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Abstract – Locating facial feature points in images of 
faces is an important stage for numerous facial image 
interpretation tasks. In this paper we present a method for 
fully automatic detection of 20 facial feature points in 
images of expressionless faces using Gabor feature based 
boosted classifiers. The method adopts fast and robust face 
detection algorithm, which represents an adapted version 
of the original Viola-Jones face detector. The detected face 
region is then divided into 20 relevant regions of interest, 
each of which is examined further to predict the location of 
the facial feature points. The proposed facial feature point 
detection method uses individual feature patch templates to 
detect points in the relevant region of interest. These 
feature models are GentleBoost templates built from both 
gray level intensities and Gabor wavelet features. When 
tested on the Cohn-Kanade database, the method has 
achieved average recognition rates of 93%. 

1 Introduction 
 Facial feature points are generally referred to as facial 
salient points such as the corners of the eyes, corners of the 
eyebrows, corners and outer mid points of the lips, corners 
of the nostrils, tip of the nose, and the tip of the chin (see 
Fig. 1(e)). Detection of facial feature points is often the 
first step in computer vision applications such as face 
identification, facial expression recognition, face tracking 
and lip reading. For example, localization of facial points is 
the initial step of Active Shape and Active Appearance 
Models algorithms (e.g. [1]) that are nowadays widely used 
for face alignment and tracking. Currently, however, this 
step is usually carried out by manually labeling the required 
set of points. The localization of stable facial points such as 
the inner corners of the eyes and the inner corners of the 
nostrils is also usually used to register each frame of an 
input image sequence with the first frame of it. In turn, the 
robustness of the facial feature point detection algorithm 
highly affects the overall system performance.  
 Previous methods for facial feature point detection 
could be classified in two categories: texture-based and 
shape-based methods. Texture-based methods model local 
texture around a given feature point, for example the pixel 
values in a small region around a mouth corner. Shape-
based methods regard all facial feature points as a shape, 
which is learned from a set of labeled faces, and try to find 

the proper shape for any unknown face. Typical texture-
based methods include gray-value-, eye-configuration- and 
neural-network-based eye-feature detection [2], log Gabor 
wavelet based facial point detection [3], and two-stage 
facial point detection using a hierarchy of Gabor wavelet 
networks [4]. Typical shape-based methods include active 
appearance model based facial feature detectors [5], [6]. A 
number of approaches combining texture- and shape-based 
methods have been proposed as well. Wiskott et al. [7] 
used Gabor jet detectors and modeled the distribution of 
facial features with a graph structure. Cristinacce and 
Cootes used Haar feature based AdaBoost classifier 
combined with the statistical shape models [8]. Chen et al. 
proposed a method that applies a boosting algorithm to 
determine facial feature point candidates for each pixel in 
an input image and then uses a shape model as a filter to 
select the most possible position of feature points [9]. In 
general, although some of these detectors seem to perform 
quite well when localizing a small number of facial feature 
points such as the corners of the eyes and the mouth, none 
of them detects all 20 facial feature points illustrated in Fig. 
1(e) and, more importantly, none performs the detection 
with high accuracy. To wit, the current approaches usually 
regard as SUCCESS if the bias of automatic labeling result 
to the manual labeling result is less than 30% of the true 
(annotated manually) inter-ocular distance (the distance 
between the eyes). However, 30% of the true inter-ocular 
value is at least 30 pixels in the case of the Cohn-Kanade 
database samples [10], which we used to test our method. 
This means that a bias of 30 pixels for an eye corner would 
be regarded as SUCCESS even though the width of the 
whole eye is approximately 50 pixels. This is unacceptable 
in the case of facial expression analysis, which represents 
the main focus of our research, since subtle changes in the 
facial feature appearance will be missed due to the errors in 
point localization and tracking [11].  
 We propose here a robust, highly accurate method for 
detecting 20 facial points in images of expressionless faces 
with possible in-plane rigid head rotations, recorded under 
various illumination conditions. The method consists of 4 
steps (Fig. 1): Face Detection, Region Of Interest (ROI) 
Detection, Feature Extraction, and Feature Classification. 
To detect the face region in an input image, we adopted fast 
and robust face detector based on a cascade scheme 
consisting of a set of Haar feature based GentleBoost 
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classifiers [12]. The detected face region is then divided in 
20 relevant ROIs, each one corresponding to one facial 
point to be detected. A combination of heuristic techniques 
based upon the analysis of the vertical and horizontal image 
histograms achieves this. The proposed facial feature point 
detection method uses individual feature patch templates to 
detect points in the relevant ROI. These feature models are 
13×13 pixels GentleBoost templates built from both gray 
level intensities and Gabor wavelet features. In the training 
phase, the feature models are learned using a representative 

set of positive and negative examples, where the positive 
examples are image patches centered on a particular facial 
feature point and the negative examples are image patches 
randomly displaced a small distance from the same facial 
feature. In the testing phase, each ROI is filtered first by the 
same set of Gabor filters used in the training phase (in total, 
48 Gabor filters are used). Then, for a certain facial point, 
13×13 pixels window (sliding window) is slid pixel by 
pixel across 49 representations of the relevant ROI 
(grayscale plus 48 Gabor filter representations; see Fig. 
1(c)). For each position of the sliding window, GentleBoost 
classifier outputs a response depicting the similarity 
between the 49-dimensional representation of the sliding 
window compared to the learned feature point model. After 
scanning the entire ROI, the position with the highest 
response reveals the feature point in question.  
 The remainder of this paper is organized as follows. 
In Section 2 we describe the four steps of our method. 
Section 3 describes the experimental results achieved by 
the proposed method. Section 4 concludes the paper. 

2 Methodology 
2.1 Face Detection  
 To build a system capable of automatically labeling 
facial feature points in a face image, it is first necessary to 
localize the face in the image. We make use of a real-time 
face detection scheme proposed in [12], which represents 
an adapted version of the original Viola-Jones face detector 
[13]. The Viola-Jones face detector consists of a cascade of 
classifiers trained by AdaBoost. Each classifier employs 
integral image filters, which remind of Haar Basis 
functions and can be computed very fast at any location 
and scale (Fig. 1(a)). This is essential to the speed of the 
detector. For each stage in the cascade, a subset of features 
is chosen using a feature selection procedure based on 
AdaBoost.  
 The adapted version of the Viola-Jones face detector 
that we employ uses GentleBoost instead of AdaBoost. It 
also refines the originally proposed feature selection by 
finding the best performing single-feature classifier from a 
new set of filters generated by shifting and scaling the 
chosen filter by two pixels in each direction, as well as 
composite filters made by reflecting each shifted and scaled 
feature horizontally about the center and superimposing it 
on the original. Finally the employed version of the face 
detector uses a smart training procedure in which, after 
each single feature, the system can decide whether to test 
another feature or to make a decision. By this the system 
retains information about the continuous outputs of each 
feature detector rather than converting to binary decisions 
at each stage of the cascade. The employed face detector 
was trained on 5000 faces and millions of non-face patches 
from about 8000 images collected from the web by 
Compaq Research Laboratories [12]. On the test set of 422 
images from the Cohn-Kanade database [10], the detection 
rate was 100%.  
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Fig. 1. Outline of the method. (a) Face detection using 
Haar feature based GentleBoost classifier; (b) ROI 
extraction, (c) feature extraction based on Gabor filtering, 
(d) feature selection and classification using GentleBoost 
classifier, (e) output of the system compared to the face 
drawing with facial landmark points we aim to detect.   
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2.2 Detecting Regions of Interest 
 The next step in the automatic facial point 
detection is to determine Region Of Interest (ROI) for each 
point, that is, to define more or less a large region which 
contains the point that we want to detect. To achieve this 
we apply a fully automated method for detecting the irises 
and the medial point of the mouth. When those three 
positions are known we can easily determine other ROIs 
within the face region.  

The iris and mouth detection is achieved as follows. First, 
we divide the face region horizontally into two parts: the 
upper face region containing the eyes and the lower face 
region containing mouth (Fig. 2). Since the face detector 
described above is highly accurate and the detected face 
region is always extracted in the same way regarding the 
relative size and position of the face box, it is sufficient, for 
the first step, to roughly divide the face region horizontally 
in two halves (Fig. 2(a)). The upper face region is again 
divided into two halves in a vertical direction (Fig. 2 (a)) so 
that each eye can be analyzed separately.  

The positions of the irises are located in the segmented 
eye regions by sequentially applying the analysis of the 
vertical histogram (showing the intensity differences 
between the successive rows, pixel-wise) and then the 
horizontal histogram (showing the intensity differences 
between the successive columns, pixel-wise). The peak of 
the vertical histogram of the eye-region box corresponds 
with the y-coordinate of the iris, and the peak of the 
horizontal histogram of the eye-region box corresponds 
with the x-coordinate of the iris. By knowing y and x 
coordinates of both irises, we are able to calculate the angle 
that they make with the horizontal plane and, if necessary, 
to rotate the image for that angle. In this way, possible in-
plane rotations of the face can be eliminated. With this 
method we achieve a detection rate of 100% (i.e., all the 
segmented ROIs were correctly identified) on the test set of 
422 Cohn-Kanade database images.  
 To locate the medial point of the mouth we first 
define a ROI of the mouth. Since we know the distance 
between the irises (ED), we define the mouth region to be 
the horizontal strip whose top is at 0.85×ED from the eyes 
horizontal position and has a height equal to 0.65×ED (Fig. 
2). In that region horizontal and vertical thresholded edges 
will give us the shape of the mouth. Analysis of the vertical 
histogram of such a thresholded mouth region, obtains the 
graph similar to the one illustrated in Fig. 1(b). The center 
of the widest peak will define vertical position of the 
medial point of the mouth. By choosing the widest peak, 
the possibility of detecting the nose instead of the mouth is 
avoided. The horizontal position of the point in question is 
defined as the middle point between the eyes. Fig 1(b) 
shows typically detected positions of the eyes and mouth.   
 We regard the detection scheme described above as 
successful if the eye position was detected within the iris. 
For the test set of 422 images from the Cohn-Kanade 
database, the detection rate for the irises was 100%. For the 

medial point of the mouth, the detection rate was 99%, i.e., 
we had 2 false detections for our test set. 
 Subsequently, we use the detected positions of the 
irises and the medial point of the mouth to divide the face 
into 20 regions so that each of the points to be localized is 
within one ROI. An example of ROIs extracted from the 
face region for points B, I, and J, is depicted in Fig. 1(b).  

2.3 Feature Extraction 
 The proposed facial feature point detection method 
uses individual feature patch templates to detect points in 
the relevant ROI. These feature models are 13×13 pixels 
GentleBoost templates built from both gray level intensities 
and Gabor wavelet features.  
 Recent work [14] has shown that a Gabor approach 
for local feature extraction outperformed PCA (Principal 
Component Analysis), FLD (Fisher’s Linear Discriminant) 
and LFA (Local Feature Analysis). The essence of the 
success of Gabor filters is that they remove most of the 
variability in image due to variation in lighting and 
contrast, at the same time being robust against small shift 
and deformation [15]. Gabor wavelets seem to be a good 
approximation to the sensitivity profiles of neurons found 
in visual cortex of higher vertebrates [16]. There is 
evidence that those cells tend to come in pairs with even 
and odd symmetry [17], [18] similar to the real and 
imaginary part of Gabor-based wavelets. 
 A 2D Gabor filter ψ(x,y) can be defined as: 
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where f0 is the central frequency of a sinusoidal plane 
wave, θ is the anti-clock wise rotation of the Gaussian and 
the plane wave, and α and β are the parameters for scaling 
two axis of the elliptic Gaussian envelope. Here we 
consider that the orientation of the Gaussian envelope and 
the orientation of the sinusoidal function are the same 
(which is one the characteristics of complex cells of the 
mammals’ visual cortex). The Gabor function is actually 
Gaussian shaped function (first part of the equation (1)) 
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Fig. 2. (a) Dividing the face horizontally in half and 
dividing the upper face region vertically in half. (b) 
Finding the mouth region within the face region by means 
of Eye Distance (ED) 
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which modulates sinusoidal plane wave carrier (second part 
of the equation (1)). Its 2D Fourier transform is: 
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By fixing the ratio of the frequency of the wave and the 
sharpness of the Gaussian we get that the spatial filter (1) 
includes a constant number of waves. The ratios which are 
known to hold for the cells in human visual cortex are [16]: 
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and in frequency domain as: 
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Thus, in the frequency domain, the filter is an oriented 
Gaussian with orientation θ  centered at frequency 0f . 
Gabor filter formulated in this way has the response at zero 
frequency (DC-response) which has a value close to 0 and 
is the same for all central frequencies. This ensures that the 
method is insensitive to illumination variations. 
 Several Gabor filters are combined to form a filter 
bank. The filter bank is usually composed of filters in 
several orientations and frequencies, with equal orientation 
spacing and octave frequency spacing, while the relative 
widths of Gaussian envelope γ and η stay constant. In the 
frequency domain Gabor filter must obey Nyquist rule, 
which means that   

0f  ≤ 0.5, for each θ .                             (7) 
 Feature vector for each facial point is extracted from 
the 13×13 pixels image patch centered on that point. This 
feature vector is used to learn the pertinent point’s patch 
template and, in the testing stage, to predict whether the 
current point represents a certain facial point or not. This 
13×13 pixels image patch is extracted from the gray scale 
image of the ROI and from 48 representations of the ROI 
obtained by filtering the ROI with a bank of 48 Gabor 
filters at 8 orientations and 6 spatial frequencies (2:12 
pixels/cycle at ½ octave steps). Thus, 169×49=8281 
features are used to represent one point. Each feature 
contains the following information: (i) the position of the 
pixel inside the 13×13 pixels image patch, (ii) whether the 
pixel originates from a grayscale or from a Gabor filtered 
representation of the ROI, and (iii) if appropriate, which 
Gabor filter has been used (See Fig. 1(c)).  

2.4 Feature Classification 
 In the training phase, GentleBoost feature templates 
are learned using a representative set of positive and 
negative examples. As positive examples for a facial point, 
we used 9 image patches centered on the true point and on 
8 positions surrounding the true (manually labeled) facial 
point in a training image. For each facial point we used two 
sets of negative examples. The first set contains 8 image 
patches randomly displaced 2-pixels distance from the true 
facial point. The second set contains 8 image patches 
randomly displaced in the relevant ROI (Fig. 3). Thus, for 
each ROI, we have 9 positive and 16 negative examples, 
meaning that there is a 25×8281 size matrix representing 
training data for each ROI for each training image. Even 
though each feature can be computed very efficiently, 
computing the complete set is computationally expensive. 
Adding the fact that such a representation of features is 
highly redundant, we used GentleBoost technique to reduce 
the dimensionality. 
 In contrast to AdaBoost, GentleBoost [19] uses real 
valued features. GentleBoost seams to converge faster than 
AdaBoost, and performs better for object detection 
problems [20]. It is simple to implement, it is numerically 
robust and it has been shown experimentally to outperform 
(with respect to detection accuracy) other boosting variants 
for the face detection task [21]. The performance of 
boosting methods on data which are generated by classes 
that have a significant overlap, in other words, 
classification problem where even the Bayes optimal 
prediction rule has a significant error is discussed in [22]. 
For this case, GentleBoost performs better than AdaBoost 
since AdaBoost over-emphasizes the atypical examples 
which eventually results in inferior rules. As explained in 
[22], the reason for this might be that GentleBoost gives 
less emphasis to misclassified examples since the increase 
in the weight of the example is quadratic in the negative 
margin, rather than exponential.  
 The outline of the GentleBoost algorithm is as 
follows. At each boosting round, a regression function is 
fitted (by weighted least-squared error) to each feature in 

Fig. 3. Positive and negative examples for training point 
B. The big white square on the inner corner of the eye 
represents 9 positive examples. Around that square are 8 
negative examples randomly chosen near the positive 
examples. Another 8 negative examples are randomly 
chosen from the rest of the region. 

1695



 

the training set. The fitting of the regression function is 
done for one feature for all training examples by 
minimizing the weighted error 

∑
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where i is the i-th training example. By minimizing 
weighted error through all features, we get the feature with 
the smallest error and with the adequate parameters which 
minimize this error (a, b and th). Next step is estimation of 
the fitting function fm for each training example with this 
parameters: 
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where FeatureIndex is the feature which is chosen in the 
round m. The next step is to update the classifier output and 
the weights for each training example: 
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Finally, the weights should be renormalized and for each 
testing example xi the output of the classifier should be 
calculated as:  

                ∑
=

=
M

m
imi xfsignxFsign

1
)]([)]([                           (13) 

where M is the number of the most relevant  features the 
classifier has chosen for the classification.  
 Eventually, in the testing phase, each ROI is filtered 
first by the same set of Gabor filters used in the training 
phase (in total, 48 Gabor filters are used). Then, for a 
certain facial point an input 13×13 pixels sliding window is 
slid pixel by pixel across 49 representations of the ROI 
(grayscale plus 48 Gabor filter representations; see Fig. 
1(c)). For each position of the sliding window, GentleBoost 
classifier outputs a response depicting the similarity 
between the 49-dimensional representation of the sliding 
window compared to the learned feature point model. After 
scanning the entire ROI, the position with the highest 
response (i.e., with the largest positive sum F(xi) in 
Equation (11)) reveals the feature point in question.  

3 Results 
3.1 Training Set 

 The facial feature detection method was trained and 
tested on the Cohn-Kanade database [10], which consists of 
approximately 2000 gray-scale image sequences in nearly 
frontal view from over 200 subjects, male and female, 
being 18 to 50 years old. From those some 480 samples 
were made publicly available. Each video pictures a single 
facial expression and ends at the apex of that expression 
while the first frame of every video sequence shows an 
expressionless face. For our study, we used only the first 
frames of 300 Cohn-Kanade database samples. No further 
registration of the images was performed. Note, however, 
that for all first frames from the Cohn-Kanade database, the 
variation in the inter-ocular distance (the distance between 
the eyes) is max 30%, i.e., minimum distance measured 

was ±80 pixels and maximum distance measured was ±120 
pixels. Thus, in the case that the inter-ocular distance 
measured in the input image is way below ±80 pixels or 
way above ±120 pixels, we cannot guarantee that the 
method’s performance reported below will remain the 
same. The actual influence of such occurrences on the 
performance of the method is, however, the matter of future 
experimental studies. 

3.2 Experimental Results 

 The 300 images of the data set were divided into 3 
subsets containing 100 images each. The proposed method 
has been trained and tested using a leave-one-subset-out 
cross validation. To wit, training and testing procedure was 
repeated 3 times. Each time one of the 3 subsets was used 
as a test set and the other 2 subsets were used as a training 
set. We applied this method for 19 facial feature points 
depicted in Fig. 1(e), while point N (the tip of the nose) 
was defined as the middle point between points H and H1.  
 To evaluate the performance of the method, each of 
the automatically located facial points was compared to the 
true (manually annotated) point. As explained above, we 
used as positive examples the true location of the point and 
8 positions surrounding the true facial point in a training 
image. Hence, automatically detected points displaced 1-
pixel distance from relevant true facial points are regarded 
as SUCCESS. Additionally, we define errors with respect 
to the inter-ocular distance measured in the test image. An 
automatically detected point displaced in any direction, 
horizontal or vertical, less than 10% of inter-ocular distance 
from the true facial point is regarded as SUCCESS.  
 However, for some facial points, variations in vertical 
direction are considered more cumbersome than variations 
in horizontal direction. This is mostly due to the fact that 
the main focus of our research is to develop an automatic 
facial point tracker, the output of which could be used for 
automatic facial expression analysis. For 2D tracking, an 
initial template for each facial point is sampled from the 
first frame of the input image sequence. This template is 
updated throughout the sequence during tracking. Up to 
now, the location of the initial sample templates was 
manually selected. Thus for automation, the tracker 
requires automatic detection of the facial points in question. 
Ideally, this automatic detection will resemble manual 
annotation of the facial points.  
 This means that points G, G1, F, and F1 (outer mid 
points of the eyes, Fig. 1(e)) will be detected on the border 
between the sclera and the eyelash. In turn, to favor such 
detecting of the outer mid points of the eyes, we applied the 
above mentioned rule only in horizontal direction. In 
vertical direction, an automatically detected point displaced 
3-pixels distance from the true point is regarded as 
SUCCESS, given that the radius of the iris is ±25 pixels. In 
addition, the horizontal position of point L (the bottom of 
the lips) is specified by the horizontal position of point K 
(the top of the lips) and we search for the correct point by 
varying only the vertical coordinate.   
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Table 1. Facial Feature Point Detection results for 300 

samples from the Cohn-Kanade database  

Detected Point Detect. Rate 
A: Outer corner of the left eye 0.92 
A1: Outer corner of the right eye 0.96 
B: Inner corner of the left eye 0.96 
B1: Inner corner of the right  eye 0.99 
G: Bottom of the left eye 0.95 
G1:  Bottom of the right eye 0.99 
F: Top of the left eye 0.91 
F1: Top of the right eye 0.83 
D: Inner corner of the left eyebrow 0.96 
D1: Inner corner of the right eyebrow 0.95 
E- Outer corner of the left eyebrow 0.96 
E1- Outer corner of the right eyebrow 0.90 
H-Left nose corner 0.98 
H1-Right nose corner 0.97 
I-Left mouth corner 0.97 
J-Right mouth corner 0.91 
K-Mouth top 0.93 
L-Mouth bottom 0.80 
M-Chin 0.90 
AVERAGE RATE FOR ALL POINTS  0.93 

 
 

 Overall, we achieved an average recognition rate of 
93% for 20 facial feature points using the above described 
evaluation scheme. The detection rates for each point are 
shown in Table 1. Typical results are shown in Fig. 4. Most 
misclassifications (encountered mostly with points F1 and 
M) can be attributed to the lack of consistent rules for 
manual annotation of the points. Typical misclassifications 
are illustrated in Fig. 5. 
 It is interesting to mention that detailed analysis of the 
Gentleboost classifiers revealed that the vast majority of 
features (over 98%) were selected from the Gabor filter 
components rather than from the grayscale values.  

4 Conclusion 
 In this paper we present a robust, highly accurate 
method for fully automatic detection of 20 facial feature 
points in images of expressionless faces using Gabor 
feature based boosted classifiers. When tested on images 
from the Cohn-Kanade database, with possible in-plane 
head rotations and recorded under various illumination 
conditions, the method has achieved average recognition 
rates of 93%.  
 In future work we will investigate effects of using a 
reduced number of features for classification. Also, we plan 
to conduct extensive experimental studies using other 
publicly available face databases.  
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Fig. 5. Inaccurate detection of facial points: (a) point D1, 
(b) point E, (c) point B, (d) points F and H. For feature 
point notation see Fig. 1(e). 

Fig. 4. Accurate detection of all facial points 
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