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Abstract—A novel method that fuses texture and shape infor- THE FAUS TO FACIAL EXPREASEII'SNIS RULES AS PROPOSED {g].
mation to achieve Facial Action Unit (FAU) recognition from _ _
video sequences is proposed. In order to extract the texture | EXPression FAU coded cescription |21
information, a subspace method based on Discriminant Non- Anger 164+;5"'0(r(2(§3 oorr21i)OW|tP1160r ”3%12202%
negative Matrix Factorization (DNMF) is applied on the dif- (16 +( \)/\)/ith (()r n:;tz +( )

ference images of the video sequence, calculated taking under Disgust | (10 With or not17) or (9 with o not17)) + (25 or 26)

consideration the neutral and the most expressive frame, to Fear (T+4)+ (5+7) + 20+ (25 or 26)
extract the desired classification label. The shape information Happiness 6+ 12+ 16 + (25 or 26)
consists of the deformed Candide facial grid (more specifically Sadness T+4+ (60r7)+ 15+ 17 + (25 or 26)
the grid node displacements between the neutral and the most [ Surprise (14 2) + (5 without 7) + 26

expressive facial expression frame) that corresponds to thadial
expression depicted in the video sequence. The shape information
is afterwards classified using a two-class Support Vector Machine

(SVM) system. The fusion of texture and shape information is |n this paper, a novel method for video based Facial Action
performed using Median Radial Basis Functions (MRBFs) Neural Units (FAUS) recognition that exploits both the texture and

Networks (NNs) in order to detect the set of present FAUSs. h in . . d The f f the facial
The accuracy achieved in the Cohn-Kanade database is equalSN@Pe Information is proposed. The features of the facia

to 92.1% when recognizing the 17 FAUs that are responsible for texture are obtained by applying a subspace representation
facial expression development. method based on a discriminant extension of the Non-negativ

Index Terms—Facial Action Unit Recognition, Discriminant Matrix Factorization (NMF) algorithm (the so-called DNMF
Non-negative Matrix Factorization, Support Vector Machines, 5140rithm [3]) on the images derived from the video sequence
Radial Basis Functions Neural Networks, Fusion. . . . . .

The DNMF algorithm is applied on the difference images cal-
culated by subtracting the neutral frame of the video secgien
from the fully expressed one. Thus, the set of present FAUs

Several research efforts have been done during the pasthe difference image under examination is detected. The
two decades regarding facial expression recognition, as a@pape information is extracted by calculating the Candatien
plications such as smart environments require efficieriafacdisplacements between the neutral and the expressive frame
expression recognition. A set of six basic facial expressio[4]. The FAUs classification is obtained using a bank of two-
(anger, disgust, fear, happiness, sadness and surprigegrth class SVM systems. Thus, the set of FAUs that are adequate
thought to be expressed in a similar way all over the world wéer facial expression representation is detected [2]. Extute
defined [1], thus making the facial expression recognitiamen and shape information are then fused using a Median Radial
standard. A set of muscle movements known as Facial ActiBasis Function (MRBF) Neural Network, to provide the final
Units (FAUs) was also defined. These FAUs are combined dfassification regarding the set of present FAUs in the video
order to create the rules responsible for the formation cififa sequence under examination.
expressions as proposed in [2]. The above mentioned basic
facial expressions along with the neutral state are thestarg
of facial expression recognition systems developed noysda The system is composed of three subsystems: texture in-
A survey on automatic facial expression recognition can Wermation extraction, shape information extraction andirth
found in [2]. fusion for final classification. The texture subsystem ofgsra

As can be seen from the rules proposed in [2] (Table I), tln the difference images, created from the available image
FAUs 1, 2, 4, 5, 6, 7, 9, 10, 12, 15, 16, 17, 20, 23, 24, 2&quences by subtracting the neutral image from the corre-
and 26 are necessary for fully describing all facial expoess  sponding fully expressive image (see Figure 1). The diffeee
Therefore, we concentrate on the detection of these 17 FAlilmages are used instead of the original facial expression
The operatorst, or in Table | refer to the logical AND, OR images, due to the fact that they emphasize the facial region
operations, respectively. The neutral state is not takeferun motion and reduce the variance related to the identityipec
consideration, as no FAUs are present in it. aspects of the facial image [5]. The same image sequences

I. INTRODUCTION

Il. SYSTEM DESCRIPTION



consists of the difference images of each video sequente (ca
culated by subtracting the neutral frame from the expressiv
one). Thus) consists of the difference images. In each image
y € Y one or more FAUs are activated. The database that
contains the difference images is clustered into 17 differe
classe);, k = 1,...,17, each one representing one of the
17 basic FAUs. The images are labelled properly Withi, 1}
if a FAU is absent or present. In that way, the activation of
more than one FAUs simultaneously is possible, thus allgwin
the application of the rules presented in [2]. Thus, eaclgana
can belong to more than one classes. Each difference image
Fig. 1. Difference images between neutral pose and fullyesgive one. g initially normalized. The smallest intensity value foreey
row is found and its absolute value is added to each pixel in
the row, thus resulting in a positive image. In both cases, th
are also used as input to the shape extraction informatiiput image is afterwards scanned row-wise to form a vector
subsystem. The texture extraction subsystem specifieshwhic€ R/ of dimensionF'.
FAUs are activated in the difference images are examination The algorithm used for texture extraction was the DNMF
The information obtained from the grid tracking system iglgorithm, which is an extension of the NMF algorithm. The
used to calculate the Candide node difference between MMF algorithm algorithm is an image decomposition algo-
neutral and fully expressive frame. The node differences dfthm that allows only additive combinations of non negativ
used as an input to a bank of 17 two-class SVM systemg),mponents. DNMF was the result of an attempt to introduce
each one corresponding to a FAU to be detected. Each S\@ligcriminant information to the NMF decomposition. Both
system is able to recognize if the FAU under examination NMF and DNMF algorithms will be presented analytically
present or absent in the video sequence being examined. PREOW.
output information from both the texture and shape classifie
consists of a set of activated FAUs in the examined videé® The Non-negative Matrix Factorization Algorithm

sequence. This set is fed to the fusion subsystem to providqn order to apply NMF in the databage, the matrixX e

the final classification result, i.e. the set of activated BAW g rFxc _ ;] should be constructed, whetg ; is the i-th
- ] ’ 5J

the examined vi_(jeo sequence. Th_e diagram of the system ué%qnent of thej-th image, F' is the number of pixels and?

for FAU recognition is shown in Figure 2. is the number of images in the database. In other words, the
j-th column of X is the x; facial image in vector form (i.e.

x; € RF). NMF aims at finding two matrice® € R =

= [2:,1] andH € R L = [ny, ;] such that :

Shape information extraction

‘Texture information extraction

or

X ~ ZH, 1)

where M is the number of dimensions taken under consider-
; _ ation (usuallyM <« F), Z is a matrix that consists of basis
; 6 <P ! images andH is the matrix that contains the corresponding
i weight vectors.

' A facial imagex; after the NMF decomposition can be
written asx; ~ Zh;, whereh; is the j-th column of H.
Thus, the columns of the matri& can be considered as basis
i images and the vectdr; as the corresponding weight vector.
Vectorsh; can also be considered as the projection vectors
of the original image vectors; on a lower dimension feature
space.

Letx = [z1,...,2F],q = [q1,-..,qFr| be positive vectors
z; > 0, g; > 0, then the Kullback-Leibler (KL) Divergence
[11. TEXTURE INFORMATION EXTRACTION (or relative entropy) betweexr andq is defined [6] as:

2 class SVM| |2 class SVM

system sy
FAU #1 FAU#2 |0+

Final
of 2

seto

Fig. 2. System architecture for FAU recognition in facialle®s.

Let U be a database of facial videos. The facial expression A T
depicted in each video sequence is dynamic, evolving throug KL(x[la) = Z(Ii In P 4 — i) 2)
time as the video progresses. We take under consideragon th ’

frame that depicts the facial expression in its greateshaity, The defined cost for the decomposition (1) is the sum of all
i.e. the last frame, to create a facial image datak@sthat KL divergences for all images in the database. This way the



following metric can be formed : whereT} is given by:

Dn(XIZH) = 25 BFLOGI1ZR;) o= (27 +2) (5 3 her) = 2~ 1. (9)
=@ hl(m)"‘ 3 N AL
+ 2o Zikhej — i)

as the measure of the cost for factoriKginto ZH [7].

The update rules for the bas#s,, are given by:

The NMF factorization is the outcome of the following E-h(t)- Tij
. . i B j "”Z 2D p®
optimization problem : () _ (1) 1Zia
Zik = %ik > 0 (10)
min Dy (X]||ZH) subject to 4) 37k
’ and
Zik = 0, th >0, ZZZ'J =1, Vj. Z'(t)
, () _ _“ik
[ Zi,k = —/(t) (11)
1?1,k

The update rules for the weight matrBl{ and the bases

matrix Z can be found in [7]. The above decomposition is a supervised non-negative ma-
o ) ] o trix factorization method that decomposes the facial insage

B. The Discriminant Non-negative Matrix Factorization AIgo-  intg parts while, enhancing the class separability. Therimat
rithm 7!, = (Z5Zp)~'Z%, which is the pseudo-inverse @p, is

In order to incorporate discriminants constraints insige t then used for extracting the discriminant featureﬁasZEx.
NMF cost function (4), we should use the information refhe most interesting property of DNMF algorithm is that it
garding the separation of the vectdrs into different classes. decomposes the image to facial areas, i.e. mouth, eyebrows,
Let us assume that the vectdw; that corresponds to theeyes, and focuses on extracting the information hiding émth
jth column of the matrixH, is the coefficient vector for Thus, the new representation of the image is a better one
the pth facial image of therth class and will be denoted ascompared to the one acquired when the whole image was taken
ni) = [ngf . ..nffl)M]T. The mean vector of the vectorg,”  under consideration.
for the classr is denoted ag:(") = [Mgr).“,ug\:[)}T and the  For testing, the facial image; is projected on the low
mean of all classes a8 = [u1 ... ]! The cardinality of dimensional feature space produced by the applicationef th
a facial class), is denoted byN,. Then, the within scatter DNMF algorithm:

matrix for the coefficient vectorh; is defined as: X; = Z})xj. (12)
Nr For the classification of the facial imagg, its distance from
Su=>_> " —pu)n — putHT (5) each class center is calculated. The smallest distance drom
r=1p=1 class (presence or absence of the specific FAU) specifies the
whereas the between scatter matrix is defined as: classr; to which the sample under examination belongs:
6 o in(min 1% — pu®
; , r; = argmin(min ||%; — p'7])). (13)
Sy = > N, (1) — () — )T, (6) gr ’
r=1

o ) . N IV. SHAPE INFORMATION EXTRACTION
The discriminant constraints are incorporated by reqgirin

tr[S,,] to be as small as possible whiléSy] is required to be The geometrical information extraction is achieved using

as large as possible. Thus, the new cost function is given §ygrid tracking system, based on deformable models [4]. The
tracking is performed using a pyramidal implementationhef t

Dy(X||ZpH) = Dn(X||ZpH) +tr[S,,] — otr[S].  (7) well-known Kanade-Lucas-Tomasi (KLT) algorithm. The user
. has to place manually a number of Candide grid nodes on
wherey and are constants anf is the measure of the costihe ¢rresponding positions of the face depicted at the first
for factoring X into ZH [3]. _ o frame of the image sequence. The algorithm automatically
Following the same Expectation Maximization (EM) apzgiysts the grid to the face and then tracks it through the
proach used by NMF techniques [3], the following updatesulg, 546 sequence, as it evolves through time. At the end, the
for the weight coefficients,; ; that belong to the-th facial yiq tracking algorithm produces the deformed Candide grid

class become: that corresponds to the last frame i.e. the one that defhiets t

o 1, (t—1) greatest intensity of the facial expression. An examplehef t
h,(f). _ T+ \/T1 +4(2y - v +29) Nr)h’w' Candide grid for every facial expression can be seen in EBigur
7 2(2y — (27 +20)x-) 3.
(t—1) T

i “ik ¥ 2 DD Zl(fl—i>h§fjfl>

202y — 2y +20) )

The shape information used from thieh video sequence
@8) is the displacementd§ of the nodes of the Candide grid,
defined as the difference between coordinates of this node in




subject to the separability constraints:

Neutral Anger Disgust Fear Happiness Sadness  Surprise

wherew is the vector of hyperplane coefficientsis the bias,
& = [&,...,&] is the slack variable vectol) is the term
Fig. 3. An example of the Candide grid for every facial expess ~ that penalizes the training errors apdis the class label of
the vectorx; that takes values if—1, 1}.

After solving the optimization problem (16) subject to the
separability constraints (17), the decision function et be
used to classify unlabelled samples is:

the first and last frame [4]:

i % i1 T - .
dj = [AJC]AyJ} 1€ {1,...,K} and j € {1,,]271}4) S(g) zsign(WT¢(g)+b). (18)
wherei is an index that refers to the node under considerationhe output of the decision function is the label of the class
In our caseK = 104 nodes were used. the specific FAU under examination belongs to.

For every facial video in the training set, a feature vegior  In this formulation, a non-linear mappingis used. On the
of ' =2-104 = 208 dimensions, containing the geometricabther hand, if a linear SVM system is to be constructed then
displacements of all grid nodes is created: #(9) = g. The non-linear mapping is defined by a positive

g, = [djl- d? df]T. (15) kernel function,h(gi,gj_), s_pecifying an inner prpduct in the
feature space and satisfying the Mercer condition [8]:

Let &/ be the video database that contains the facial videos, T
that are clustered into 17 different classés ¥ =1,...,17, hg:,9;) = ¢(9:) ¢(9;)- (19)
each one representing one of the 17 basic FAUs. The featwe.. ; - ; ;
vectorsg; € RF labelled properly with{—1,1} if a FAU is iﬁfﬁénze(rggi) Igglﬁgﬁs.the polynomial and Radial Basis
absent or present are used as a training input to a muls-clas '
SVM as will be described in the following section. h(x,y) = ¢(X)T¢(y) — (XTy + 1)d (20)

An example of several posers for each facial expression with hx,y) = d(x)T(y) = o) (x-y)

the corresponding deformed grid is shown in Figure 4.

whered is the degree of the polynomial kernel ands the
spread of the Gaussian cluster. These kernels have been used
in the experiments conducted in this paper.

Surprise Neutral Anger

B. Fusion of texture and shape information

The application of the DNMF algorithm on the images of
the database results in the label that specifies if the FAbigbei
examined is present or not in the difference image under exam
ination. Similarly, the classification procedure perfochusing
the SVM system on the grid following the facial expression
through time also results in the FAUs labels.

In more detail, the image; and the corresponding vector of
geometrical displacemengg are taken into consideration. The
DNMF algorithm, applied to the; image, produces the label
r; as a result, while SVMs applied to the vector of geometrical
Fig. 4. An example of several posers for each facial exprasmm the displacementgj, produce the Iabaj as the equivalent result.
Cohn-Kanade database. Thus, a new feature vectey;, defined as:

T
A. Support Vector Machines ¢ =lrs sl (21)
A two-class SVM classifier finds a hyperplane or surfacgontaining classification information from both sourcesswa
that separates the two-classgs and F2 with the maximum created to be used for fusion purposes.
margin [8]. In order to train a two-class SVM network usin

soft margin formulation, the following minimization prash . Radial Basis Function (RBF) Neural Networks (NNs)

has to be solved [8]: A series of RBF NNs was used for the fusion of texture
1 N and shape results. The number of networks is equal to the
min 5WTW + CZ & (16) number of FAUs that we are trying to detect. Each network

w.b.§ i=1 provided a binary decision on whether the corresponding=AU



are activated in the data. The RBF network consists of adinea
combination of a set of basis functions [9]:

M
pk(cj) = Zwk,nd)n(cj)v k=1,2 (22)
n=1
where M is the number of kernel functions and, ,, are the
weights of the hidden unit to output connection. Each hidden
unit (kernel) implements a Gaussian function:

¢n(ej) = exp[—(my — ;) B (my, — ;)] (23)

wherej = 1,... M, m, is the mean vector ani,, is the
covariance matrix [9].

The decision regarding the clags of c;, namely the
existence of the corresponding FAU, is handled by the relate
RBF NN and is taken as:

Fig. 5. Basis images extracted for the DNMF algorithm.
l; = E;I}f,lma;(pk (cj)- (24)

V. EXPERIMENTAL RESULTS
A. Database description
The Cohn-Kanade database has been used in the expe

ments. This database is annotated with FAUs. All the avigilab \//A—\ﬁ;

subjects and videos were taken under consideration to foem t 1

database for the experiments. 1
The most frequently used approach for testing the genera

ization performance of a classifier is the leave-one-oussro

validation approach [10]. A variant of leave-one-out wasdis

(i.e., leave 20% of the samples out) for the formation of the

test dataset in our experiments. Five sets containing 20% ¢

the data for each class, chosen randomly, were created. Ol

set containing 20% of the samples for each class is used as

the test set, while the remaining sets form the training sé&19. 6. Recognition accuracies obtained for FAU recognitising the DNMF

N . algorithm.

After the classification procedure is performed, the sample

forming the test set are incorporated into the current iingin

set, and a new set of samples (20% of the samples for each . . )

class) is extracted to form the new test set. The remainiy FuSion of texture and shape information for FAUs recog-

samples create the new training set. This procedure is tegped" "' O"

five times. The average classification accuracy is definedeas t The pest accuracy achieved when using the proposed fusion
mean value of the percentages of the correctly classifiddlfacapproach was equal to 92.1%, which is significantly better

expressions over all data presentations. than the one obtained when using either texture or shape
B. FAUSs recognition using texture information information. The accuracy rate was increased due to the use

An example of the basis images extracted when the DNME both sources of information. The introduction of texture
algorithm is applied at the difference images is shown fﬁliminatgs some of the confusions qbserved when using shape
Figure 5. The accuracy rates obtained for FAUs recognitidiformation only. This happens as in many FAUs, the shape
using only the texture information and for different numbernformation is not enough to fully describe its presence. In

of basis images are shown in Figure 6. The best classificatiOi"y Cases, the available grid nodes fail to describe all

accuracy achieved was equal to 84.4% and the number of b&4SSiPle texture characteristics, such as furrows andkiesn
images was equal to 180. that may appear on the face. To be more specific, when FAU

12 is observed (see Figure 8), some vertical furrows appear
C. FAUs recognition using shape information between the nose and the corners of the mouth (emphasized
The best accuracy rate obtained for FAUs recognition usimgth a cloud of black dots). These furrows cannot be fully
only the shape information was equal to 86.7%. In Figure @escribed by the Candide grid deformation due to the absence
the accuracy rates achieved for FAUs recognition when usio§ properly placed grid nodes. The same happens with FAU
SVMs are shown. The functions used as SVM kernels we?8 (also shown in Figure 8), where horizontal furrows appear
the polynomial and RBF functions. The best accuracy wagtween the chin and mouth (emphasized with a cloud of black
achieved when a polynomial kernel of degree 4 was used. dots). Texture can capture all the necessary informatioerevh

—+— DNMF




are then fused using MRBF NNs. The system achieves an
] accuracy of 92.1% when recognizing the 17 basic FAUs.
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VI. CONCLUSIONS

A novel method for FAUs recognition is proposed in this
paper. The recognition is performed by fusing the texturg an
the shape information extracted from a video sequence asing
subspace representation method and a SVMs system, respec-
tively. The results obtained from the above mentioned nutho



