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Abstract—A novel method that fuses texture and shape infor-
mation to achieve Facial Action Unit (FAU) recognition from
video sequences is proposed. In order to extract the texture
information, a subspace method based on Discriminant Non-
negative Matrix Factorization (DNMF) is applied on the dif-
ference images of the video sequence, calculated taking under
consideration the neutral and the most expressive frame, to
extract the desired classification label. The shape information
consists of the deformed Candide facial grid (more specifically
the grid node displacements between the neutral and the most
expressive facial expression frame) that corresponds to the facial
expression depicted in the video sequence. The shape information
is afterwards classified using a two-class Support Vector Machine
(SVM) system. The fusion of texture and shape information is
performed using Median Radial Basis Functions (MRBFs) Neural
Networks (NNs) in order to detect the set of present FAUs.
The accuracy achieved in the Cohn-Kanade database is equal
to 92.1% when recognizing the 17 FAUs that are responsible for
facial expression development.

Index Terms—Facial Action Unit Recognition, Discriminant
Non-negative Matrix Factorization, Support Vector Machines,
Radial Basis Functions Neural Networks, Fusion.

I. I NTRODUCTION

Several research efforts have been done during the past
two decades regarding facial expression recognition, as ap-
plications such as smart environments require efficient facial
expression recognition. A set of six basic facial expressions
(anger, disgust, fear, happiness, sadness and surprise) that are
thought to be expressed in a similar way all over the world was
defined [1], thus making the facial expression recognition more
standard. A set of muscle movements known as Facial Action
Units (FAUs) was also defined. These FAUs are combined in
order to create the rules responsible for the formation of facial
expressions as proposed in [2]. The above mentioned basic
facial expressions along with the neutral state are the target
of facial expression recognition systems developed nowadays.
A survey on automatic facial expression recognition can be
found in [2].

As can be seen from the rules proposed in [2] (Table I), the
FAUs 1, 2, 4, 5, 6, 7, 9, 10, 12, 15, 16, 17, 20, 23, 24, 25
and 26 are necessary for fully describing all facial expressions.
Therefore, we concentrate on the detection of these 17 FAUs.
The operators+, or in Table I refer to the logical AND, OR
operations, respectively. The neutral state is not taken under
consideration, as no FAUs are present in it.

TABLE I
THE FAUS TO FACIAL EXPRESSIONS RULES AS PROPOSED IN[2].

Expression FAU coded description [2]
Anger 4 + 7 + (((23 or 24) with or not17)or

(16 + (25 or 26)) or (10 + 16 + (25 or 26)))
with or not 2

Disgust ((10 with or not17) or (9 with or not17)) + (25 or 26)
Fear (1 + 4) + (5 + 7) + 20 + (25 or 26)

Happiness 6 + 12 + 16 + (25 or 26)
Sadness 1 + 4 + (6 or 7) + 15 + 17 + (25 or 26)
Surprise (1 + 2) + (5 without 7) + 26

In this paper, a novel method for video based Facial Action
Units (FAUs) recognition that exploits both the texture and
shape information is proposed. The features of the facial
texture are obtained by applying a subspace representation
method based on a discriminant extension of the Non-negative
Matrix Factorization (NMF) algorithm (the so-called DNMF
algorithm [3]) on the images derived from the video sequence.
The DNMF algorithm is applied on the difference images cal-
culated by subtracting the neutral frame of the video sequence
from the fully expressed one. Thus, the set of present FAUs
in the difference image under examination is detected. The
shape information is extracted by calculating the Candide node
displacements between the neutral and the expressive frame
[4]. The FAUs classification is obtained using a bank of two-
class SVM systems. Thus, the set of FAUs that are adequate
for facial expression representation is detected [2]. The texture
and shape information are then fused using a Median Radial
Basis Function (MRBF) Neural Network, to provide the final
classification regarding the set of present FAUs in the video
sequence under examination.

II. SYSTEM DESCRIPTION

The system is composed of three subsystems: texture in-
formation extraction, shape information extraction and their
fusion for final classification. The texture subsystem operates
on the difference images, created from the available image
sequences by subtracting the neutral image from the corre-
sponding fully expressive image (see Figure 1). The difference
images are used instead of the original facial expression
images, due to the fact that they emphasize the facial regions in
motion and reduce the variance related to the identity-specific
aspects of the facial image [5]. The same image sequences



Fig. 1. Difference images between neutral pose and fully expressive one.

are also used as input to the shape extraction information
subsystem. The texture extraction subsystem specifies which
FAUs are activated in the difference images are examination.

The information obtained from the grid tracking system is
used to calculate the Candide node difference between the
neutral and fully expressive frame. The node differences are
used as an input to a bank of 17 two-class SVM systems,
each one corresponding to a FAU to be detected. Each SVM
system is able to recognize if the FAU under examination is
present or absent in the video sequence being examined. The
output information from both the texture and shape classifiers
consists of a set of activated FAUs in the examined video
sequence. This set is fed to the fusion subsystem to provide
the final classification result, i.e. the set of activated FAUs in
the examined video sequence. The diagram of the system used
for FAU recognition is shown in Figure 2.

Fig. 2. System architecture for FAU recognition in facial videos.

III. T EXTURE INFORMATION EXTRACTION

Let U be a database of facial videos. The facial expression
depicted in each video sequence is dynamic, evolving through
time as the video progresses. We take under consideration the
frame that depicts the facial expression in its greatest intensity,
i.e. the last frame, to create a facial image databaseY that

consists of the difference images of each video sequence (cal-
culated by subtracting the neutral frame from the expressive
one). Thus,Y consists of the difference images. In each image
y ∈ Y one or more FAUs are activated. The database that
contains the difference images is clustered into 17 different
classesYk, k = 1, . . . , 17, each one representing one of the
17 basic FAUs. The images are labelled properly with{−1, 1}
if a FAU is absent or present. In that way, the activation of
more than one FAUs simultaneously is possible, thus allowing
the application of the rules presented in [2]. Thus, each image
can belong to more than one classes. Each difference image
is initially normalized. The smallest intensity value for every
row is found and its absolute value is added to each pixel in
the row, thus resulting in a positive image. In both cases, the
input image is afterwards scanned row-wise to form a vector
x ∈ ℜF

+ of dimensionF .
The algorithm used for texture extraction was the DNMF

algorithm, which is an extension of the NMF algorithm. The
NMF algorithm algorithm is an image decomposition algo-
rithm that allows only additive combinations of non negative
components. DNMF was the result of an attempt to introduce
discriminant information to the NMF decomposition. Both
NMF and DNMF algorithms will be presented analytically
below.

A. The Non-negative Matrix Factorization Algorithm

In order to apply NMF in the databaseY, the matrixX ∈
ℜF×G

+ = [xi,j ] should be constructed, wherexi,j is the i-th
element of thej-th image,F is the number of pixels andG
is the number of images in the database. In other words, the
j-th column ofX is thexj facial image in vector form (i.e.
xj ∈ ℜF

+). NMF aims at finding two matricesZ ∈ ℜF×M
+ =

[zi,k] andH ∈ ℜM×L
+ = [hk,j ] such that :

X ≈ ZH, (1)

whereM is the number of dimensions taken under consider-
ation (usuallyM ≪ F ), Z is a matrix that consists of basis
images andH is the matrix that contains the corresponding
weight vectors.

A facial imagexj after the NMF decomposition can be
written asxj ≈ Zhj , where hj is the j-th column of H.
Thus, the columns of the matrixZ can be considered as basis
images and the vectorhj as the corresponding weight vector.
Vectorshj can also be considered as the projection vectors
of the original image vectorsxj on a lower dimension feature
space.

Let x = [x1, . . . , xF ],q = [q1, . . . , qF ] be positive vectors
xi > 0, qi > 0, then the Kullback-Leibler (KL) Divergence
(or relative entropy) betweenx andq is defined [6] as:

KL(x||q) ,
∑

i

(xi ln
xi

qi

+ qi − xi). (2)

The defined cost for the decomposition (1) is the sum of all
KL divergences for all images in the database. This way the



following metric can be formed :

DN (X||ZH) =
∑

j KL(xj ||Zhj)

=
∑

i,j(xi,j ln(
xi,j

∑

k
zi,khk,j

)+

+
∑

k zi,khk,j − xi,j)

(3)

as the measure of the cost for factoringX into ZH [7].
The NMF factorization is the outcome of the following

optimization problem :

min
Z,H

DN (X||ZH) subject to (4)

zi,k ≥ 0, hk,j ≥ 0,
∑

i

zi,j = 1, ∀j.

The update rules for the weight matrixH and the bases
matrix Z can be found in [7].

B. The Discriminant Non-negative Matrix Factorization Algo-
rithm

In order to incorporate discriminants constraints inside the
NMF cost function (4), we should use the information re-
garding the separation of the vectorshj into different classes.
Let us assume that the vectorhj that corresponds to the
jth column of the matrixH, is the coefficient vector for
the ρth facial image of therth class and will be denoted as
η

(r)
ρ = [η

(r)
ρ,1 . . . η

(r)
ρ,M ]T . The mean vector of the vectorsη(r)

ρ

for the classr is denoted asµ(r) = [µ
(r)
1 . . . µ

(r)
M ]T and the

mean of all classes asµ = [µ1 . . . µM ]T . The cardinality of
a facial classYr is denoted byNr. Then, the within scatter
matrix for the coefficient vectorshj is defined as:

Sw =

6
∑

r=1

Nr
∑

ρ=1

(η(r)
ρ − µ(r))(η(r)

ρ − µ(r))T (5)

whereas the between scatter matrix is defined as:

Sb =

6
∑

r=1

Nr(µ
(r) − µ)(µ(r) − µ)T . (6)

The discriminant constraints are incorporated by requiring
tr[Sw] to be as small as possible while tr[Sb] is required to be
as large as possible. Thus, the new cost function is given by:

Dd(X||ZDH) = DN (X||ZDH) + γtr[Sw] − δtr[Sb]. (7)

whereγ andδ are constants andD is the measure of the cost
for factoringX into ZH [3].

Following the same Expectation Maximization (EM) ap-
proach used by NMF techniques [3], the following update rules
for the weight coefficientshk,j that belong to ther-th facial
class become:

h
(t)
k,j =

T1 +
√

T 2
1 + 4(2γ − (2γ + 2δ) 1

Nr
)h

(t−1)
k,j

2(2γ − (2γ + 2δ) 1
Nr

)
∑

i z
(t−1)
i,k

xi,j
∑

l
z
(t−1)
i,l

h
(t−1)
l,j

2(2γ − (2γ + 2δ) 1
Nr

)
. (8)

whereT1 is given by:

T1 = (2γ + 2δ)(
1

Nr

∑

λ,λ6=l

hk,λ) − 2δµk − 1. (9)

The update rules for the basesZD, are given by:

ź
(t)
i,k = z

(t−1)
i,k

∑

j h
(t)
k,j

xi,j
∑

l
z
(t−1)
i,l

h
(t)
l,j

∑

j h
(t)
k,j

(10)

and

z
(t)
i,k =

ź
(t)
i,k

∑

l ź
(t)
l,k

. (11)

The above decomposition is a supervised non-negative ma-
trix factorization method that decomposes the facial images
into parts while, enhancing the class separability. The matrix
Z

†
D = (ZT

DZD)−1ZT
D, which is the pseudo-inverse ofZD, is

then used for extracting the discriminant features asx́ = Z
†
Dx.

The most interesting property of DNMF algorithm is that it
decomposes the image to facial areas, i.e. mouth, eyebrows,
eyes, and focuses on extracting the information hiding in them.
Thus, the new representation of the image is a better one
compared to the one acquired when the whole image was taken
under consideration.

For testing, the facial imagexj is projected on the low
dimensional feature space produced by the application of the
DNMF algorithm:

x́j = Z
†
Dxj . (12)

For the classification of the facial imagéxj , its distance from
each class center is calculated. The smallest distance froma
class (presence or absence of the specific FAU) specifies the
classrj to which the sample under examination belongs:

rj = argmin
k=1,2

(min ‖x́j − µ(k)‖). (13)

IV. SHAPE INFORMATION EXTRACTION

The geometrical information extraction is achieved using
a grid tracking system, based on deformable models [4]. The
tracking is performed using a pyramidal implementation of the
well-known Kanade-Lucas-Tomasi (KLT) algorithm. The user
has to place manually a number of Candide grid nodes on
the corresponding positions of the face depicted at the first
frame of the image sequence. The algorithm automatically
adjusts the grid to the face and then tracks it through the
image sequence, as it evolves through time. At the end, the
grid tracking algorithm produces the deformed Candide grid
that corresponds to the last frame i.e. the one that depicts the
greatest intensity of the facial expression. An example of the
Candide grid for every facial expression can be seen in Figure
3.

The shape information used from thej-th video sequence
is the displacementsdi

j of the nodes of the Candide grid,
defined as the difference between coordinates of this node in



Fig. 3. An example of the Candide grid for every facial expression.

the first and last frame [4]:

di
j = [∆xi

j∆yi
j ]

T i ∈ {1, . . . ,K} and j ∈ {1, . . . , N}
(14)

wherei is an index that refers to the node under consideration.
In our caseK = 104 nodes were used.

For every facial video in the training set, a feature vectorgj

of F = 2 · 104 = 208 dimensions, containing the geometrical
displacements of all grid nodes is created:

gj = [d1
j d2

j . . . dK
j ]T . (15)

Let U be the video database that contains the facial videos,
that are clustered into 17 different classesUk, k = 1, . . . , 17,
each one representing one of the 17 basic FAUs. The feature
vectorsgj ∈ ℜF labelled properly with{−1, 1} if a FAU is
absent or present are used as a training input to a multi-class
SVM as will be described in the following section.

An example of several posers for each facial expression with
the corresponding deformed grid is shown in Figure 4.

Fig. 4. An example of several posers for each facial expression from the
Cohn-Kanade database.

A. Support Vector Machines

A two-class SVM classifier finds a hyperplane or surface
that separates the two-classesF1 andF2 with the maximum
margin [8]. In order to train a two-class SVM network using
soft margin formulation, the following minimization problem
has to be solved [8]:

min
w,b,ξ

1

2
wT w + C

N
∑

j=1

ξj (16)

subject to the separability constraints:

yi(wT φ(xj) + b) ≥ 1 − ξj , ξj ≥ 0, j = 1, . . . , N (17)

wherew is the vector of hyperplane coefficients,b is the bias,
ξ = [ξi, . . . , ξw] is the slack variable vector,C is the term
that penalizes the training errors andyi is the class label of
the vectorxi that takes values in{−1, 1}.

After solving the optimization problem (16) subject to the
separability constraints (17), the decision function thatcan be
used to classify unlabelled samples is:

s(g) = sign(wT φ(g) + b). (18)

The output of the decision function is the label of the class
the specific FAU under examination belongs to.

In this formulation, a non-linear mappingφ is used. On the
other hand, if a linear SVM system is to be constructed then
φ(g) = g. The non-linear mapping is defined by a positive
kernel function,h(gi, gj), specifying an inner product in the
feature space and satisfying the Mercer condition [8]:

h(gi, gj) = φ(gi)
T
φ(gj). (19)

Typical kernels include the polynomial and Radial Basis
Functions (RBF) kernels:

h(x,y) = φ(x)T φ(y) = (xT y + 1)d (20)

h(x,y) = φ(x)T φ(y) = e−γ(x−y)T (x−y)

whered is the degree of the polynomial kernel andγ is the
spread of the Gaussian cluster. These kernels have been used
in the experiments conducted in this paper.

B. Fusion of texture and shape information

The application of the DNMF algorithm on the images of
the database results in the label that specifies if the FAU being
examined is present or not in the difference image under exam-
ination. Similarly, the classification procedure performed using
the SVM system on the grid following the facial expression
through time also results in the FAUs labels.

In more detail, the imagexj and the corresponding vector of
geometrical displacementsgj are taken into consideration. The
DNMF algorithm, applied to thexj image, produces the label
rj as a result, while SVMs applied to the vector of geometrical
displacementsgj , produce the labelsj as the equivalent result.
Thus, a new feature vectorcj , defined as:

cj = [rj sj ]
T . (21)

containing classification information from both sources was
created to be used for fusion purposes.

C. Radial Basis Function (RBF) Neural Networks (NNs)

A series of RBF NNs was used for the fusion of texture
and shape results. The number of networks is equal to the
number of FAUs that we are trying to detect. Each network
provided a binary decision on whether the corresponding FAUs



are activated in the data. The RBF network consists of a linear
combination of a set of basis functions [9]:

pk(cj) =

M
∑

n=1

wk,nφn(cj), k = 1, 2 (22)

whereM is the number of kernel functions andwk,n are the
weights of the hidden unit to output connection. Each hidden
unit (kernel) implements a Gaussian function:

φn(cj) = exp[−(mn − cj)
T Σ−1

n (mn − cj)] (23)

where j = 1, . . . M , mn is the mean vector andΣn is the
covariance matrix [9].

The decision regarding the classlj of cj , namely the
existence of the corresponding FAU, is handled by the related
RBF NN and is taken as:

lj = argmax
k=1,...,2

pk(cj). (24)

V. EXPERIMENTAL RESULTS

A. Database description

The Cohn-Kanade database has been used in the experi-
ments. This database is annotated with FAUs. All the available
subjects and videos were taken under consideration to form the
database for the experiments.

The most frequently used approach for testing the general-
ization performance of a classifier is the leave-one-out cross-
validation approach [10]. A variant of leave-one-out was used
(i.e., leave 20% of the samples out) for the formation of the
test dataset in our experiments. Five sets containing 20% of
the data for each class, chosen randomly, were created. One
set containing 20% of the samples for each class is used as
the test set, while the remaining sets form the training set.
After the classification procedure is performed, the samples
forming the test set are incorporated into the current training
set, and a new set of samples (20% of the samples for each
class) is extracted to form the new test set. The remaining
samples create the new training set. This procedure is repeated
five times. The average classification accuracy is defined as the
mean value of the percentages of the correctly classified facial
expressions over all data presentations.

B. FAUs recognition using texture information

An example of the basis images extracted when the DNMF
algorithm is applied at the difference images is shown in
Figure 5. The accuracy rates obtained for FAUs recognition
using only the texture information and for different numbers
of basis images are shown in Figure 6. The best classification
accuracy achieved was equal to 84.4% and the number of basis
images was equal to 180.

C. FAUs recognition using shape information

The best accuracy rate obtained for FAUs recognition using
only the shape information was equal to 86.7%. In Figure 7,
the accuracy rates achieved for FAUs recognition when using
SVMs are shown. The functions used as SVM kernels were
the polynomial and RBF functions. The best accuracy was
achieved when a polynomial kernel of degree 4 was used.

(c)

Fig. 5. Basis images extracted for the DNMF algorithm.
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Fig. 6. Recognition accuracies obtained for FAU recognition using the DNMF
algorithm.

D. Fusion of texture and shape information for FAUs recog-
nition

The best accuracy achieved when using the proposed fusion
approach was equal to 92.1%, which is significantly better
than the one obtained when using either texture or shape
information. The accuracy rate was increased due to the use
of both sources of information. The introduction of texture
eliminates some of the confusions observed when using shape
information only. This happens as in many FAUs, the shape
information is not enough to fully describe its presence. In
many cases, the available grid nodes fail to describe all
possible texture characteristics, such as furrows and wrinkles
that may appear on the face. To be more specific, when FAU
12 is observed (see Figure 8), some vertical furrows appear
between the nose and the corners of the mouth (emphasized
with a cloud of black dots). These furrows cannot be fully
described by the Candide grid deformation due to the absence
of properly placed grid nodes. The same happens with FAU
23 (also shown in Figure 8), where horizontal furrows appear
between the chin and mouth (emphasized with a cloud of black
dots). Texture can capture all the necessary information where
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Fig. 7. FAUs recognition accuracies using shape and SVMs forvarious
kernels (a) polynomial kernels (b) RBF kernels.

the shape description would fail, thus making the fusion of
the two kinds of information more powerful.

Fig. 8. Furrows that appear when FAUs 12 and 23 are observed and two of
the sparse DNMF bases that correspond to the furrows.

VI. CONCLUSIONS

A novel method for FAUs recognition is proposed in this
paper. The recognition is performed by fusing the texture and
the shape information extracted from a video sequence usinga
subspace representation method and a SVMs system, respec-
tively. The results obtained from the above mentioned methods

are then fused using MRBF NNs. The system achieves an
accuracy of 92.1% when recognizing the 17 basic FAUs.
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