-Newton.

Finally, Kossaifi et al. derived the SSD Inverse Newton
Schur algorithm inKossaifi et al. (2014). This algorithmhas a
total complexity per iteration of O(nmF+n2m+2n2F+n3)
andwas shown to slightly underperform its equivalentGauss-
Newton counterpart.

The remaining SSD algorithms derived in Sect. 3, i.e.:

– SSD Inverse Wiberg
– SSD Forward Gauss-Newton Alternated
– SSD Forward Newton Schur
– SSD Forward Newton Alternated
– SSD Forward Wiberg
– SSD Asymmetric Gauss-Newton Schur
– SSD Asymmetric Gauss-Newton Alternated
– SSD Asymmetric Newton Schur

24 Note that Martins et al. used an additive update rule for the shape
parameters, p∗ = p+ Δp, so strictly speaking they derived an additive
version of the algorithm i.e the Simultaneous Forward Additive (SFA)
algorithm.

123

Int J Comput Vis

– SSD Asymmetric Newton Alternated
– SSD Asymmetric Wiberg
– SSD Bidirectional Gauss-Newton Schur
– SSD Bidirectional Gauss-Newton Alternated
– SSD Bidirectional Newton Schur
– SSD Bidirectional Newton Alternated
– SSD Bidirectional Wiberg

have never been published before and are also a key contri-
bution of the presented work.

Note that the iterative solutions of all CGD algorithms
studied in this paper are given in Appendix 3.

5 Experiments

In this section, we analyze the performance of the CGD algo-
rithms derived in Sect. 3 on the specific problems of non-rigid
face alignment in-the-wild. Results for five experiments are
reported. The first experiment compares the fitting accuracy
and convergence properties of all algorithms on the test set
of the popular Labelled Faces Parts in-the-Wild (LFPW)
(Belhumeur et al. 2011) database. The second experiment
quantifies the importance of the two terms in the Bayesian
project-out cost function in relation to the fitting accuracy
obtained by Project-Out algorithms. In the third experiment,
we study the effect that varying the value of the parameters
α and β has on the performance of Asymmetric algorithms.
The fourth experiment explores the effect of optimizing the
cost functions using reduced subsets of the total number of
pixels (Fig. 3) and quantifies the impact that this has on the
accuracy and computational efficiency of CGD algorithms.
Finally, in the fifth experiment, we report the performance of
themost accurate CGD algorithms on the test set of theHelen
(Le et al. 2012) database and on the entire Annotated Faces
in-the-Wild (AFW) (Zhu and Ramanan 2012) database.

Throughout this section, we abbreviate CGD algorithms
using the following convention: CF_TC_OM(_OS) where:
(a) CF stands for Cost Function and can be either SSD or
PO depending on whether the algorithm uses the Sum of
Squared Differences or the Project Out cost function; (b)
TC stands for Type of Composition and can be For, Inv, Asy
or Bid depending on whether the algorithm uses Forward,
Inverse, Asymmetric or Bidirectional compositions; (c) OM
stands for Optimization Method and can be GN, N or W
depending on whether the algorithm uses theGauss-Newton,
Newton or Wiberg optimization methods; and, finally, (d)
if Gauss-Newton or Newton methods are used, the optional
field OS, which stands for Optimization Strategy, can be Sch
or Alt depending on whether the algorithm solves for the
parameters simultaneously using the Schur complement or
using Alternated optimization. For example, following the

previous convention the Project Out Bidirectional Gauss-
Newton Schur algorithm is denoted by PO_Bid_GN_Sch.

Landmark annotations for all databases are provided by
the iBUG group25 (Sagonas et al. 2013a, b) and fitting
accuracy is reported using the point-to-point error measure
normalized by the face size26 proposed in Zhu and Ramanan
(2012) over the 49 interior points of the iBug annotation
scheme.

In all face alignment experiments, we use a single AAM,
trained using the ∼800 and ∼2000 training images of the
LFPW and Helen databases. Similar to Tzimiropoulos and
Pantic (2014), we use a modified version of the Dense Scale
Invariant Feature Transform (DSIFT) (Lowe 1999; Dalal and
Triggs 2005) to define the appearance representation of the
previous AAM. In particular, we describe each pixel with a
reduced SIFT descriptor of length 8 using the public imple-
mentation provided by the authors of Vedaldi and Fulkerson
(2010). All algorithms are implemented in a coarse to fine
manner using a Gaussian pyramid with 2 levels (face images
are normalized to a face size27 of roughly 150 pixels at the top
level). In all experiments, we optimize over 7 shape parame-
ters (4 similarity transform and 3 non-rigid shape parameters)
at the first pyramid level and over 16 shape parameters (4 sim-
ilarity transform and 12 non-rigid shape parameters) at the
second one. The dimensionality of the appearance models
is kept to represent 75% of the total variance in both lev-
els. This results in 225 and 280 appearance parameters at the
first and second pyramid levels respectively. The previous
choices were determined by testing on a small hold out set
of the training data.

In all experiments, algorithms are initialized by perturb-
ing the similarity transform that perfectly aligns the model’s
mean shape (a frontal pose and neutral expression looking
shape) with the ground truth shape of each image. These
transforms are perturbed by adding uniformly distributed
random noise to their scale, rotation and translation para-
meters. Exemplar initializations obtained by this procedure
for different amounts of noise are shown in Fig. 4. Notice that
we found that initializing using 5% uniform noise is (statis-
tically) equivalent to initializing with the popular OpenCV
(Bradski 2000) implementation of the well-known Viola and
Jones face detector (Viola and Jones 2001) on the test images
of the LFPW database.

Unless stated otherwise: (i) algorithms are initialized with
5% uniform noise (ii) test images are fitted three times using
different random initializations (the same exact random ini-
tializations are used for all algorithms); (iii) algorithms are
left to run for 40 iterations (24 iterations at the first pyra-
mid level and 16 at the second); (iv) results for Project-Out

25 http://ibug.doc.ic.ac.uk/resources/300-W/.
26 The face size is computed as the mean of the height and width of the
bounding box containing a face.

123

http://ibug.doc.ic.ac.uk/resources/300-W/

Int J Comput Vis

Fig. 3 Subset of pixels on the reference frame used to optimize the SSD and Project-Out cost functions for different sampling rates. a 100%, b
50%, c 25%, d 12%

Fig. 4 Exemplar initializations obtained by varying the percentage of uniform noise added to the similarity parameters. Note that, increasing the
percentage of noise produces more challenging initialization a 0%, b 2.5%, c 5%, d 7.5%. e 10%

algorithms are obtained using the Bayesian project-out cost
function defined by Eq. 22; and (v) results for Asymmetric
algorithms are reported for the special case of symmetric
composition i.e. α = β = 0.5 in Eq. 34.

Finally, in order to encourage open research and facilitate
future comparisons with the results presented in this section,
wemake the implementation of all algorithms publicly avail-
able as part of the Menpo Project1 (Alabort-i-Medina et al.
2014).

5.1 Comparison on LFPW

In this experiment, we report the fitting accuracy and conver-
gence properties of all CGD algorithms studied in this paper.
Results are reported on the ∼220 test images of the LFPW
database. In order to keep the information easily readable
and interpretable, we group algorithms by cost function (i.e.
SSD or Project-Out), and optimization method (i.e. Gauss-
Newton, Newton orWiberg).

Results for this experiment are reported in Figs. 5, 6, 7, 8, 9
and 10. These figures have all the same structure and are com-
posed of four figures and a table. Figs. 5a, 6a, 7a, 8a, 9a
and 10a report the Cumulative Error Distribution (CED),
i.e the proportion of images versus normalized point-
to-point error for each of the algorithms’ groups. Fig-
ures 5e, 6e, 7e, 8e, 9e, and 10e summarize and complete
the information on the previous CEDs by stating the pro-
portion of images fitted with a normalized point-to-point
error smaller than 0.02, 0.03 and 0.04; and by stating the
mean, std and median of the final normalized point-to-

point error as well as the approximate run-time. The aim
of the previous figures and tables is to help us compare
the final fitting accuracy obtained by each algorithm. On
the other hand, Figs. 5b, 6b, 7b, 8b, 9b and 10b report the
mean normalized point-to-point error at each iteration while
Figs. 5c, 5d, 6c, 6d, 7c, 7d, 8c, 8d, 9c, 9d and 10c, 10d report
themean normalized cost at each iteration.27 The aimof these
figures is to help us compare the convergence properties of
every algorithm.

5.1.1 SSD Gauss-Newton algorithms

Results for SSD Gauss-Newton algorithms are reported
in Fig. 5. We can observe that Inverse, Asymmetric and
Bidirectional algorithms obtain a similar performance and
significantly outperform Forward algorithms in terms of fit-
ting accuracy, Fig. 5a, e. In absolute terms, Bidirectional
algorithms slightly outperform Inverse andAsymmetric algo-
rithms. On the other hand, the difference in performance
between the Simultaneous Schur and Alternated optimiza-
tions strategies are minimal for all algorithms and they were
found to have no statistical significance.

Looking at Figures 5b–d there seems to be a clear (and
obviously expected) correlation between the normalized
point-to-point error and the normalized value of the cost func-
tion at each iteration. In terms of convergence, it can be seen
thatForward algorithms converge slower than Inverse,Asym-

27 These figures are produced by dividing the value of the cost function
at each iteration by its initial value and averaging for all images.

123

Int J Comput Vis

Algorithm < 0.02 < 0.03 < 0.04 Mean Std Median Run-Time

Initialization 0.000 0.004 0.055 0.080 0.028 0.078 -
SSD For GN Sch 0.456 0.707 0.777 0.033 0.030 0.021 ∼ 1.6 s
SSD For GN Alt 0.445 0.702 0.766 0.033 0.030 0.021 ∼ 1.4 s
SSD Inv GN Sch 0.686 0.906 0.939 0.022 0.019 0.017 ∼ 1.6 s
SSD Inv GN Alt 0.673 0.897 0.933 0.022 0.020 0.017 ∼ 1.4 s
SSD Asy GN Sch 0.640 0.891 0.929 0.023 0.021 0.018 ∼ 1.7 s
SSD Asy GN Alt 0.635 0.882 0.924 0.023 0.021 0.018 ∼ 1.4 s
SSD Bid GN Sch 0.674 0.917 0.946 0.022 0.019 0.017 ∼ 1.9 s
SSD Bid GN Alt 0.680 0.924 0.951 0.021 0.019 0.017 ∼ 1.6 s

(a) (b)

(c) (d)

(e)

Fig. 5 Results showing the fitting accuracy and convergence proper-
ties of the SSD Gauss-Newton algorithms on the LFPW test dataset
initialized with 5% uniform noise. a CED on the LFPW test dataset for
all SSD Gauss-Newton algorithms initialized with 5% uniform noise.
bMean normalized point-to-point error versus number of iterations on
the LFPW test dataset for all SSD Gauss-Newton algorithms initialized
with 5% uniform noise. cMean normalized cost versus number of first
scale iterations on the LFPW test dataset for all SSD Gauss-Newton

algorithms initialized with 5% uniform noise. dMean normalized cost
versus number of second scale iterations on the LFPW test dataset for
all SSD Gauss-Newton algorithms initialized with 5% uniform noise. e
Table showing the proportion of images fitted with a normalized point-
to-point error below 0.02, 0.03 and 0.04 together with the normalized
point-to-point error mean, std and median for all SSD Gauss-Newton
algorithms initialized with 5% uniform noise

metric and Bidirectional. Bidirectional algorithms converge
slightly faster than Inverse algorithms and these slightly
faster than Asymmetric algorithms. In this case, the Simulta-

neous Schur optimization strategy seems to converge slightly
faster than the Alternated one for all SSD Gauss-Newton
algorithms.

123

Int J Comput Vis

Algorithm < 0.02 < 0.03 < 0.04 Mean Std Median Run-Time

Initialization 0.000 0.004 0.055 0.080 0.028 0.078 -
SSD For N Sch 0.249 0.479 0.603 0.044 0.033 0.031 ∼ 2.3 s
SSD For N Alt 0.244 0.476 0.600 0.044 0.033 0.032 ∼ 2.1 s
SSD Inv N Sch 0.626 0.876 0.909 0.024 0.022 0.018 ∼ 2.3 s
SSD Inv N Alt 0.613 0.876 0.909 0.024 0.022 0.018 ∼ 2.1 s
SSD Asy N Sch 0.562 0.812 0.863 0.030 0.076 0.019 ∼ 2.5 s
SSD Asy N Alt 0.557 0.808 0.862 0.027 0.025 0.019 ∼ 2.1 s
SSD Bid N Sch 0.641 0.897 0.932 0.023 0.022 0.018 ∼ 3.2 s
SSD Bid N Alt 0.600 0.903 0.939 0.023 0.021 0.018 ∼ 2.7 s

(a) (b)

(c) (d)

(e)

Fig. 6 Results showing the fitting accuracy and convergence proper-
ties of the SSD Newton algorithms on the LFPW test dataset initialized
with 5% uniform noise. a Cumulative error distribution on the LFPW
test dataset for all SSD Newton algorithms initialized with 5% uni-
form noise. b Mean normalized point-to-point error versus number of
iterations on the LFPW test dataset for all SSD Newton algorithms ini-
tialized with 5% uniform noise. cMean normalized cost versus number
of first scale iterations on the LFPW test dataset for all SSD Newton

algorithms initialized with 5% uniform noise. dMean normalized cost
versus number of second scale iterations on the LFPW test dataset for
all SSD Newton algorithms initialized with 5% uniform noise. e Table
showing the proportion of images fitted with a normalized point-to-
point error below 0.02, 0.03 and 0.04 together with the normalized
point-to-point error Mean, Std and Median for all SSD Newton algo-
rithms initialized with 5% uniform noise

5.1.2 SSD Newton algorithms

Results for SSD Newton algorithms are reported on Fig. 6.
In this case, we can observe that the fitting performance

of all algorithms decreases with respect to their Gauss-
Newton counterparts Fig. 6a, e. This is most noticeable in
the case of Forward algorithms for which there is ∼ 20%
drop in the proportion of images fitted below 0.02, 0.03

123

Int J Comput Vis

Algorithm < 0.02 < 0.03 < 0.04 Mean Std Median Run-Time

Initialization 0.000 0.004 0.055 0.080 0.028 0.078 -
SSD For W 0.457 0.707 0.777 0.33 0.030 0.021 ∼ 1.6 s
SSD Inv W 0.689 0.903 0.939 0.22 0.019 0.017 ∼ 1.6 s
SSD Asy W 0.635 0.887 0.926 0.23 0.021 0.018 ∼ 1.7 s
SSD Bid W 0.686 0.911 0.942 0.22 0.019 0.017 ∼ 1.9 s

(a) (b)

(c) (d)

(e)

Fig. 7 Results showing the fitting accuracy and convergence prop-
erties of the SSD Wiberg algorithms on the LFPW test dataset. a
CED on the LFPW test dataset for all SSD Wiberg algorithms ini-
tialized with 5% uniform noise. b Mean normalized point-to-point
error versus number of iterations on the LFPW test dataset for all
SSD Wiberg algorithms initialized with 5% uniform noise. c Mean
normalized cost versus number of first scale iterations on the LFPW
test dataset for all SSD Wiberg algorithms initialized with 5% uni-

form noise. d Mean normalized cost versus number of second scale
iterations on the LFPW test dataset for all SSD Wiberg algorithms ini-
tialized with 5% uniform noise. e Table showing the proportion of
images fitted with a normalized point-to-point error below 0.02, 0.03
and 0.04 together with the normalized point-to-point error mean, std
and median for all SSDWiberg algorithms initialized with 5% uniform
noise

and 0.04 with respect to its Gauss-Newton equivalents. For
these algorithms there is also a significant increase in the
mean and median of the normalized point-to-point error.
Asymmetric Newton algorithms also perform considerably
worse, between 5% and 10%, than their Gauss-Newton ver-
sions. The drop in performance is reduced for Inverse and

Bidirectional Newton algorithms for which accuracy is only
reduced by around 3% with respect their Gauss-Newton
equivalent.

Within Newton algorithms, there are clear differences
in terms of speed of convergence Fig. 6b–d. Bidirec-
tional algorithms are the fastest to converge followed by

123

Int J Comput Vis

Algorithm < 0.02 < 0.03 < 0.04 Mean Std Median Run-Time

Initialization 0.000 0.004 0.055 0.080 0.028 0.078 -
PO For GN Sch 0.470 0.729 0.799 0.031 0.029 0.021 ∼ 1.4 s
PO Inv GN ASch 0.458 0.719 0.780 0.035 0.044 0.021 ∼ 0.6 s
PO Asy GN Sch 0.637 0.891 0.938 0.023 0.021 0.018 ∼ 1.4 s
PO Bid GN Sch 0.528 0.802 0.862 0.030 0.039 0.020 ∼ 1.6 s
PO Bid GN Alt 0.528 0.805 0.865 0.030 0.040 0.019 ∼ 1.4 s

(a) (b)

(c) (d)

(e)

Fig. 8 Results showing the fitting accuracy and convergence proper-
ties of the Project-Out Gauss-Newton algorithms on the LFPW test
dataset. a CED graph on the LFPW test dataset for all Project-Out
Gauss-Newton algorithms initialized with 5% uniform noise. b Mean
normalized point-to-point error versus number of iterations on the
LFPW test dataset for all Project-Out Gauss-Newton algorithms initial-
ized with 5% uniform noise. c Mean normalized cost versus number
of first scale iterations on the LFPW test dataset for all Project-Out

Gauss-Newton algorithms initialized with 5% uniform noise. d Mean
normalized cost versus number of second scale iterations on the LFPW
test dataset for all Project-Out Gauss-Newton algorithms initialized
with 5% uniform noise. e Table showing the proportion of images fit-
ted with a normalized point-to-point error below 0.02, 0.03 and 0.04
together with the normalized point-to-point error mean, std and median
for all Project-Out Gauss-Newton algorithms initialized with 5% uni-
form noise

Inverse and Asymmetric algorithms, in this order, and
lastly Forward algorithms. In this case, the Simultane-
ous Schur optimization strategy seems to converge again
slightly faster than the Alternated one for all algorithms

but Bidirectional algorithms, for which the Alternated
strategy converges slightly faster. Overall, SSD Newton
algorithms converge slower than SSD Gauss-Newton
algorithms.

123

Int J Comput Vis

Algorithm < 0.02 < 0.03 < 0.04 Mean Std Median Run-Time

Initialization 0.000 0.004 0.055 0.080 0.028 0.078 -
PO For N Sch 0.280 0.503 0.626 0.043 0.033 0.030 ∼ 2.1 s
PO Inv N Alt 0.265 0.516 0.586 11.929 179.525 0.029 ∼ 1.6 s
PO Asy N Sch 0.494 0.744 0.826 0.030 0.028 0.020 ∼ 2.1 s
PO Bid N Sch 0.314 0.536 0.649 0.287 1.347 0.027 ∼ 2.8 s
PO Bid N Alt 0.329 0.570 0.649 0.280 1.465 0.026 ∼ 2.1 s

(a) (b)

(c) (d)

(e)

Fig. 9 Results showing thefitting accuracy and convergence properties
of the Project-Out Newton algorithms on the LFPW test dataset. a CED
graph on the LFPW test dataset for all Project-Out Newton algorithms
initialized with 5% uniform noise. b Mean normalized point-to-point
error versus number of iterations on the LFPW test dataset for all
Project-Out Newton algorithms initialized with 5% uniform noise. c
Mean normalized cost versus number of first scale iterations on the
LFPW test dataset for all Project-Out Newton algorithms initialized

with 5% uniform noise. dMean normalized cost versus number of sec-
ond scale iterations on the LFPW test dataset for all Project-Out Newton
algorithms initialized with 5% uniform noise. e Table showing the pro-
portion of images fitted with a normalized point-to-point error below
0.02, 0.03 and 0.04 together with the normalized point-to-point error
mean, std and median for all Project-Out Newton algorithms initialized
with 5% uniform noise

5.1.3 SSD Wiberg algorithms

Results for SSD Wiberg algorithms are reported on Fig. 7.
Figure 7a–e show that these results are (as one would expect)
virtually equivalent to those obtained by theirGauss-Newton
counterparts.

5.1.4 Project-Out Gauss-Newton algorithms

Results forProject-OutGauss-Newton algorithms are reported
on Fig. 8. We can observe that, there is significant drop in
terms of fitting accuracy for Inverse and Bidirectional algo-
rithms with respect to their SSD versions, Fig. 8a, e. As

123

Int J Comput Vis

Algorithm < 0.02 < 0.03 < 0.04 Mean Std Median Run-Time

Initialization 0.000 0.004 0.055 0.080 0.028 0.078 -
PO Bid W Sch 0.524 0.801 0.862 0.030 0.039 0.020 ∼ 1.4 s

(a) (b)

(c) (d)

(e)

Fig. 10 Results showing the fitting accuracy and convergence prop-
erties of the Project-Out Wiberg algorithms on the LFPW test dataset.
a Cumulative Error Distribution graph on the LFPW test dataset for
all Project-Out Wiberg algorithms initialized with 5% uniform noise. b
Mean normalized point-to-point error versus number of iterations graph
on the LFPW test dataset for all Project-Out Wiberg algorithms initial-
ized with 5% uniform noise. cMean normalized cost versus number of
first scale iterations graph on the LFPW test dataset for all Project-Out

Wiberg algorithms initialized with 5% uniform noise. dMean normal-
ized cost versus number of second scale iterations graph on the LFPW
test dataset for all Project-Out Wiberg algorithms initialized with 5%
uniform noise. e Table showing the proportion of images fitted with
a normalized point-to-point error below 0.02, 0.03 and 0.04 together
with the normalized point-to-point error mean, std and median for all
Project-Out Wiberg algorithms initialized with 5% uniform noise

expected, the Forward algorithm achieves virtually the same
results as its SSD counterpart. The Asymmetric algorithm
obtains similar accuracy to that of the best performing SSD
algorithms.

Looking at Figures 8b–d we can see that Inverse and
Bidirectional algorithms converge slightly faster than the
Asymmetric algorithm. However, the Asymmetric algorithm
ends up descending to a significant lower value of the mean
normalized cost which also translates to a lower value for the

final mean normalized point-to-point error. Similar to SSD
algorithms, the Forward algorithm is the worst convergent
algorithm.

Finally, notice that, in this case, there is virtually no dif-
ference, in terms of both final fitting accuracy and speed
of convergence, between the Simultaneous Schur and Alter-
nated optimizations strategies used by the Bidirectional
algorithm.

123

Int J Comput Vis

5.1.5 Project-Out Newton algorithms

Results for Project-Out Newton algorithms are reported on
Fig. 9. It can be clearly seen that Project-Out Newton algo-
rithms perform much worse than their Gauss-Newton and
SSD counterparts. Thefinal fitting accuracy obtained by these
algorithms is very poor compared to the one obtained by the
best SSD andProject-Out Gauss-Newton algorithms, Fig. 9a,
e. In fact, by looking at Fig. 9b–d only theForward andAsym-
metric algorithms seem to be stable at the second level of the
Gaussian pyramid with Inverse and Bidirectional algorithms
completely diverging for some of the images as shown by the
large mean and std of their final normalized point-to-point
errors.

5.1.6 Project-Out Wiberg algorithms

Results for the Project-Out Bidirectional Wiberg algorithm
are reported on Fig. 10. As expected, the results are virtually
identical to those of the obtained by Project-Out Bidirec-
tional Gauss-Newton algorithms.

5.2 Weighted Bayesian project-out

In this experiment, we quantify the importance of each of the
two terms in our Bayesian project-out cost function, Eq. 22.
To this end, we introduce the parameters, ρ ∈ [0, 1] and
γ = 1 − ρ, to weight up the relative contribution of both
terms:

ρ||i[p] − ā||2AD−1AT + γ

σ 2 ||i[p] − ā||2
Ā (124)

Setting ρ = 0, γ = 1 reduces the previous cost function
to the original project-out loss proposed in Matthews and
Baker (2004); completely disregarding the contribution of
the prior distribution over the appearance parameters i.e the
Mahalanobis distance within the appearance subspace. On
the contrary, setting ρ = 1, γ = 0 reduces the cost function
to the first term; completely disregarding the contribution
of the project-out term i.e. the distance to the appearance
subspace. Finally setting ρ = γ = 0.5 leads to the standard
Bayesian project-out cost function proposed in Sect. 3.1.2.

In order to assess the impact that each term has on the fit-
ting accuracy obtained by the previousProject-Out algorithm
we repeat the experimental set up of the first experiment and
test all Project-Out Gauss-Newton algorithms for different
values of the parameters ρ = 1−γ . Notice that, in this case,
we only report the performance ofGauss-Newton algorithms
because they were shown to vastly outperform Newton algo-
rithms and to be virtually equivalent toWiberg algorithms in
the first experiment.

Results for this experiment are reported by Fig. 11.We can
see that, regardless of the type of composition, a weighted

combination of the two previous terms always leads to a
smaller mean normalized point-to-point error compared to
either term on its own. Note that the final fitting accuracy
obtainedwith the standardBayesian project-out cost function
is substantially better than the one obtained by the original
project-out loss (this is specially noticeable for the Inverse
and Bidirectional algorithms); fully justifying the inclusion
of the first term, i.e the Mahalanobis distance within the
appearance subspace, into the cost function. Finally, in this
particular experiment, the final fitting accuracy of all algo-
rithms is maximized by setting ρ = 0.1, γ = 0.9, further
highlighting the importance of the first term in the Bayesian
formulation.

5.3 Optimal asymmetric composition

This experiment quantifies the effect that varying the value of
the parameters α ∈ [0, 1] and β = 1−α in Eq. 34 has in the
fitting accuracy obtained by theAsymmetric algorithms.Note
that for α = 1, β = 0 and α = 0, β = 1 these algorithms
reduce to their Forward and Inverse versions respectively.
Recall that, in previous experiments, we used the Symmet-
ric case α = β = 0.5 to generate the results reported for
Asymmetric algorithms. Again, we only report performance
for Gauss-Newton algorithms.

We again repeat the experimental set up described in the
first experiments and report the fitting accuracy obtained by
the Project Out and SSD Asymmetric Gauss-Newton algo-
rithms for different values of the parameters α = 1 − β.
Results are shown in Fig. 12. For the BPO Asymmetric algo-
rithm, the best results are obtain by setting α = 0.4, β = 0.6,
Figs. 12a (top) and 12b. These results slightly outperform
those obtain by the default Symmetric algorithm and this par-
ticular configuration of the BPO Asymmetric algorithm is
the best performing one on the LFPW test dataset. For the
SSD Asymmetric Gauss-Newton algorithm the best results
are obtained by setting α = 0.2, β = 0.8, Figs. 12a (bottom)
and 12c. In this case, the boost in performancewith respect to
the default Symmetric algorithm is significant and, with this
particular configuration, the SSD Asymmetric Gauss-Newton
algorithm is the best performing SSD algorithm on the LFPW
test dataset, outperforming Inverse and Bidirectional algo-
rithms.

5.4 Sampling and Number of Iterations

In this experiment, we explore two different strategies to
reduce the running time of the previous CGD algorithms.

The first one consists of optimizing the SSD and Project-
Out cost functions using only a subset of all pixels in the
reference frame. In AAMs the total number of pixels on
the reference frame, F , is typically several orders of mag-
nitude bigger than the number of shape, n, and appearance,

123

Int J Comput Vis

Fig. 11 Results quantifying the effect of varying the value of the
parameters ρ = 1−γ in Project-Out Gauss-Newton algorithms. a Pro-
portion of images with normalized point-to-point errors smaller than
0.02, 0.03 and 0.04 for the Project-Out and SSD Asymmetric Gauss-
Newton algorithms for different values of ρ = 1 − γ and initialized
with 5% noise. Colors encode overall fitting accuracy, from highest
to lowest: red, orange, yellow, green, blue and purple. b CED on the
LFPW test dataset for Project-Out Forward Gauss-Newton algorithms

for different values of ρ = 1− γ and initialized with 5% noise. c CED
on the LFPW test dataset for Project-Out Inverse Gauss-Newton algo-
rithms for different values of ρ = 1− γ and initialized with 5% noise.
d CED on the LFPW test dataset for Project-Out Asymmetric Gauss-
Newton algorithms for different values of ρ = 1 − γ and initialized
with 5% noise. e CED on the LFPW test dataset for Project-Out Bidi-
rectional Gauss-Newton algorithms for different values of ρ = 1 − γ

and initialized with 5% noise (Color figure online)

123

Int J Comput Vis

Fig. 12 Results quantifying the effect of varying the value of the para-
meters α = 1 − β in Asymmetric algorithms. a Proportion of images
with normalized point-to-point errors smaller than 0.02, 0.03 and 0.04
for the Project-Out and SSDAsymmetric Gauss-Newton algorithms for
different values of α = 1 − β and initialized with 5% noise. Colors
encode overall fitting accuracy, from highest to lowest: red, orange,

yellow, green, blue and purple. b CED on the LFPW test dataset for
Project-Out Asymmetric Gauss-Newton algorithm for different values
of α = 1 − β and initialized with 5% noise. c CED on the LFPW test
dataset for the the SSD Asymmetric Gauss-Newton algorithm for dif-
ferent values of α = 1− β and initialized with 5% noise (Color figure
online)

m, components i.e. F >> m >> n. Therefore, a significant
reduction in the complexity (and running time) of CGD algo-
rithms can be obtained by decreasing the number of pixels
that are used to optimize the previous cost functions. To this
end, we compare the accuracy obtained by using 100, 50,
25 and 12% of the total number of pixels on the reference
frame. Note that pixels are (approximately) evenly sampled
across the reference frame in all cases, Fig. 3.

The second strategy consists of simply reducing the num-
ber of iterations that each algorithm is run. Based on the
figures used to assess the convergence properties of CGD
algorithms in previous experiments, we compare the accu-
racy obtained by running the algorithms for 40 (24+16) and
20 (12 + 8) iterations.

Note that, in order to further highlight the advantages and
disadvantages of using the previous strategies, we report the
fitting accuracy obtained by initializing the algorithms using
different amounts of uniform noise.

Once more we repeat the experimental set up of the first
experiment and report the fitting accuracy obtained by the

ProjectOut andSSDAsymmetricGauss-Newton algorithms.
Results for this experiment are shown in Fig. 13. It can be
seen that reducing the number of pixels up to 25% while
maintaining the original number of iterations to 40 (24+16)
has little impact on the fitting accuracy achieved by both
algorithms while reducing them to 12% has a clear negative
impact, Fig. 13a, b. Also, performance seems to be consistent
along the amount of noise. In terms of run time, Fig. 13c,
reducing the number of pixels to 50, 25 and 12% offers
speed ups of ∼2.0x, ∼2.9x and ∼3.7x for the BPO algo-
rithm and of ∼1.8x, ∼2.6x and ∼2.8x for the SSD algorithm
respectively.

On the other hand, reducing the number of iterations from
40 (24 + 16) to 20 (12 + 8) has no negative impact in
performance for levels of noise smaller than 2% but has a
noticeable negative impact for levels of noise bigger than 5%.
Notice that remarkable speed ups, Fig. 13f, can be obtain for
both algorithms by combining the previous two strategies
at the expenses of small but noticeable decreases in fitting
accuracy.

123

Int J Comput Vis

100% < 50% < 25% < 12%

SSD Asy GN Sch ∼ 1680 ms ∼ 930 ms ∼ 650 ms ∼ 590 ms
PO Asy GN ∼ 1400 ms ∼ 680 ms ∼ 480 ms ∼ 380 ms

100% < 50% < 25% < 12%

SSD Asy GN Sch ∼ 892 ms ∼ 519 ms ∼ 369 ms ∼ 331 ms
PO Asy GN ∼ 707 ms ∼ 365 ms ∼ 235 ms ∼ 211 ms

(a)

(c)

(f)

(b)

(d) (e)

Fig. 13 Results assessing the effectiveness of sampling for the best
performing Project-Out and SSD algorithms on the LFPW database. a
Proportion of imageswith normalized point-to-point errors smaller than
0.02, 0.03 and 0.04 for the SSD Asymmetric Gauss-Newton algorithm
using different sampling rates, 40 (24 + 16) iterations, and initialized
with different amounts of noise. Colors encode overall fitting accuracy,
from highest to lowest: red, orange, yellow, green, blue and purple.
b Proportion of images with normalized point-to-point errors smaller
than 0.02, 0.03 and 0.04 for the Project-OutAsymmetricGauss-Newton
algorithm using different sampling rates, 40 (24 + 16) iterations, and
initialized with different amounts of noise. Colors encode overall fit-
ting accuracy, from highest to lowest: red, orange, yellow, green, blue
and purple. c Table showing run time of each algorithm for different

amounts of sampling and 40 (24+16) iterations.d Proportion of images
with normalized point-to-point errors smaller than 0.02, 0.03 and 0.04
for the Project-Out Asymmetric Gauss-Newton algorithm using differ-
ent sampling rates, 20 (12+ 8) iterations, and initialized with different
amounts of noise. Colors encode overall fitting accuracy, from highest
to lowest: red, orange, yellow, green, blue and purple. e Proportion of
images with normalized point-to-point errors smaller than 0.02, 0.03
and 0.04 for the SSD Asymmetric Gauss-Newton algorithm using dif-
ferent sampling rates, 20 (12+8) iterations, and initializedwith different
amounts of noise. Colors encode overall fitting accuracy, from highest
to lowest: red, orange, yellow, green, blue and purple. f Table showing
run time of each algorithm for different amounts of sampling and 20
(12 + 8) iterations (Color figure online)

123

Int J Comput Vis

Fig. 14 Results showing the fitting accuracy of the SSD and Project-
Out Asymmetric Gauss-Newton algorithms on the Helen and AFW
databases. a CED on the Helen test dataset for the Project-Out and

SSD Asymmetric Gauss-Newton algorithms initialized with 5% noise.
b CED on the AFW database for the Project-Out and SSD Asymmetric
Gauss-Newton algorithm initialized with 5% noise

5.5 Comparison on Helen and AFW

In order to facilitate comparisons with recent prior work on
AAMs (Tzimiropoulos and Pantic 2013; Antonakos et al.
2014; Kossaifi et al. 2014) and with other state-of-the-
art approaches in face alignment (Xiong and De la Torre
2013; Asthana et al. 2013), in this experiment, we report
the fitting accuracy of the SSD and Project-Out Asym-
metric Gauss-Newton algorithms on the widely used test
set of the Helen database and on the entire AFW data-
base. Furthermore we compare the performance of the
previous two algorithms with the one obtained by the
recently proposed Gauss-Newton Deformable Part Mod-
els (GN-DPMs) proposed by Tzimiropoulos and Pantic in
Tzimiropoulos and Pantic (2014); which was shown to
achieve state-of-the-art results in the problem of face align-
ment in-the-wild.

For both our algorithms, we report two different types of
results: (i) sampling rate of 25% and 20 (12 + 8) iterations;
and (ii) sampling rate of 50% and 40 (24 + 16) iterations.
For GN-DPMs we use the authors public implementation
to generate the results. In this case, we report, again, two
different types of results by letting the algorithm run for 20
and 40 iterations.

Result for this experiment are shown in Fig. 14. Look-
ing at Fig. 14a we can see that both, SSD and Project-Out
Asymmetric Gauss-Newton algorithms, obtain similar fitting
accuracy on theHelen test dataset.Note that, in all cases, their
accuracy is comparable to the one achieved byGN-DPMs for
normalized point-to-point errors <0.2 and significantly bet-
ter for <0.3, <0.4. As expected, the best results for both
our algorithms are obtained using 50% of the total amount
of pixels and 40 (24 + 16) iterations. However, the results
obtained by using only 25% of the total amount of pixels and

20 (12 + 8) iterations are comparable to the previous ones;
specially for the Project-Out Asymmetric Gauss-Newton. In
general, these results are consistent with the ones obtained
on the LFPW test dataset, Experiments 5.1 and 5.3.

On the other hand, the performance of both algorithms
drops significantly on the AFW database, Fig. 14b. In this
case, GN-DPMs achieves slightly better results than the SSD
and Project-Out Asymmetric Gauss-Newton algorithms for
normalized point-to-point errors <0.2 and slightly worst for
<0.3, <0.4. Again, both our algorithms obtain better results
by using 50% sampling rate and 40 (24 + 16) iterations
and the difference in accuracy with respect to the versions
using 25% sampling rate and 20 (12 + 8) iterations slightly
widens when compared to the results obtained on the Helen
test dataset. This drop in performance is consistent with other
recent works on AAMs (Tzimiropoulos and Pantic 2014;
Alabort-i-Medina andZafeiriou 2014;Antonakos et al. 2014;
Alabort-i-Medina and Zafeiriou 2015) and it is attributed to
large difference in terms of shape and appearance statistics
between the images of the AFW dataset and the ones of the
training sets of the LFPWandHelen datasetswhere theAAM
model was trained on.

Exemplar results for this experiment are shown in Figs. 15
and 16.

5.6 Analysis

Given the results reported by the previous six experiments
we conclude that:

1. Overall, Gauss-Newton and Wiberg algorithms vastly
outperform Newton algorithms for fitting AAMs. Exper-
iment 5.1 clearly shows that the former algorithms
provide significantly higher levels of fitting accuracy at

123

Int J Comput Vis

Fig. 15 Exemplar results from the Helen test dataset. a Exemplar results from the Helen test dataset obtained by the Project-Out Asymmetric
Gauss-Newton Schur algorithm. b Exemplar results from the Helen test dataset obtained by the SSD Asymmetric Gauss-Newton Schur algorithm

Fig. 16 Exemplar results from the AFW dataset. a Exemplar results from the Helen test dataset obtained by the Project-Out Asymmetric Gauss-
Newton Schur algorithm. b Exemplar results from the AFW dataset obtained by the SSD Asymmetric Gauss-Newton Schur algorithm

considerably lower computational complexities and run
times. These findings are consistent with existent liter-
ature in the related field of parametric image alignment
(Matthews and Baker 2004) and also, to certain extend,
with prior work on Newton algorithms for AAM fitting
(Kossaifi et al. 2014). We attribute the bad performance
of Newton algorithms to the difficulty of accurately com-
puting a (noiseless) estimate of the full Hessian matrix
using finite differences.

2. Gauss-Newton andWiberg algorithms are virtually equiv-
alent in performance. The results in Experiment 5.1 show
that the difference in accuracy between both types of
algorithms is minimal and the small differences in their
respective solutions are, in practice, insignificant.

3. Our Bayesian project-out formulation leads to signifi-
cant improvements in fitting accuracy without adding

extra computational cost. Experiment 5.2 shows that a
weighted combination of the two terms formingBayesian
project-out loss always outperforms the classic project
out formulation.

4. The Asymmetric composition proposed in this work
leads to CGD algorithms that are more accurate and
that converge faster. In particular, the SSD and Project-
Out Asymmetric Gauss-Newton algorithms are shown
to achieve significantly better performance than their
Forward and Inverse counterparts in Experiments 5.1
and 5.3.

5. Finally, a significant reduction in the computational com-
plexity and runtime of CDG algorithms can be obtained
by limiting the number of pixels considered during opti-
mization of the loss function and by adjusting the number

123

Int J Comput Vis

of iterations that the algorithms are run for, Experi-
ment 5.4.

6 Conclusion

In this paper we have thoroughly studied the problem of fit-
ting AAMs using CGD algorithms. We have presented a
unified and complete framework for these algorithms and
classified them with respect to three of their main charac-
teristics: (i) cost function; (ii) type of composition; and (iii)
optimization method.

Furthermore, we have extended the previous framework
by:

– Proposing a novel Bayesian cost function for fitting
AAMs that can be interpreted as a more general for-
mulation of the well-known project-out loss. We have
assumed a probabilistic model for appearance genera-
tion with both Gaussian noise and a Gaussian prior over
a latent appearance space. Marginalizing out the latent
appearance space, we have derived a novel cost func-
tion that only depends on shape parameters and that can
be interpreted as a valid and more general probabilistic
formulation of the well-known project-out cost function
(Matthews and Baker 2004). In the experiments, we have
showed that our Bayesian formulation considerably out-
performs the original project-out cost function.

– Proposing asymmetric and bidirectional compositions
for CGD algorithms. We have shown the connection
between Gauss-Newton Asymmetric algorithms and
ESM algorithms and experimentally proved that these
two novel types of composition lead to better convergent
and more robust CGD algorithm for fitting AAMs.

– Providing new valuable insights into existent CGD algo-
rithms by reinterpreting them as direct applications of the
Schur complement and the Wiberg method.

Finally, in terms of future work, we plan to:

– Adapt existent Supervised Descent (SD) algorithms
for face alignment (Xiong and De la Torre 2013;
Tzimiropoulos 2015) to AAMs and investigate their rela-
tionship with the CGD algorithms studied in this paper.

– Investigate if our Bayesian cost function and the pro-
posed asymmetric and bidirectional compositions can
also be successfully applied to similar generative para-
metric models, such as the Gauss-Newton Parts-Based
DeformableModel (GN-DPM) proposed in Tzimiropou-
los and Pantic (2014).

Acknowledgments The work of Joan Alabort-i-Medina is funded by a
DTA studentship from Imperial College London and by the Qualcomm
Innovation Fellowship. The work of S. Zafeiriou has been partly funded
by the EPSRCproject Adaptive Facial DeformableModels for Tracking
(ADAManT), EP/L026813/1.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix1:AsymmetricGauss-NewtonAlgorithms
as Efficient Second-order Minimization (ESM)

In this section, we show that the Asymmetric Gauss-Newton
algorithms derived in Sect. 3.3.1 are, in fact, also true second
order optimization algorithmswith respect to the incremental
warp Δp.

The use of asymmetric composition together with the
Gauss-Newton method has been proven to naturally lead
to Efficient Second order Minimization (ESM) algorithms
in the related field of parametric image alignment (Malis
2004; Benhimane andMalis 2004;Mégret et al. 2008, 2010).
Following a similar line of reasoning, we will show that
Asymmetric Gauss-Newton algorithms for fitting AAMs can
also be also interpreted as ESM algorithms.

In order to show the previous relationship we will make
use of the simplified data term28 introduced by Eq. 25. Using
forward composition, the optimization problem defined by:

Δp∗ = argmin
Δp

1

2
rTf Ār f (125)

where the forward residual r f is defined as:

r f = i[p ◦ Δp] − a (126)

As seen before, Gauss-Newton solves the previous optimiza-
tion problem by performing a first order Taylor expansion of
the residual around Δp:

r̂ f (Δp) = r f + ∂r f

∂Δp
Δp + Or f (Δp2)

︸ ︷︷ ︸
remainder

= i[p] − ā + JiΔp + Or f (Δp2)

(127)

and solving the following approximation of the original prob-
lem:

Δp∗ = argmin
Δp

1

2
r̂Tf r̂ f (128)

However, note that, instead of performing a first order
Taylor expansion, we can also perform a second order Taylor
expansion of the residual:

28 Notice that similar derivations can also be obtained using the SSD
andProject-Out data terms, butwe use the simplified one here for clarity.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Int J Comput Vis

ř f (Δp) = r f + ∂r f

∂Δp
Δp

+ 1

2
ΔpT

∂2r f

∂2Δp
Δp + Or f (Δp3)

= i[p] − a + JiΔp

+ 1

2
ΔpTHiΔp + Or f (Δp3)

(129)

Then, given the second main assumption behind AAMs
(Eq. 7) the following approximation must hold:

∇i[p] ∂W
∂Δp

≈ ∇a
∂W
∂Δp

Ji ≈ Ja

(130)

and, because the previous Ji and Ja are functions of Δp, we
can perform a first order Taylor expansion of Ji to obtain:

Ji(Δp) ≈ Ji + ΔpT
∂Ji
∂Δp

+ OJi(Δp2)︸ ︷︷ ︸
remainder

≈ Ji + ΔpTHi + OJi(Δp2)

Ja ≈ Ji + ΔpTHi + OJi(Δp2)

ΔpTHi ≈ Ja − Ji − OJi(Δp2)

(131)

Finally, substituting theprevious approximation forΔpTHi

into Eq. 129 we arrive at:

ř f (Δp) = i[p] − a + JiΔp

+ 1

2
ΔpTHiΔp + Or f (Δp3)

= i[p] − a + JiΔp

+ 1

2

(
Ja − Ji − OJi(Δp2)

)
Δp

+ Or f (Δp3)

= i[p] − a + 1

2
(Ji + Ja)Δp

+ Ototal(Δp3)

(132)

where the total remainder is cubic with respect to Δp:

Ototal(Δp3) = Or f (Δp3) − OJi(Δp2)Δp (133)

The expression in Eq. 132 constitutes a true second order
approximation of the forward residual r f where the term
1
2 (Ji + Ja) is equivalent to the asymmetric Jacobian inEq. 47
when α = β = 0.5:

1

2
(Ji + Ja) =

(
1

2
Ji + 1

2
Ja

)

=
(
1

2
∇i[p] ∂W

∂Δp
+ 1

2
∇a

∂W
∂Δp

)

=
(
1

2
∇i[p] + 1

2
∇a

)
∂W
∂Δp

(134)

= (∇t)
∂W
∂Δp

= Jt

and, consequently,AsymmetricGauss-Newton algorithms for
fitting AAMs can be viewed as ESM algorithms that only
require first order partial derivatives of the residual and that
have the same computational complexity as first order algo-
rithms.

Appendix 2: Terms in SSD Newton Hessians

In this section we define the individual terms of the Hessian
matrices used by the SSDAsymmetric andBidirectionalNew-
ton optimization algorithms derived in Sect. 3.3.2.

(a) Asymmetric

The individual terms forming the Hessian matrix of the SSD
Asymmetric Newton algorithm defined by Eq. 83 are defined
as follows:

∂2Da

∂Δc2
= ∂ − AT ra

∂Δc

= −AT ∂ra
∂Δc

= ATA︸︷︷︸
I

(135)

∂2Da

∂Δc∂Δp
= ∂ − AT ra

∂Δp

= ∂ − AT

∂Δp
ra − AT ∂ra

∂Δp

= −βJTAra − AT Jt (136)

where we have defined JA = [∇a1, . . . ,∇am]T ∂W
∂Δp .

∂2Da

∂Δp2
= ∂JTt ra

∂Δp

= ∂JTt
∂Δp

ra + JTt
∂ra
∂Δp

=

⎛

⎜⎜⎜⎝
∂W
∂Δp

T

∇2t
∂W
∂Δp

+ ∇t

0︷ ︸︸ ︷
∂2W
∂2p︸ ︷︷ ︸
0

⎞

⎟⎟⎟⎠ ra

+ JTt Jt

=
(

∂W
∂Δp

T

∇2t
∂W
∂Δp

)
ra + JTt Jt

(137)

123

Int J Comput Vis

(b) Bidirectional

The individual terms forming the Hessian matrix of the SSD
Bidirectional Newton algorithmdefined byEq. 86 are defined
as follows:

∂2Db

∂Δc2
= ∂ − AT rb

∂Δc

= −AT ∂rb
∂Δc

= ATA︸︷︷︸
I

(138)

∂2Db

∂Δc∂Δp
= ∂ − AT rb

∂Δp

= −AT ∂rb
∂Δp

= −AT Ji (139)

∂2Db

∂Δc∂Δq
= ∂ − AT rb

∂Δq

= ∂ − AT

∂Δq
rb − AT ∂rb

∂Δq

= −JTArb + AT Ja (140)

∂2Db

∂Δp2
= ∂JTi rb

∂Δp

= ∂JTi
∂Δp

rb + JTi
∂rb
∂Δp

=
(

∂W
∂Δp

T

∇2i[p] ∂W
∂Δp

)
rb + JTi Ji (141)

∂2Db

∂Δp∂Δq
= ∂JTi rb

∂Δq

= −JTi Ja (142)

∂2Db

∂Δq2
= ∂ − JTa rb

∂Δq
= ∂ − JTa

∂Δq
rb − JTa

∂rb
∂Δq

= −
(

∂W
∂Δq

T

∇2(a + Ac)
∂W
∂Δq

)
rb + JTa Ja

(143)

Appendix 3: Iterative Solutions of All Algorithms

In this section we report the iterative solutions of all CGD
algorithms studied in this paper. In order to keep the informa-
tion structured algorithms are grouped by their cost function.
Consequently, iterative solutions for all SSD and Project-Out
algorithms are stated in Tables 1 and 2.

Table 1 Iterative solutions of all SSD algorithms studied in this paper

SSD algorithms Iterative solutions

Δp Δq Δc

SSD_For_GN_Sch Amberg et al. (2009),
Tzimiropoulos and Pantic (2013)

Δp = −Ĥ−1
i JTi Ār Δc = A (r + JiΔp)

Ĥi = JTi ĀJi

SSD_For_GN_Alt Δp = −H−1
i JTi (r − AΔc) Δc = A (r + JiΔp)

Hi = JTi Ji

SSD_For_N_Sch Δp = −
(
ĤN

i

)−1
JTi Ār Δc = A (r + JiΔp)

ĤN
i = ∂W

Δp
T∇2i ∂W

Δp r + Ĥi

SSD_For_N_Alt Δp = − (
HN

i

)−1
JTi Ā (r − AΔc) Δc = A (r + JiΔp)

HN
i = ∂W

Δp
T∇2i ∂W

Δp r + Hi

SSD_For_W Δp = −Ĥ−1
i JTi Ār Δc = Ar

SSD_Inv_GN_Sch Papandreou and Maragos (2008),
Tzimiropoulos and Pantic (2013)

Δp = Ĥ−1
a JTa Ār Δc = A (r − JaΔp)

Ĥa = JTa ĀJa
SSD_Inv_GN_Alt Tzimiropoulos et al. (2012),
Antonakos et al. (2014)

Δp = H−1
a JTa (r − AΔc) Δc = A (r − JaΔp)

Ha = JTa Ja

SSD_Inv_N_Sch Δp =
(
ĤN

a

)−1
JTa Ār Δc = A (r − JaΔp)

ĤN
a = ∂W

Δp
T∇2a ∂W

Δp r + Ĥa

123

Int J Comput Vis

Table 1 continued

SSD algorithms Iterative solutions

Δp Δq Δc

SSD_Inv_N_Alt Δp = (
HN

a
)−1 JTa Ā (r − AΔc) Δc = A (r − JaΔp)

HN
a = ∂W

Δp
T∇2i ∂W

Δp r + Ha

SSD_Inv_W Δp = Ĥ−1
a JTa Ār Δc = Ar

SSD_Asy_GN_Sch Δp = −Ĥ−1
t JTt Ār Δc = A (r + JtΔp)

Ĥt = JTt ĀJt

SSD_Asy_GN_Alt Δp = −H−1
t JTt (r − AΔc) Δc = A (r + JtΔp)

Ht = JTt Jt

SSD_Asy_N_Sch Δp = −
(
ĤN

t

)−1
JTt Ār Δc = A (r + JtΔp)

ĤN
t = ∂W

Δp
T∇2t ∂W

Δp r + Ĥt

SSD_Asy_N_Alt Δp = − (
HN

t

)−1
JTt Ā (r − AΔc) Δc = A (r + JtΔp)

HN
t = ∂W

Δp
T∇2t ∂W

Δp r + Ht

SSD_Asy_W Δp = −Ĥ−1
t JTt Ār Δc = Ar

SSD_Bid_GN_Sch Δp = −Ĥ−1
i JTi Ār1 Δq = Ȟ−1

a JTa Pr Δc = Ar2

r1 = (r − JaΔq) Ȟa = JTa PJa r2 = (r + JiΔp − JaΔq)

P = Ā − ĀJiĤ
−1
i JTi Ā

SSD_Bid_GN_Alt Δp = −H−1
i JTi r3 Δq = H−1

a JTa r4 Δc = Ar2
r3 = (r − AΔc − JaΔq) r4 = (r − AΔc + JiΔp)

SSD_Bid_N_Sch Δp = −
(
ĤN

i

)−1
JTi Ār1 Δq =

(
ȞN

a

)−1
JTa P

Nr Δc = Ar2

ȞN
a = ∂W

Δp
T∇2t ∂W

Δp r + Ȟa

PN = Ā − ĀJi
(
ĤN

i

)−1
JTi Ā

SSD_Bid_N_Alt Δp = − (
HN

i

)−1
JTi r3 Δq = (

HN
a
)−1 JTa r4 Δc = Ar2

SSD_Bid_W Δp = −Ĥ−1
i JTi Ār Δq = Ȟ−1

a JTa Pr Δc = Ar

Table 2 Iterative solutions of
all Project-Out algorithms
studied in this paper

Project-Out algorithms Iterative solutions

Δp Δq

PO_For_GN Amberg et al. (2009), Tzimiropoulos
and Pantic (2013)

Δp = −Ĥ−1
i JTi Ār

Ĥi = JTi ĀJi

PO_For_N Δp = −
(
ĤN

i

)−1
JTi Ār

ĤN
i = ∂W

∂Δp
T∇2i ∂W

∂Δp Ār + Ĥi

PO_Inv_GN Matthews and Baker (2004) Δp = Ĥ−1
a JTā Ār

Ĥā = JTā ĀJā

PO_Inv_N Δp =
(
ĤN

ā

)−1
JTā Ār

ĤN
ā = ∂W

Δp
T∇2ā ∂W

Δp Ār + Ĥā

PO_Asy_GN Δp = −Ĥ−1
t JTt Ār

Ĥt = JTt ĀJt

123

Int J Comput Vis

Table 2 continued
Project-Out algorithms Iterative solutions

Δp Δq

PO_Asy_N Δp = −
(
ĤN

t

)−1
JTt Ār

ĤN
t = ∂W

∂Δp
T∇2t ∂W

∂Δp Ār + Ĥt

PO_Bid_GN_Sch Δp = −Ĥ−1
i JTi Ā (r − JāΔq) Δq = Ȟ−1

ā JTi Pr

Ȟā = JTā PJā

P = Ā − ĀJiĤ
−1
i JTi Ā

PO_Bid_GN_Alt Δp = −Ĥ−1
i JTi Ā (r − JāΔq) Δq = Ĥ−1

ā JTā Ā (r + JiΔp)

PO_Bid_N_Sch Δp = −
(
ĤN

i

)−1
JTi Ā (r − JāΔq) Δq =

(
ȞN

ā

)−1
JTā P

Nr

ȞN
ā = ∂W

Δp
T∇2ā ∂W

Δp Ār + Ȟā

PN = Ā − ĀJi
(
ĤN

i

)−1
JTi Ā

PO_Bid_N_Alt Δp = −
(
ĤN

i

)−1
JTi Ā (r − JāΔq) Δq =

(
ĤN

ā

)−1
JTā Ā (r + JiΔp)

PO_Bid_W Δp = −Ĥ−1
i JTi Ār Δq = Ȟ−1

ā JTā Pr

Appendix 4: Additional Experiment: Comparison
on MIT StreetScene Dataset

In order to showcase the broader applicability of AAMs,
we complete the main experimental section by performing
an additional experiment on the problem of non-rigid car
alignment in-the-wild. To this end, we report the fitting accu-
racy of the best performing CGD algorithms on the MIT
StreetScene29 database.

We use the first view of the MIT StreetScene30 dataset
containing a wide variety of frontal car images obtained
in the wild. We use 10-fold cross-validation on the ∼500
images of the previous dataset to train and test our algo-
rithms. We report results for the two versions of the SSD
Asymmetric Gauss-Newton and the Project-Out Asymmetric
Gauss-Newton algorithms used in Experiment 5.5.

Result for this experiment are shown in Fig. 17. We can
observe that all algorithms obtain similar performance and
that they vastly improve upon the original initialization.
Exemplar results for this experiment are shown in Fig. 18.

29 http://cbcl.mit.edu/software-datasets/streetscenes.

Fig. 17 CED on the first view of the MIT StreetScene test dataset
for the Project-Out and SSD Asymmetric Gauss-Newton algorithms
initialized with 5% noise

123

http://cbcl.mit.edu/software-datasets/streetscenes

Int J Comput Vis

Fig. 18 Exemplar results from the MIT StreetScene test dataset. a
Exemplar results from the MIT StreetScene test dataset obtained by
the Project-Out Asymmetric Gauss-Newton Schur algorithm. b Exem-

plar results from the MIT StreetScene test dataset obtained by the SSD
Asymmetric Gauss-Newton Schur algorithm

References

Alabort-i-Medina, J., & Zafeiriou, S. (2014). Bayesian active appear-
ance models. In IEEE Conference on computer vision and pattern
recognition (CVPR).

Alabort-i-Medina, J., & Zafeiriou, S. (2015). Unifying holistic and
parts-based deformable model fitting. In IEEE conference on com-
puter vision and pattern recognition (CVPR).

Alabort-i-Medina, J.,Antonakos, E.,Booth, J., Snape, P.,&Zafeiriou, S.
(2014). Menpo: A comprehensive platform for parametric image
alignment and visual deformable models. In ACM international
conference on multimedia (ACMM).

Amberg, B., Blake, A., & Vetter, T. (2009). On compositional image
alignment, with an application to active appearance models. In
IEEE conference on computer vision and pattern recognition
(CVPR).

Antonakos, E., Alabort-i-Medina, J., Tzimiropoulos, G.,&Zafeiriou, S.
(2014). Feature-based lucas-kanade and active appearancemodels.
IEEE Transactions on Image Processing (TIP).

Asthana, A., Zafeiriou, S., Cheng, S., & Pantic, M. (2013). Robust
discriminative response map fitting with constrained local models.
In IEEE conference on computer vision and pattern recognition
(CVPR).

Authesserre, J. B., & Berthoumieu, Y. (2010). Bidirectional compo-
sition on lie groups for gradient-based image alignment. IEEE
Transactions on Image Processing (TIP), 19, 2369–2381.

Autheserre, J. B., Mégret, R., & Berthoumieu, Y. (2009). Asymmetric
gradient-based image alignment. In IEEE international conference
on acoustics, speech and signal processing (ICASSP).

Bach, F.,& Jordan,M. (2005).Aprobabilistic interpretation ofcanonical
correlation analysis. Technical report, Department of Statistics.
Berkeley: University of California

Baker, S., &Matthews, I. (2004). Lucas-kanade 20 years on: A unifying
framework. International Journal of Computer Vision (IJCV), 56,
221–255.

Batur, A., & Hayes, M. (2005). Adaptive active appearance mod-
els. IEEE Transactions on Image Processing (TIP), 14, 1707–
1721.

Belhumeur, P. N., Jacobs, D. W., Kriegman, D. J., & Kumar, N. (2011).
Localizing parts of faces using a consensus of exemplars. In Con-
ference on computer vision and pattern recognition (CVPR).

Benhimane, S., & Malis, E. (2004). Real-time image-based tracking of
planes using efficient second-order minimization. In IEEE inter-
national conference on intelligent robots and systems (IROS).

Boyd, S.,&Vandenberghe, L. (2004).Convex optimization. Cambridge:
Cambridge University Press.

Bradski, G. (2000). The opencv library. Dr Dobb’s Journal of Software
Tools.

Cootes, T. F., & Edwards, G. J. (2001). Active appearance models.
IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 6, 681–685.

Cootes, T. F., & Taylor, C. J. (2001). On representing edge structure
for model matching. In IEEE conference on computer vision and
pattern recognition (CVPR).

Cootes, T. F., & Taylor, C. J. (2004). Statistical models of appearance
for computer vision. Technical report, Imaging Science and Bio-
medical Engineering, University of Manchester.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. In IEEE conference on computer vision and pat-
tern recognition (CVPR).

De la Torre, F. (2012). A least-squares framework for component
analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 34, 1041–1055.

Donner, R., Reiter, M., Langs, G., Peloschek, P., & Bischof, H. (2006).
Fast active appearance model search using canonical correlation
analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 10, 1690–1694.

Gross, R., Matthews, I., & Baker, S. (2005). Generic vs. person specific
active appearancemodels. Image andVisionComputing, 23, 1080–
1093.

Hou, X., Li, S.Z., Zhang, H., & Cheng, Q. (2001). Direct appearance
models. In IEEE conference on computer vision and pattern recog-
nition (CVPR).

Kossaifi, J., Tzimiropoulos, G., & Pantic, M. (2014). Fast newton active
appearance models. In IEEE international conference on image
processing (ICIP).

Le, V., Jonathan, B., Lin, Z., Boudev, L., & Huang, T.S. (2012).
Interactive facial feature localization. In European conference on
computer vision (ECCV).

Liu, X. (2009). Discriminative face alignment. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 31, 1941–
1954.

123

Int J Comput Vis

Lowe, D. G. (1999). Object recognition from local scale-invariant
features. In IEEE international conference on computer vision
(ICCV).

Lucey, S., Navarathna, R., Ashraf, A.B.,&Sridharan, S. (2013). Fourier
lucas-kanade algorithm. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 35, 1383–1396.

Malis, E. (2004). Improving vision-based control using efficient second-
order minimization techniques. In International conference on
robotics and automation (ICRA).

Martins, P., Batista, J., & Caseiro, R. (2010). Face alignment through
2.5d active appearance models. In British machine vision confer-
ence (BMVC).

Matthews, I., & Baker, S. (2004). Active appearance models revisited.
International Journal of Computer Vision (IJCV), 60, 135–164.

Mégret, R., Authesserre, J.B., & Berthoumieu, Y. (2008). The bi-
directional framework for unifying parametric image alignment
approaches. In European conference on computer vision (ECCV).

Moghaddam, B., & Pentland, A. (1997). Probabilistic visual learning
for object representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 19, 696–710.

Muñoz, E., Márquez-Neila, P., & Baumela, L. (2014). Rationalizing
efficient compositional image alignment. International Journal of
Computer Vision (IJCV), 112, 354–372.

Nicolaou,M.A., Zafeiriou, S., & Pantic, P. (2014). A unified framework
for probabilistic component analysis. In Machine learning and
knowledge discovery in databases (ECML PKDD).

Okatani, T., & Deguchi, K. (2006). On the wiberg algorithm for matrix
factorization in the presence of missing components. International
Journal of Computer Vision (IJCV), 72, 329–337.

Papandreou, G., & Maragos, P. (2008). Adaptive and constrained algo-
rithms for inverse compositional active appearance model fitting.
In IEEE conference on computer vision and pattern recognition
(CVPR).

Prince, S., Li, P., Fu, Y., Mohammed, U., & Elder, J. H. (2012). Proba-
bilistic models for inference about identity. IEEE Transactions on
Pattern Analysis andMachine Intelligence (TPAMI), 34, 144–157.

Roweis, S. (1998). Em algorithms for pca and spca. Advances in Neural
Information Processing Systems (NIPS), 10, 626–632.

Sagonas,C., Tzimiropoulos,G., Zafeiriou, S.,&Pantic,M. (2013a). 300
faces in-the-wild challenge: The first facial landmark localization
challenge. In IEEE international conference on computer vision
workshop (ICCV-W) (pp. 397–403).

Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., & Pantic, M. (2013b).
A semi-automatic methodology for facial landmark annotation.
In IEEE conference on computer vision and pattern recognition
workshops (CVPRW) (pp. 896–903).

Saragih, J., & Göcke, R. (2009). Learning aam fitting through simula-
tion. Pattern Recognition, 42, 2628–2636.

Sauer, P., Cootes, T., & Taylor, C. (2011). Accurate regression pro-
cedures for active appearance models. In British machine vision
conference (BMVC).

Strelow, D. (2012). General and nested wiberg minimization: L2 and
maximum likelihood. In European conference on computer vision
(ECCV).

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal com-
ponent analysis. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 61, 611–622.

Tresadern, P.A., Sauer, P., & Cootes, T.F. (2010). Additive update pre-
dictors in active appearance models. In British machine vision
conference (BMVC).

Tzimiropoulos, G. (2015). Project-out cascaded regression with an
application to face alignment. In IEEE conference on computer
vision and pattern recognition (CVPR).

Tzimiropoulos, G., & Pantic, M. (2013). Optimization problems for
fast aam fitting in-the-wild. In IEEE international conference on
computer vision (ICCV).

Tzimiropoulos, G., & Pantic,M. (2014). Gauss-newton deformable part
models for face alignment in-the-wild. In IEEEconference on com-
puter vision and pattern recognition (CVPR).

Tzimiropoulos, G., Alabort-i-Medina, J., Zafeiriou, S., & Pantic, M.
(2012). Generic active appearancemodels revisited. In IEEEAsian
conference on computer vision (ACCV).

van derMaaten, L., &Hendriks, E. (2010). Capturing appearance varia-
tion in active appearance models. In IEEE conference on computer
vision and pattern recognition workshop (CVPR-W).

Vedaldi, A., & Fulkerson, B. (2010). VLFeat: An open and portable
library of computer vision algorithms.

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted
cascade of simple features. In IEEE conference on computer vision
and pattern recognition (CVPR).

Woodbury, M. A. (1950). Inverting modified matrices. Princeton:
Princeton University.

Xiong, X., & De la Torre, F. (2013). Supervised descent method and its
applications to face alignment. In IEEE conference on computer
vision and pattern recognition (CVPR).

Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and
landmark localization in the wild. In Conference on computer
vision and pattern recognition (CVPR).

123

	A Unified Framework for Compositional Fitting of Active Appearance Models
	Abstract
	1 Introduction
	2 Active Appearance Models
	2.1 Probabilistic Formulation

	3 Fitting Active Appearance Models
	3.1 Cost Function
	3.1.1 Sum of Squared Differences
	Probabilistic Formulation
	3.1.2 Project-Out
	Probabilistic Formulation

	3.2 Type of Composition
	3.2.1 Forward
	3.2.2 Inverse
	3.2.3 Asymmetric
	3.2.4 Bidirectional

	3.3 Optimization Method
	3.3.1 Gauss-Newton
	Simultaneous
	Alternated
	3.3.2 Newton
	Simultaneous
	Alternated
	3.3.3 Wiberg

	4 Relation to Prior Work
	4.1 Project-Out algorithms
	4.2 SSD algorithms

	5 Experiments
	5.1 Comparison on LFPW
	5.1.1 SSD Gauss-Newton algorithms
	5.1.2 SSD Newton algorithms
	5.1.3 SSD Wiberg algorithms
	5.1.4 Project-Out Gauss-Newton algorithms
	5.1.5 Project-Out Newton algorithms
	5.1.6 Project-Out Wiberg algorithms

	5.2 Weighted Bayesian project-out
	5.3 Optimal asymmetric composition
	5.4 Sampling and Number of Iterations
	5.5 Comparison on Helen and AFW
	5.6 Analysis

	6 Conclusion
	Acknowledgments
	Appendix 1: Asymmetric Gauss-Newton Algorithms as Efficient Second-order Minimization (ESM)
	Appendix 2: Terms in SSD Newton Hessians
	(a) Asymmetric
	(b) Bidirectional

	Appendix 3: Iterative Solutions of All Algorithms
	Appendix 4: Additional Experiment: Comparison on MIT StreetScene Dataset
	References

