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Abstract

In this paper we present a novel generative deformable
model motivated by Pictorial Structures (PS) and Active Ap-
pearance Models (AAMs) for object alignment in-the-wild.
Inspired by the tree structure used in PS, the proposed Ac-
tive Pictorial Structures (APS)1 model the appearance of
the object using multiple graph-based pairwise normal dis-
tributions (Gaussian Markov Random Field) between the
patches extracted from the regions around adjacent land-
marks. We show that this formulation is more accurate than
using a single multivariate distribution (Principal Compo-
nent Analysis) as commonly done in the literature. APS em-
ploy a weighted inverse compositional Gauss-Newton op-
timization with fixed Jacobian and Hessian that achieves
close to real-time performance and state-of-the-art results.
Finally, APS have a spring-like graph-based deformation
prior term that makes them robust to bad initializations. We
present extensive experiments on the task of face alignment,
showing that APS outperform current state-of-the-art meth-
ods. To the best of our knowledge, the proposed method
is the first weighted inverse compositional technique that
proves to be so accurate and efficient at the same time.

1. Introduction

The task of object alignment in terms of landmark points
localization under unconstrained conditions is among the
most challenging problems in the field of Computer Vision.
Such challenging conditions are usually referred to as “in-
the-wild”. Ongoing research efforts on generic Deformable
Models aim to provide robust and accurate techniques that
perform in real-time. Such methodologies can have an im-
portant impact in human-computer interaction applications,
such as multimodal interaction, entertainment, security etc.

One of the most well-studied deformable models are Ac-
tive Appearance Models (AAMs) [7, 19]. AAMs are statis-

1An open-source implementation of Active Pictorial Structures is avail-
able within the Menpo Project [1] in http://www.menpo.org/.

Figure 1: A simple visualization motivating the main idea
behind APS1. We propose to model the appearance of an
object using multiple pairwise distributions based on the
edges of a graph (GMRF) and show that this outperforms
the commonly used PCA model under an inverse Gauss-
Newton optimization framework.

tical generative models of the shape and appearance of an
object. The shape model, usually referred to as Point Dis-
tribution Model (PDM), is built by applying Principal Com-
ponent Analysis (PCA) on a set of aligned shapes. Simi-
larly, the appearance model is built by applying PCA on a
set of shape-free appearance instances, acquired by warping
the training images into a reference shape. AAMs represent
the appearance in a holistic/global way, i.e. the whole tex-
ture is taken into account. Fitting AAMs involves solving
a non-linear least squares problem and it is typically solved
using a variant of the Gauss-Newton algorithm [5]. The Si-
multaneous [14] and Alternating [20, 27] inverse composi-
tional algorithms have proved to be very accurate. They can
achieve state-of-the-art performance when combined with
powerful features [4]. The Project-Out inverse composi-
tional (POIC) [19] algorithm has a real-time complexity but
is inaccurate, which makes it unsuitable for generic settings.
Therefore, AAMs have two disadvantages: (1) they are slow
and inappropriate for real-time applications, and (2) by em-
ploying PCA the appearance of the object is modelled with
a single multivariate normal distribution, which, as it will
be shown in this paper, restricts the fitting accuracy (Fig. 1).

1

http://www.menpo.org/


Mainly due to the high complexity when using a holis-
tic appearance representation, many existing methods em-
ploy a part-based one. This means that a local patch is
extracted from the neighbourhood around each landmark.
Among the most important part-based deformable models
are Pictorial Structures (PS) [13, 12, 3], their discrimina-
tive descendant Deformable Part Model (DPM) [10, 33] and
their extensions like Deformable Structures [34]. PS learn
a patch expert for each part and model the shape of the ob-
ject using spring-like connections between parts based on
a tree structure. Thus, a different distribution is assumed
for each pair of parts connected with an edge, as opposed
to the PCA shape model of AAMs that assumes a single
multivariate normal distribution for all parts. The optimiza-
tion aims to find a tree-based shape configuration for which
the patch experts have a minimum cost and is performed
using a dynamic programming algorithm based on the dis-
tance transform [11]. PS are successfully used for various
tasks, such as human pose estimation [32] and face detec-
tion [33, 18]. Their biggest advantage is that they find the
global optimum, thus they are not dependent neither require
initialization. However, in practice, PS have two important
disadvantages: (1) inference is very slow, and (2) because
the tree structure restricts too much the range of possible
realizable shape configurations, the global optimum, even
though it is the best solution in the span of the model, it
does not always correspond to the shape that best describes
the object in reality.

The method proposed in this paper takes advantage of the
strengths, and overcomes the disadvantages, of both AAMs
and PS. We are motivated by the tree-based structure of PS
and we further expand on this concept. Our model can for-
mulate the relations between parts using any graph struc-
ture; not only trees. From AAMs we borrow the use of
the Gauss-Newton algorihtm in combination with a statis-
tical shape model. Our weighted inverse compositional al-
gorithm with fixed Jacobian and Hessian provides close to
real-time cost with state-of-the-art performance. Thus, the
proposed model shares characteristics from both AAMs and
PS, hence the name Active Pictorial Structures (APS)1.

Apart from PS and DPM, other important part-based
techniques exist in literature. For example, Constrained Lo-
cal Models (CLMs) [9, 30, 25] and their predecessors Ac-
tive Shape Models (ASMs) [8] both use a statistical shape
model (PDM) and learn a classifier for each part’s appear-
ance. Supervised Descent Method [31], which is among the
most successful techniques, learns a cascade of consecu-
tive regression steps between the shape coordinates and the
feature-based appearance extracted from each part. The re-
cently proposed regression-based methods in [21, 16] also
report very accurate and extremely fast performance, but
they do not provide publicly available code. The discrim-
inative nature of these techniques indicates that they need

loads of training data in order to perform well. This is op-
posite to the generative nature of APS that require much
fewer training examples. The idea of substituting the PCA
shape model with a piece-wise linear model has also been
proposed for 3D facial models in [26]. The most closely
related method to the proposed APS is the Gauss-Newton
Deformable Part Model (GN-DPM) [29]. It is a part-based
AAM that takes advantage of the efficient inverse alternat-
ing Gauss-Newton technique proposed in [28] and reports
very accurate performance. The two most important dif-
ferences between the proposed APS and GN-DPM are that:
(1) APS do not model the appearance of an object using
PCA but assume a different distribution for each pair of con-
nected parts that proves to perform better, (2) APS employ
a weighted inverse compositional algorithm with fixed Ja-
cobian and Hessian, which is by definition at least an order
of magnitude faster than the alternating one.

In summary, the contributions of this paper are:

• The proposed model combines the advantages of
PS (graph-based relations between parts) and AAMs
(weighted inverse Gauss-Newton optimization with
statistical shape model).

• We show that it is more accurate to model the ap-
pearance of an object with multiple graph-based nor-
mal distributions, thus using a Gaussian Markov Ran-
dom Field [22] structure, rather than a single multidi-
mensional normal distribution (PCA), as is commonly
done in literature. We also prove that this is not bene-
ficial for modelling an object’s shape, because the re-
sulting covariance matrix has high rank and the shape
subspace has too many dimensions to be optimized.
We also show that employing a tree structure for the
shape model, as done in PS [12, 10, 33], limits the
model’s descriptiveness and hampers the performance.

• We use the spring-like shape model of PS and DPM as
a shape prior in the Gauss-Newton optimization. This
deformation term makes the model more robust as it
manages to restrict non-realistic instances of the ob-
ject’s shape.

• We propose, to the best of our knowledge, the best
performing weighted inverse compositional Gauss-
Newton algorithm with fixed Jacobian and Hessian. As
it will be shown, its computational cost reduces to a
single matrix multiplication per iteration and is inde-
pendent of the employed graph structure. We test the
proposed method on the task of face alignment, be-
cause of the plethora of annotated facial data. How-
ever, it can also be applied to other objects, such as
eyes, cars etc. Our experiments show that APS outper-
form the current state-of-the-art methods.



2. Method
In the following, we denote vectors by small bold letters,

matrices by capital bold letters, functions by capital calli-
graphic letters and scalars by small regular-font letters.

2.1. Shape and appearance representation

In the problem of object alignment in-the-wild, the shape
of the object is described using n landmark points that are
usually located on semantic parts of the object. Let us de-
note the coordinates of a point within the Cartesian space of
an image I as the 2× 1 vector ` = [x, y]T . A sparse shape
instance of the object is defined as the 2n× 1 vector

s = [`T1 , . . . , `
T
n ]T = [x1, y1, . . . , xn, yn]

T (1)

The relative location of a landmark point i with respect to a
landmark point j is defined as

d`ij = `i − `j = [xi − xj , yi − yj ]T (2)

Furthermore, let us denote an image patch of size h × w
corresponding to the image location `i in vectorized form
as

t`i = [I(z1), I(z2), . . . , I(zhw)]
T
, {zi}hwi=1 ∈ Ω`i (3)

where Ω`i is a set of discrete neighbouring pixel locations
zi = [xi, yi]

T within a rectangular region centered at loca-
tion `i and hw is the image patch vector’s length. More-
over, we define H : Rhw → Rm to be a feature extraction
function, which computes a descriptor vector of length m
(e.g. SIFT [17]) given an appearance vector. We denote the
procedure of extracting a feature-based vector from a patch
centred at a given image location by the function

F(`i) = H(t`i) =

= H
(

[I(z1), . . . , I(zk)]
T
)
, {zi}ki=1 ∈ Ω`i (4)

Finally, we define the function

A(s) = [F(`1)T ,F(`2)T , . . . ,F(`n)T ]T (5)

which concatenates all the vectorized feature-based image
patches corresponding to the n landmarks of a shape in a
vector of length mn.

2.2. Graphical model

Let us define an undirected graph between the n land-
mark points of an object as G = (V,E), where V =
{v1, v2, . . . , vn} is the set of n vertexes and there is an edge
(vi, vj) ∈ E for each pair of connected landmark points.
Moreover, let us assume that we have a set of random vari-
ables X = {Xi},∀i : vi ∈ V which represent an abstract
feature vector of length k extracted from each vertex vi, i.e.

xi, i : vi ∈ V (e.g. the location coordinates, appearance
vector etc.). We model the likelihood probability of two ran-
dom variables that correspond to connected vertexes with a
normal distribution

p(Xi = xi, Xj = xj |G) ∼ N (µij ,Σij),
∀i, j : (vi, vj) ∈ E

(6)

where µij is the 2k× 1 mean vector and Σij is the 2k× 2k
covariance matrix. Consequently, the cost of observing a
set of feature vectors {xi},∀i : vi ∈ V can be computed
using a Mahalanobis distance per edge, i.e.∑
∀i,j:(vi,vj)∈E

([
xi
xj

]
− µij

)T
Σ−1
ij

([
xi
xj

]
− µij

)
(7)

In practice, the computational cost of computing Eq. 7 is too
expensive because it requires looping over all the graph’s
edges. Especially in the case of a complete graph, it makes
it impossible to perform inference in real time.

Inference can be much faster if we convert this cost to an
equivalent matrical form as

(x− µ)
T

Σ−1 (x− µ) (8)

This is equivalent to modelling the set of random variables
X with a Gaussian Markov Random Field (GMRF) [22].
A GMRF is described by an undirected graph, where the
vertexes stand for random variables and the edges impose
statistical constraints on these random variables. Thus, the
GMRF models the set of random variables with a multivari-
ate normal distribution

p(X = x|G) ∼ N (µ,Σ) (9)

where µ = [µT1 , . . . ,µ
T
n ]T = [E(X1)T , . . . , E(Xn)T ]T

is the nk × 1 mean vector and Σ is the nk × nk overall
covariance matrix. We denote by Q the block-sparse pre-
cision matrix that is the inverse of the covariance matrix,
i.e. Q = Σ−1. By applying the GMRF we make the as-
sumption that the random variables satisfy the three Markov
properties (pairwise, local and global) and that the blocks of
the precision matrix that correspond to disjoint vertexes are
zero, i.e. Qij = 0k×k,∀i, j : (vi, vj) /∈ E. By defining
Gi = {(i− 1)k + 1, (i− 1)k + 2, . . . , ik} to be a set of in-
dices for sampling a matrix, we can prove that the structure
of the precision matrix is

Q =



∑
∀j:(vi,vj)∈E

Σ−1
ij (G1,G1)+

∑
∀j:(vj ,vi)∈E

Σ−1
ji (G2,G2), ∀vi ∈ V, at (Gi,Gi)

Σ−1
ij (G1,G2), ∀i, j : (vi, vj) ∈ E, at (Gi,Gj)

and (Gj ,Gi)
0, elsewhere

(10)



Using the same assumptions and given a directed graph
(cyclic or acyclic) G = (V,E), where (vi, vj) ∈ E denotes
the relation of vi being the parent of vj , we can show that

(x− µ)
T

Q (x− µ) =

=
∑

∀i,j:(vi,vj)∈E

(
xi − xj − µij

)T
Σ−1
ij

(
xi − xj − µij

)
(11)

is true if

Q =



∑
∀j:(vi,vj)∈E

Σ−1
ij +

∑
∀j:(vj ,vi)∈E

Σ−1
ji , ∀vi ∈ V, at (Gi,Gi)

−Σ−1
ij , ∀i, j : (vi, vj) ∈ E, at (Gi,Gj)

and (Gj ,Gi)
0, elsewhere

(12)

where µij = E(Xi − Xj) and µ = [µT1 , . . . ,µ
T
n ]T =

[E(X1)T , . . . , E(Xn)T ]T . In this case, if G is a tree, then
we have a Bayesian network. Please refer to the supplemen-
tary material for detailed proofs of Eqs. 10 and 12.

2.3. Model training

APS differ from most existing generative object align-
ment methods because they assume a GMRF structure in
order to model the appearance and the deformation of an
object. As we show in the experiments, this assumption is
the key that makes the proposed method efficient and accu-
rate.

Shape model APS use a statistical shape model built us-
ing PCA, similar to the PDM employed in most existing
parametric methods such as AAMs, CLMs and GN-DPMs.
The procedure involves the alignment of the training shapes
with respect to their rotation, translation and scaling (sim-
ilarity transform) using Procrustes analysis, the subtraction
of the mean shape and the application of PCA. We fur-
ther augment the acquired subspace with four eigenvec-
tors that control the global similarity transform of the ob-
ject, re-orthonormalize [19] and keep the first nS eigenvec-
tors. Thus, we end up with a linear shape model {s̄,U ∈
R2n×nS}, where s̄ =

[
E(`1)T , . . . , E(`n)T

]T
is the 2n×1

mean shape vector and U denotes the orthonormal basis.
We define a function S ∈ R2n that generates a shape

instance given the linear model’s basis, an input shape and
a parameters’ vector (weights) as

S(U, s,p) = s + Up (13)

where p = [p1, p2, . . . , pnS
]T are the parameters’ values.

Similarly, we define the set of functions Si ∈ R2, ∀i =

1, . . . , n that return the coordinates of the ith landmark of
the shape instance as

Si(U, s,p) = s2i−1,2i + U2i−1,2ip, ∀i = 1, . . . , n (14)

where s2i−1,2i denotes the coordinates’ vector of the ith

landmark point, i.e. `i = [xi, yi]
T , and U2i−1,2i denotes

the 2i − 1 and 2i row vectors of the shape subspace U.
Note that from now onwards, for simplicity, we will write
S(s,p) and Si(s,p) instead of S(U, s,p) and Si(U, s,p)
respectively.

Another way to build the shape model is by using the
GMRF structure (Fig. 1). Specifically, given an undi-
rected graph Gs = (V s, Es) and assuming that the pair-
wise locations’ vector of two connected landmarks fol-
lows a normal distribution as in Eq. 6, i.e. [`Ti , `

T
j ]T ∼

N (µsij ,Σ
s
ij), ∀i, j : (vsi , v

s
j ) ∈ Es, we formulate a GMRF.

Following Eq. 9 and using the shape vector of Eq. 1, this
can be expressed as

p(s|Gs) ∼ N (s̄,Σs) (15)

where the precision matrix Qs is structured as shown in
Eq. 10 with xi = `i and k = 2. Then, after construct-
ing the precision matrix, we can invert it and apply PCA on
the resulting covariance matrix Σs = (Qs)−1 in order to
obtain a linear shape model. Even though, as we show be-
low, the GMRF-based modelling creates a more powerful
appearance model representation, it does not do the same
for the shape model. Our experiments suggest that the sin-
gle Gaussian PCA shape model is more beneficial than any
other model that assumes a GMRF structure. This can be
explained by the fact that Σs ends up having a high rank,
especially if Gs has many edges. As a result, most of its
eigenvectors correspond to non-zero eigenvalues and they
express a small percentage of the whole data variance. This
means that during fitting we need to employ a large number
of eigenvectors (nS ≈ 2n), much more than in the case of
a single multivariate distribution, which makes the Gauss-
Newton optimization very unstable and ineffective.

Appearance model In most AAM-like formulations, the
appearance model is built by warping all textures to a ref-
erence frame, vectorizing and building the PCA model. In
this work, we propose to model the appearance of an object
using a GMRF graphical model, as presented in Sec. 2.2.
In contrast to the shape model case, the GMRF-based ap-
pearance model is more powerful than its PCA counterpart.
Specifically, given an undirected graph Ga = (V a, Ea)
and assuming that the concatenation of the appearance vec-
tors of two connected landmarks can be described by a
normal distribution (Eq. 6), i.e.

[
F(`i)

T ,F(`j)
T
]T ∼

N (µaij ,Σ
a
ij), ∀i, j : (vai , v

a
j ) ∈ Ea, we form a GMRF that,

using Eq. 5, can be expressed as

p(A(s)|Ga) ∼ N (ā,Σa) (16)



where ā =
[
E(F(`1))T , . . . , E(F(`n))T

]T
is the mn× 1

mean appearance vector and Qa = (Σa)−1 is themn×mn
precision matrix that is structured as shown in Eq. 10 with
xi = F(`i) and k = m. During the training of the appear-
ance model, we utilize the low rank representation of each
edgewise covariance matrix Σa

ij by using the first nA sin-
gular values of its SVD factorization. Given ā and Qa, the
cost of an observed appearance vector A(s) corresponding
to a shape instance s = S(s̄,p) in an image is

‖A(S(s̄,p))− ā‖2Qa =

= [A(S(s̄,p))− ā]
T

Qa [A(S(s̄,p))− ā]
(17)

Our experiments show that all the tested GMRF-based ap-
pearance models greatly outperform the PCA-based one.

Deformation prior Apart from the shape and appearance
models, we also employ a deformation prior that is sim-
ilar to the deformation models used in [12, 33]. Specif-
ically, we define a directed (cyclic or acyclic) graph be-
tween the landmark points as Gd = (V d, Ed) and model
the relative locations between the parent and child of each
edge with the GMRF of Eq. 11. We assume that the rel-
ative location between the vertexes of each edge, as de-
fined in Eq. 2, follows a normal distribution `i − `j ∼
N (µdij ,Σ

d
ij), ∀(i, j) : (vdi , v

d
j ) ∈ Ed and model the overall

structure with a GMRF that has a 2n × 2n precision ma-
trix Qd given by Eq. 12 with k = 2. The mean relative
locations vector used in this case is the same as the mean
shape s̄, because µdij = E(`i − `j) = E(`i) − E(`j). As
mentioned in [12], the normal distribution of each edge’s
relative locations vector in some sense controls “the stiff-
ness of a spring connecting the two parts”. In practice,
this spring-like model manages to constrain extreme shape
configurations that could be evoked during fitting with very
bad initialization, leading the optimization process towards
a better result. Given s̄ and Qd, the cost of observing a
shape instance s = S(s̄,p) is

‖S(s̄,p)− s̄‖2Qd = ‖S(s̄,p)− S(s̄,0)‖2Qd =

=S(0,p)TQdS(0,p)
(18)

where we used the properties S(s̄,0) = s̄ + U0 = s̄ and
S(s̄,p)− s̄ = s̄ + Up− s̄ = S(0,p).

2.4. Gauss-Newton optimization

The trained shape, appearance and deformation models
can be combined to localize the landmark points of an ob-
ject in a new testing image I. Specifically, given the ap-
pearance and deformation costs of Eqs. 17 and 18, the cost
function to be optimized is

arg min
p

‖A(S(s̄,p))− ā‖2Qa + ‖S(s̄,p)− s̄‖2Qd (19)

We minimize the cost function with respect to the shape
parameters p using a variant of the Gauss-Newton algo-
rithm [15, 19, 5]. The optimization procedure can be ap-
plied in two different ways, depending on the coordinate
system in which the shape parameters are updated: (1) for-
ward and (2) inverse. Additionally, the parameters update
can be carried out in two manners: (1) additive and (2) com-
positional, which we show that in the case of our model
they are identical. However, the forward additive algorithm
is very slow compared to the inverse one. This is the reason
why herein we only present and experiment with the inverse
case (for a derivation of the forward case please refer to the
supplementary material).

Inverse-Compositional The compositional update has
the form S(s̄,p) ← S(s,p) ◦ S(s̄,∆p)−1. As also shown
in [29], by expanding this expression we get

S(s,p)◦S(s̄,∆p)−1 = S(S(s̄,−∆p),p) = S(s̄,p−∆p)

Consequently, due to the translational nature of our motion
model, the compositional parameters update is reduced to
the parameters subtraction, as p← p−∆p, which is equiv-
alent to the additive update. By using this compositional
update of the parameters and having an initial estimate of
p, the cost function of Eq. 19 is expressed as minimizing

arg min
∆p

‖A(S(s̄,p))− ā(S(s̄,∆p))‖2Qa +

+ ‖S(s̄,p)− S(s̄,∆p)‖2Qd

with respect to ∆p. With some abuse of notation due to ā
being a vector, ā(S(s̄,∆p)) can be described as

ā(S(s̄,∆p)) =

 µa1(S1(s̄,∆p))
...

µan(Sn(s̄,∆p))


where µai = E(F(`i)),∀i = 1, . . . , n. This formulation
gives the freedom to each landmark point of the mean shape
to slightly move within its reference frame. The reference
frame of each landmark is simply the h × w patch neigh-
bourhood around it, in which µai is defined. In order to find
the solution we need to linearize around ∆p = 0 as{

ā(S(s̄,∆p)) ≈ ā + Jā|p=0 ∆p

S(s̄,∆p) ≈ s̄ + JS |p=0 ∆p

where JS |p=0 = JS = ∂S
∂p = U is the 2n × nS shape

Jacobian and Jā|p=0 = Jā is the mn × nS appearance
Jacobian

Jā = ∇ā
∂S
∂p

= ∇āU =

 ∇µa1U1,2

...
∇µanU2n−1,2n





where U2i−1,2i denotes the 2i−1 and 2i row vectors of the
basis U. Note that we make an abuse of notation by writing
∇µai because µai is a vector. However, it represents the gra-
dient of the mean patch-based appearance that corresponds
to landmark i and it has size m× 2. By substituting, taking
the partial derivative with respect to ∆p, equating it to 0
and solving for ∆p we get

∆p = H−1[Jā
TQa (A(S(s̄,p))− ā) + HSp] (20)

where

Hā = Jā
TQaJā

HS = JS
TQdJS = UTQdU

}
⇒ H = Hā + HS

is the combined nS × nS Hessian matrix and we use the
property JS

TQd (S(s̄,p)− s̄) = UTQdUp = HSp.
Note that Jā, Hā, HS and H−1 of Eq. 20 can be pre-
computed. The computational cost per iteration is only
O(mnnS). The cost is practically reduced to a multipli-
cation between a nS ×mn matrix and a nS × 1 vector that
leads to a close to real-time performance, similar to the one
of the very fast SDM method [31].

2.4.1 Derivation of existing methods

The APS model shown in the cost function of Eq. 19 is
an abstract formulation of a generative model from which
many existing models from the literature can be derived.

PS [12], DPM [33]. The proposed cost function written
in summation form (using Eqs. 7 and 11) is equivalent to
PS and DPM. The only difference is that these methods em-
ploy a dynamic programming technique to find the global
optimum, instead of optimizing with respect to the parame-
ters of a motion model to find a local optimum. Moreover,
these methods are limited to use only tree structures for the
deformation cost (Gd) and assume an empty graph for the
appearance cost (Ga), as opposed to APS that can utilize
any graph structure without affecting its computational cost.

AAM-POIC [19]. By removing the deformation prior
from Eq. 19 and using a single multidimensional normal
distribution in the shape and appearance models, the pro-
posed APS are equivalent to AAMs. After performing an
eigenanalysis on the appearance covariance matrix (Σa =
WDWT ), the POIC optimization of an AAM can be de-
rived from the presented inverse algorithm by using as pre-
cision matrix the complement of the texture subspace, i.e.
Qa = I−WWT . The part-based AAM of [29] uses an al-
ternating optimization similar to [27]. Its project-out equiv-
alent can be derived by using the above precision matrix.

BAAM-POIC [2]. Similar to the AAM-POIC, the
Bayesian AAM can be formulated by replacing the preci-
sion matrix with Qa = WD−1WT + 1

σ2 (I −WWT ).
This precision matrix is derived by applying the Woodbury
formula on the covariance matrix WDWT + σ2I, where

(a) (b) (c)

(d) (e) (f)

Figure 2: Employed graph structures. (a) Complete graph.
(b) Chain per area. (c) Chain and complete per area.
(d) Chain and complete per area with connections between
them. (e) Minimum spanning tree. (f) Empty graph.

σ2 is the variance of the noise in the appearance subspace
W.

The above highlight the flexibility and strengths of the
proposed model. As shown in Sec 3.2, the proposed GMRF-
based appearance model makes our inverse technique, to
the best of our knowledge, the best performing one among
all inverse algorithms with fixed Jacobian and Hessian (e.g.
POIC).

3. Experiments
In this section we present a comprehensive evaluation of

the different ways in which APS can be used to model the
shape and appearance of an object and compare their per-
formance against state-of-the-art deformable models. The
experiments are carried out for the popular task of face
alignment for which there is a plethora of large annotated
databases. In all presented cases, the proposed APS are
built using a two-level pyramid. We keep about 92% of the
shape variance and set nA = 150 for both levels that cor-
responds to about 80% of the appearance variance. The ap-
pearance is represented either by pixel intensities or dense
SIFT [17] with 8 channels and the extracted patch size is
17 × 17. The accuracy of the fitting results is measured by
the point-to-point RMS error between the fitted shape and
the ground truth annotations, normalized by the face size, as
proposed in [33]. Note that our Python implementation of
APS1 runs at 50ms per frame, which is very close to real-
time. We believe that with further code optimization, APS
are likely to be capable of running in real-time on high end
desktop/laptop machine. Their time complexity is indepen-
dent of the graph structure that is employed.



Graph type Ga mean ± std median ≤ 0.04

Fig. 2a 0.0399 ± 0.0227 0.0324 68.3%
Fig. 2b 0.0391 ± 0.0243 0.0298 69.6%
Fig. 2c 0.0506 ± 0.0371 0.0370 58.9%
Fig. 2d 0.0492 ± 0.0373 0.0354 58.9%
Fig. 2e 0.0413 ± 0.0257 0.0316 65.2%
Fig. 2f 0.0398 ± 0.0246 0.0319 66.5%
PCA 0.0716 ± 0.0454 0.0595 25.5%
Initialization 0.0800 ± 0.0280 0.0768 4.0%

Table 1: Comparison of the GMRF-based and the PCA-
based appearance model of APS.

3.1. APS experimental analysis

Herein, we present three experiments as a proof of con-
cept regarding the formulation of APS. Specifically, we aim
to examine the contribution of each one of the shape, ap-
pearance and deformation models and find an optimal graph
structure. The model is trained using the 811 images of La-
beled Faces Parts in the Wild (LFPW) [6] train set and tested
on the corresponding test set. We use the annotations pro-
vided by the 300W competition [23, 24] and evaluate using
66 landmark points which are derived by removing land-
marks 61 and 65 from the 68-points mark-up. In this set of
experiments, we don’t extract any appearance features and
only use pixel intensities. Figure 2 shows the graph struc-
tures that we employ for the purpose of these experiments.
Note that the minimum spanning tree (MST) is computed as
shown in [12]. The fitting process of the presented experi-
ments is initialized by adding Gaussian noise to the global
similarity transform retrieved from the ground truth annota-
tions (without in-plane rotation) and applying it to the mean
shape s̄. We set the standard deviation of the random noise
to 0.04, which generates very challenging initializations.

Beginning with the appearance model, Tab. 1 reports the
performance when using a GMRF with the graph structures
of Fig. 2 and when using a single multivariate normal dis-
tribution through PCA. The performance is reported in the
form of statistical measures (mean, median and standard de-
viation) and as the percentage of the testing images that
achieved a final error ≤ 0.04 (value at which the result is
considered adequately good by visual inspection). For this
experiment, we use a PCA shape model and a deformation
prior with the MST. The improvement is significantly high.
Even the empty graph, which generates a block diagonal
precision matrix Qa, thus it assumes independence between
all parts, greatly outperforms the PCA case. The most ap-
propriate graph structure is the one of Fig. 2b, which sug-
gests that, for the case of faces, it is better to connect the
landmarks of each facial area (eyes, mouth, nose etc.) be-
tween them and avoid relating the areas between each other.

Graph type Gs mean ± std median ≤ 0.04

Fig. 2a 0.0495 ± 0.0273 0.0420 45.5%
Fig. 2b 0.0496 ± 0.0276 0.0438 45.5%
Fig. 2c 0.0503 ± 0.0262 0.0433 44.2%
Fig. 2d 0.0495 ± 0.0257 0.0434 44.6%
Fig. 2e 0.0519 ± 0.0306 0.0437 43.8%
Fig. 2f 0.0492 ± 0.0249 0.0437 42.9%
PCA 0.0412 ± 0.0295 0.0301 65.6%
Initialization 0.0800 ± 0.0280 0.0768 4.0%

Table 2: Comparison of the GMRF-based and the PCA-
based shape model of APS.

Deformation Shape model Gs

prior Gd Fig. 2a PCA
No prior 0.1327 ± 0.0857 0.0429 ± 0.0267
Fig. 2b 0.0524 ± 0.0256 0.0430 ± 0.0240
Fig. 2e 0.0495 ± 0.0273 0.0391 ± 0.0243

Table 3: Comparison of the GMRF-based and the PCA-
based deformation prior of APS in combination with the
GMRF-based and the PCA-based shape model.

Table 2 presents the same experiment for the shape
model and the results are opposite to those of the appear-
ance model. However, this is a well expected result. As
mentioned in Sec. 2.3, the appearance model utilizes di-
rectly the constructed block sparse precision matrix. On
the contrary, we need to decompose the covariance matrix
(Σs = (Qs)−1) of the shape model in order to learn a
parametric subspace that will be used during optimization.
However, due to the block sparse formulation, the result-
ing covariance matrix has high (in some cases full) rank.
Most eigenvalues are non-zero and they represent a small
percentage of the data variance. Thus by keeping more than
90% of the total variance, the model ends up with too many
modes of variation (about 100 in the case of 68 vertexes
and depending on the graph structure). Consequently, it is
very hard to apply a robust optimization in such a paramet-
ric space, as the search space is too large.

Finally, Tab. 3 examines the contribution of the defor-
mation prior of Eq. 19. We use the graph of Fig. 2b for the
appearance model and we test for two cases of the shape
model: PCA and GMRF with a complete graph (Fig. 2a).
The results prove that the prior plays an important role in
both cases, as it improves the result. Especially in the
case of the GMRF, the improvement is significant. Given
the previous analysis about the non robust behaviour of a
GMRF shape model, this result is expected because the
prior term will prevent the shape model from generating
non-realistic instances of the face.
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Figure 3: Comparison of APS with other methods on AFW database. (a, b): Comparison of APS accuracy and convergence
with other inverse compositional methods with fixed Jacobian and Hessian. The dashed vertical black line in (b) denotes the
transition from lower to higher pyramidal level. (c): Comparison of APS with current state-of-the-art methods.

APS SDM SIFT-AAM GN-DPM DPM/PS
0.0415 0.0453 0.0423 0.0686 0.0585

Table 4: Mean values of the cumulative error curves re-
ported in Fig. 3c.

3.2. Comparison with state-of-the-art methods

Figures 3a and 3b aim to compare the accuracy and con-
vergence speed of APS against the other existing inverse
compositional techniques with fixed Jacobian and Hessian
(POIC) mentioned in 2.4.1. AAM-POIC [19] and BAAM-
POIC [2] denote the POIC optimization of an AAM and
a Bayesian AAM. AAM-DPM-POIC refers to the inverse
algorithm that can be combined with the AAM part-based
model of [29]. All methods are trained on LFPW database
in the same manner, using the same pyramid and extracting
dense SIFT features with 8 channels. For all of them we
keep nS = 5 and nS = 15 shape components for the low
and high levels respectively, that correspond to about 92%
of the total shape variance, and nA = 150 appearance com-
ponents for both levels. The results, which are computed
using 66 landmark points, are reported on the challenging
Annotated Faces In-The-Wild (AFW) [33] database and in-
dicate that the proposed method in this paper outperforms
all existing inverse-compositional techniques by a signifi-
cant margin. Most importantly, APS need very few number
of iterations in order to converge (less than 10 at the first
pyramidal level and no more than 4 at the second), which
highlights their close to real-time computational complex-
ity.

Figure 3c compares APS against the current state-of-
the-art techniques: SDM [31], the recently proposed GN-
DPM [29] and SIFT-AAM [4]. The initialization for all
methods is done using the bounding box of the landmark

points returned by DPM [33] (the black dashed line). For
all the methods we used the pre-trained implementations
provided by their authors, except SIFT-AAM which we
trained using the Menpo Project [1]. Note that all compet-
ing methods are trained on much more data than the 811
LFPW images that we use. The result is reported on the
AFW database and computed based on 49 points, which is
the mark-up that both SDM and GN-DPM return. Table 4
reports the mean values of the cumulative error curves of
Fig. 3c. These results show that APS outperform all meth-
ods and are more robust. Note that GN-DPM is very accu-
rate when the initialization is close to the ground truth but
is not robust against bad initializations, as indicated by its
large mean error value. Finally, please refer to the supple-
mentary material for additional experimental results.

4. Conclusion
In this work we proposed a powerful generative model

that combines the main ideas behind PS and AAMs. APS
employ a graph-based modelling of the appearance and use
a variant of the Gauss-Newton technique to optimize with
respect to the parameters of a statistical shape model. One
of the major contributions of this paper is the proof that
modelling the patch-based appearance of an object with a
GMRF structure is more beneficial than applying a PCA
model. APS also introduce a spring-like deformation prior
term that makes them robust to bad initializations. The
method has a close to real-time fitting performance, which
is the same independent of the graph structure that is em-
ployed, and as shown in our experiments needs only a few
iterations to converge. In the future, we aim to apply APS
on classes of articulated objects (e.g. hands, body pose) in
order to test whether the combination of patch-based ap-
pearance with the deformation prior can make a significant
difference.
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