
 
Abstract—Automatic analysis of facial gestures is rapidly 
becoming an area of intense interest in computer science 
and human-computer interaction design communities. 
However, the basic goal of this area of research – 
translating detected facial changes into a human-like 
description of shown facial expression – is yet to be 
achieved. One of the main impediments to achieving this 
aim is the fact that human interpretations of a facial 
expression differ depending upon whether the observed 
person is speaking or not. A first step in tackling this 
problem is to achieve automatic detection of facial gestures 
that are typical for speech articulation. This paper presents 
our approach to seizing this step in the research on 
automatic facial expression analysis. It presents all: a 
robust and flexible method for recognition of 22 facial 
muscle actions from face image sequences, a method for 
automatic determination of whether the observed subject is 
speaking or not, and an experimental study on facial 
muscle actions typical for speech articulation. 

I. INTRODUCTION 
Facial gestures (facial muscle actions) regulate our 
social interactions: they represent visible speech signals 
and they clarify whether our current focus of attention 
(e.g., a person or what has been said) is important, 
funny or unpleasant for us. They are direct, naturally 
preeminent means for humans to communicate their 
emotions [1, 2]. Automatic analyzers of subtle facial 
changes, therefore, seem to have a natural place in 
various vision systems including automated tools for 
psychological research, lip reading, bimodal speech 
analysis, affective computing, face and visual-speech 
synthesis, and perceptual user interfaces. Thus, in 
recent years, there has been a tremendous interest in 
automating facial gesture analysis. 
 Most approaches to automatic facial gesture analysis 
in face image sequences attempt to recognize a set of 
prototypic emotional facial expressions, i.e., happiness, 
sadness, fear, surprise, anger and disgust [3]. Yet, in 
everyday life such prototypic expressions occur rather 
infrequently; emotions are displayed more often by 
subtle changes in one or few discrete facial features, 
such as raising the eyebrows in surprise [1]. To detect 
such subtlety of human emotion, automatic recognition 

of facial gestures (i.e., fine-grained changes in facial 
expression) is needed. 
 From several methods for recognition of facial 
gestures based on visually observable facial muscular 
activity, the FACS system [4] is the most commonly 
used in the psychological research. Following this 
trend, all of the existing methods for automatic facial 
gesture analysis, including the method proposed here, 
interpret the facial display information in terms of the 
facial action units (AUs) of the FACS system [3, 5]. 
Yet none automatic system is capable of encoding the 
full range of facial mimics, i.e., none is capable of 
recognizing all 44 AUs that account for the changes in 
facial display. From the previous works on automatic 
facial gesture recognition from face image sequences, 
the method presented in [6] performs the best in this 
aspect: it encodes 16 AUs occurring alone or in a 
combination in frontal-view face image sequences. 
 However, even if an automatic detector of all possible 
facial muscle actions would be at hand, emotional 
interpretation of facial cues would remain by no means 
a trivial task. This goal is made difficult by the rich 
shadings of affective/attitudinal states that humans 
recognize in a facial expression. Another major element 
of difficulty is that a shown facial gesture may be easily 
misinterpreted if the presence of visual speech data is 
not taken into account. For example, a frown may be 
displayed by the speaker to emphasize the difficulty of 
the currently discussed problem and it may be shown 
by the listener to denote that he did not understand the 
problem at issue. To date, however, automatic facial 
information analyzers do not perform usually user-
profiled interpretation of sensed data and virtually all 
approaches to facial gesture analysis have largely 
avoided dealing with questions that involve whether the 
observed subject is speaking or not. The later is easy to 
do if one can limit the context. For example, if you 
know that except of the observed subject there is no 
other person in the area, then pursing the lips will 
probably represent a facial signal of being bored or 
being in a mode of thinking and not a visible speech 
signal. But, as we move towards more generally 
competent perceptual user interfaces, which should 
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facilitate videoconferences, virtual visits to Internet 
sites, etc., we will have to directly confront the problem 
of distinguishing the facial gestures that are typical for 
speech articulation from those signaling attitude or 
affect. Hence, both a reliable detector of whether the 
observed subject is speaking or not and the knowledge 
about facial gestures which form the typical visible 
speech signals (to be treated as noise in affect-sensitive 
analysis of visual speech data) are needed for an (user-
profiled or not) emotional interpretation of facial cues. 
 Within our research on facial gesture analysis from 
frontal-view face image sequences, we investigated first 
whether and to which extent human facial gestures and 
speech onset/offset can be recognized automatically. 
Hereafter, we investigated which facial gestures form 
typical visual speech signals. This paper presents the 
preliminary results of our research. The devised method 
for rule-based recognition of 22 AUs from frontal-view 
face image sequences is presented in section 2. Section 
3 gives an overview of a neural-network-based method 
for automatic determination of whether the observed 
subject is speaking or not. Experimental evaluations of 
the two methods and an experimental study on facial 
muscle actions typical for speech articulation are 
presented in section 4. Section 5 concludes the paper.  

II. FACIAL GESTURE RECOGNITION 
 
The problem of automatic facial gesture recognition 
from face image sequences is usually divided into three 
sub-problem areas (Fig. 1): detecting prominent facial 
features such as eyes and mouth, representing subtle 
changes in facial expression as a set of suitable mid-
level feature parameters, and interpreting these data in 
terms of facial gestures such as the AUs of the FACS 
system.  
 

A. Facial Feature Detection 

To reason about shown facial gestures, the face and its 
components (i.e., prominent facial features) should be 
detected first. In order to do so, we apply a multi-phase 
multi-detector processing of an input frontal-view face 
image sequence. The two phases of the proposed 
method for detection of prominent facial features are 
coarse detection and fine detection. 
 In the first phase, we apply a HSV color-based 
segmentation of the face (“Face Detector” in Fig. 1). 
The face region is segmented from an input frame as 
the largest connected image component with Hue, 
Saturation and Value within the range [5, 35], [0, 0.7] 
and [0.1, 0.9] respectively [7]. Then we use a simple 
analysis of image histograms (“MRP to RFM” in Fig. 
1) to locate 7 regions of interest (ROI): two eyebrows, 
two eyes, nose, mouth and chin.  
 In the second phase, to spatially sample the contour 
of a certain permanent facial feature, we apply one or 
more facial-feature detectors to the pertinent ROI. For 
example, the contours of the eyes are localized in the 
ROIs of the eyes by using a single detector representing 
an adapted version of a hierarchical-perceptron feature-
location method [7]. On the other hand, the contour of 
the mouth is localized in the mouth ROI by applying 
both a 4-parameters deformable template and a method 
that fits three 2nd degree parabolas [8]. For further 
details about these and other detectors used to spatially 
sample the contours of the prominent facial features, 
readers are referred to [7, 8].  

B. Parametric Feature Representation 

The contours of the facial features, generated by the 
facial feature detection method (Fig. 1), are utilized for 
further analysis of shown facial gestures.  
 First, we carry out feature points’ extraction under 
two assumptions: (1) the face images are non-occluded 
and in frontal view, and (2) the first frame is in a 
neutral expression. We extract 22 fiducial points: 19 
are extracted as vertices or apices of the contours of the 
facial features (Fig. 2), 2 represent the centers of the 
eyes (points X and Y), and 1 represents the the middle 
point between the nostrils (point C). We assign a 
certainty factor to each of the extracted points, based 
on an “intra-solution consistency check”. For example, 
the fiducial points of the right eye are assigned a 
certainty factor CF ∈  [0, 1] based upon the calculated 
deviation of the actually detected inner corner Bcurrent 
from the pertinent point Bneutral localized in the first 
frame of the input sequence. The functional form of this 
mapping is:  

CF = sigm(d(Bcurrent, Bneutral); 1, 4, 10) 
where d(p1, p2) is the block distance between points p1 
and p2 (i.e., maximal difference in x and y direction) 
while sigm(x; α, β, γ) is a Sigmoid function. The major 
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impulse for the usage of the inner corners of the eyes as 
the referential points for calculating CFs of the fiducial 
points of the eyes comes from the stability of these 
points with respect to non-rigid facial movements: 
facial muscles’ contractions do not cause physical 
displacements of these points. For the same reason, the 
referential features used for calculating CFs of the 
fiducial points of the eyebrows, nose/chin and mouth 
are the size of the relevant eyebrow area, the inner 
corners of the nostrils and the medial point of the 
mouth respectively. Eventually, in order to select the 
best of sometimes redundantly available solutions (e.g., 
for the fiducial points belonging to the mouth), an inter-
solution consistency check is performed by comparing 
the CFs of the points extracted by different detectors of 
the same facial feature. 
 AUs of the FACS system are anatomically related to 
contractions of facial muscles [4]. Contractions of 
facial muscles produce motion on the skin surface and 
changes in the shape and location of the prominent 
facial features. Some of these changes are observable 
from changes in the position of the fiducial points. To 
classify detected changes in the position of the fiducial 
points in terms of AUs, these changes should be 
represented first as a set of suitable feature parameters. 
Motivated by the FACS system, we represent these 
changes as a set of mid-level feature parameters 
describing the state and motion of the fiducial points. 
We defined a single mid-level feature parameter, which 
describes the state of the fiducials. This parameter, 
which is calculated for each frame for various fiducial 
points by comparing the currently extracted fiducial 
points with the relevant fiducial points extracted from 
the neutral frame, is defined as: 

inc/dec(AB) = ABneutral – ABcurrent, where AB 
= √ {(xA – xB)² + (yA – yB)²} 
If inc/dec(AB) < 0, distance AB increases. 

C. Action Unit Recognition 

The last step in automatic facial gesture analysis is to 
translate the extracted facial information (i.e., the 
calculated feature parameters) into a description of 
shown facial changes, e.g., into the AU codes.  

Table 1: The description of 22 AUs to be recognized and  
 the related rules for AU recognition 

AU AU description & the related rule 
1 Raised inner portion of the eyebrow(s) 

IF inc/dec(BD) < 0 OR inc/dec(B1D1) < 0 THEN AU1 
2 Raised outer portion of the eyebrow(s) 

IF inc/dec(AE) < 0 OR inc/dec(A1E1) < 0 THEN AU2 
4 Eyebrows pulled closer together (frown) 

IF inc/dec(DD1) > 0 THEN AU4 
5 Raised upper eyelid(s) 

IF inc/dec(FG) < 0 OR inc/dec(F1G1) < 0 THEN AU5 
6 Raised cheeks (smile); IF AU12 OR AU13 THEN AU6 
7 Raised lower eyelid(s) 

IF not(AU12) AND ((FG > 0 AND inc/dec(GX) > 0) OR
(F1G1 > 0 AND inc/dec(G1Y) > 0)) THEN AU7 

8 Lips pulled towards each other 
IF not(AU12 OR AU13 OR AU15 OR AU18 OR AU20
OR AU23 OR AU24 OR AU35) AND KL > 0 AND
inc/dec(CK) < 0 THEN AU8 

12 Mouth corner(s) pulled up 
IF (inc/dec(IB) > 0 AND inc/dec(CI) < 0) OR (inc/dec 
(JB1) > 0 AND inc/dec(CJ) < 0) THEN AU12 

13 Mouth corner(s) pulled sharply up 
IF (inc/dec(IB) > 0 AND inc/dec(CI) > 0) OR (inc/dec 
(JB1) > 0 AND inc/dec(CJ) > 0) THEN AU13 

15 Mouth corner(s) pulled down 
IF inc/dec(IB) < 0 OR inc/dec(JB1) < 0 THEN AU15 

18 Mouth pushed medially forward (as when saying “fool”) 
IF not(AU28) AND IJ ≥ t1 AND inc/dec(IJ) > 0 AND
inc/dec(KL) ≤ 0 THEN AU18 

20 Mouth stretched horizontally 
IF inc/dec(IJ) < 0 AND inc/dec(IB) = 0 AND inc/dec 
(JB1) = 0 THEN AU20 

23 Tightened lips 
IF KL > 0 AND inc/dec(KL) > 0 AND inc/dec(IJ) ≤ 0
ND inc/dec(JB1) ≥ 0 AND inc/dec(IB) ≥ 0 THEN AU23 

24 Lips pressed together 
IF not(AU12 OR AU13 OR AU15) AND KL > 0 AND 
inc/dec(KL) > 0 AND IJ > t1 AND inc/dec(IJ) > 0 
THEN AU24 

25 Parted lips 
IF inc/dec(KL) < 0 AND inc/dec(CM) ≥ 0 THEN AU25 

26 Parted jaws 
IF inc/dec(CM) < 0 AND CM ≤ t2 THEN AU26 

27 Mouth stretched vertically; IF CM > t2 THEN AU27 
28 Lips sucked into the mouth; IF KL = 0 THEN AU28 
35 Cheeks sucked into the mouth; IF IJ < t1 THEN AU35 
38 Widened nostrils 

IF not(AU8 OR AU12 OR AU13 OR AU18 OR AU24)
AND inc/dec(HH1) < 0 THEN AU38 

39 Compressed nostrils 
IF not(AU8 OR AU15 OR AU18 OR AU24 OR AU28) 
AND inc/dec(HH1) > 0 THEN AU39 

41 Dropped upper eyelid(s) 
IF not(AU7) AND ((FG > 0 AND inc/dec(FG) > 0 AND
inc/dec(FX) > 0) OR (F1G1 > 0 AND inc/dec(F1G1) > 0
AND inc/dec(F1Y) > 0)) THEN AU41 

 To achieve this, we utilize a fast-direct-chaining rule-
based method that encodes 22 AUs occurring alone or 

Fig. 2: Feature points (fiducials of the features’ contours) 



in a combination in the current frame of the input face-
profile image sequence. A full list of the utilized rules 
is given in Table 1. Motivated by the FACS system [4], 
each of these rules is defined in terms of the predicate 
of the mid-level representation and each encodes a 
single AU in a unique way according to the relevant 
FACS rule.  

III. SPEECH ONSET/OFFSET DETECTION 
 The human perception of speech is not restricted to 
the auditory part of a speech signal; even in ideal 
auditory conditions, the visual information provided by 
the face (i.e., lip motion) plays an important role in our 
speech-recognition process and, with the degradation of 
the auditory signal (e.g., due to hearing disorders or 
noisy environment), it becomes crucial [9]. To detect 
whether the observed subject is speaking or not directly 
from an input face image sequence, we used a neural-
network-based method for visual speech onset/offset 
detection developed in the scope of our research on 
visual speech processing (i.e., lip-reading) [10]. The 
utilized method processes the mouth ROI extracted 
from an input frame of a face image sequence in two 
steps (Fig. 3): feature extraction and classification into 
one of the “silent” and “non-silent” categories.  

A. Feature Extraction 

Based on the observation that the lips appear in a face 
image as more reddish than the rest of the face, the 
mouth ROI of an input frame is first transformed into 
the HSV color space and then into the red domain so 
that only the lips are highlighted in the image. Image in 
red domain is obtained from the Hue component of the 
input frame by applying the following function: 
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where w = 0.23 and h0 = 0 gave a fair segmentation of 
the lips from the rest of the face for our camera setup.  
 The filtered image is transformed further into polar 
coordinates J(α, r) around the center of the mouth. 
This center point is computed as the center of gravity of 
the distribution obtained from filtering the image. The 
mean M(α) and variance σ(α) of the distribution J(α, 
r) for a given angle α relate directly to the distance of 
the lips from the center of the mouth and the thickness 
of the lips respectively: 

( ) ( )
( )∫

∫ ⋅
=

r

r
rJ

rrJ
M

,

,

α
α

α , ( ) ( ) ( )( )
( )∫

∫ −⋅
=

r

r
rJ

MrrJ

,

,

α
αα

ασ
2

 

 These values are used further to represent the mouth 
shape. A 36-dimensional feature vector, representing 
the mean and variance sampled in 18 uniformly 
distributed sample points, is extracted as the data vector 
for further processing.  

B. Silence Detection 

In the second step of the utilized algorithm, a trained 
Jordan Recurrent Neural Network (JRNN) classifies the 
input frame as either “silent” or “non-silent” (Fig. 3).  
 In a JRNN the time dependency is represented by the 
recurrent nature of the NN itself: while the input to the 
JRNN is a single frame feature vector, the time related 
information is preserved within the network by context 
neurons. The input to a context neuron is the output of 
the whole network and its own output from the previous 
time step. The single hidden layer of the network is fed 
with activation of both the input neurons and context 
neurons. In the case of the JRNN used for speech onset/ 
offset detection, there is only one output neuron and 
hence only one context neuron.  

IV. EXPERIMENTAL STUDIES 
We conducted three experimental studies within our 
research on automatic facial gesture analysis. The first 
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was aimed at evaluating the performance of our method 
for AU recognition. The second pertained to evaluating 
the proposed method for speech onset/offset detection. 
The third was aimed at discerning the facial muscle 
actions that are typical for speech articulation.  

A. Image Database 

Most of the existing approaches to either facial gesture 
recognition or lip-reading assume that the presence of 
the face in the input image is ensured [3, 10]. However, 
in most of the real-life situations where such automated 
systems are to be employed (e.g., videoconferencing, 
human-computer interaction, etc.) the location of the 
face in the scene is not known a priori. The presence of 
a face can be ensured either by employing an existing 
method for automatic face detection in arbitrary scenes 
(e.g., see [11]) or by using a camera setting that will 
ascertain the assumption at issue. The two algorithms 
proposed here do not perform face detection in an 
arbitrary scene; they operate on frontal-view face image 
sequences acquired by a head-mounted CCD digital 
PAL camera (Fig. 4). 

 The face image sequences used in our experiments 
have been obtained with the help of six certified FACS 
coders drawn from college personnel. The acquired test 
images represent a number of demographic variables 
including ethnic background (European, Asian and 
South American), gender (66% female) and age (20 to 
35 years). Two datasets have been acquired:  
• Dataset 1: 48 image sequences of subjects displaying 

series of facial expressions including single AUs and 
combinations of those. The first frame is in a neutral 
expression and the length is from 95 to 250 frames. 
No movement of the lips due to a speech articulation 
is present. 

• Dataset 2: 6 image sequences of subjects speaking a 
set of 5 sentences while maintaining a neutral facial 
expression. The sentences are from the POLYPHONE 
corpus [12] and contain all of the phonemes used in 
the Dutch language. The length of sequences varies 
from 850 to 1050 frames.  

B. AU Recognition 

 Dataset 1 has been used to evaluate the performance 
of the proposed method for AU recognition. Metadata 

were associated with the acquired test data in terms of 
AUs that were scored by 5 certified FACS coders other 
than the one displaying the judged facial expressions. 
As the actual test data set, we used 40 image sequences 
for which the overall inter-coders’ agreement about 
displayed AUs was above 75%. AU-coded descriptions 
of shown expressions obtained by human FACS coders 
were compared further to those produced by our 
method. The results of this comparison, given in Table 
2, show that in 93% of test cases, our method for AU 
recognition coded the analyzed facial expression using 
the same AU codes as the human observers. 

Table 2: Recognition results for the upper face AUs 
(AU1, AU2, AU4, AU5, AU6, AU7, AU41), the AUs 
affecting the nose (AU38, AU39), the AUs affecting the 
jaw (AU26, AU27) and those affecting the mouth (AU8, 
AU12, AU13, AU15, AU18, AU20, AU23, AU24, AU25, 
AU28, AU35):  

# denotes the number of AUs’ occurrences,  
C denotes correctly recognized AUs’ occurrences,  
M denotes missed AUs’ occurrences,  
IC denotes incorrectly recognized AUs’ occurrences. 

 # C M IC Rate 
upper face 54 50 4 0 92.6% 
nose 13 12 0 1 92.3% 
mouth 102 95 4 3 93.1% 
jaw 23 21 1 1 91.3% 
Total: 192 178 9 5 92.7% 

 

C. Silence Detection 

 Dataset 2 has been used to evaluate the performance 
of our method for visually based speech onset/offset 
detection. First, the speech onset and offset points were 
labeled manually based upon the auditory signal only. 
Those boundary points were used to label all the frames 
in video sequences of dataset 2 as well as the pertinent 
extracted feature vectors as either 1 for silence or 0 for 
speech. These labels were further used as target output 
values for the silence recognition system.  
 About 10% of the feature vectors extracted from the 
full dataset 2 were used to form the test set; the rest was 
used to train the utilized JRNN. The training set was 
chosen to contain both intervals of beginning and of 
ending of silence and non-silent frames. The fitness of 
the network was measured with mean square error of its 
response for a single epoch. Fig. 5 depicts the response 
of the trained JRNN for a single video-sequence 
containing 5 sentences. 
  When compared with other NN architectures (feed 
forward and time delayed neural networks), JRNN gave 
by far the most superior results; it was trained much 
faster and it gave the smoothest and most accurate 
results. For further details about both the JRNN-based 
method for speech onset/offset recognition and the 
comparison of the performance of JRNN and those of 
other NN architectures, readers are referred to [10]. 

Fig. 4: Mounted-camera device and an 
example of an input frame 



D. AUs Typical for Speech Articulation 

 Dataset 2 has been used in our experimental study on 
facial muscle actions typical for speech articulation. 
The aim of this experiment was to discern the AUs that 
can be encoded by our method for AU recognition and, 
at the same time, form typical visible speech signals. 
Our major impulse to perform this experiment comes 
from our intention to build an adequate affect-sensitive 
analyzer of human facial interactive cues in the future. 
In order to achieve this aim by using the proposed rule-
based method for AU recognition, we must be able first 
to discern which AUs are to be treated as noise (present 
as visible speech signals) by such an automatic affect-
sensitive analyzer of human facial interactive cues.  
 30 intervals of variable length (70 to 110 frames) of 
the video sequences of dataset 2, which were labeled as 
non-silent by the JRNN, were AU-coded by our method 
for AU recognition. A set of 5 AUs (from a total of 22 
AUs that can be encoded by the proposed AU coder) is 
found to be typical for speech articulation in the Dutch 
language: AU18, AU20, AU23, AU25 and AU26. 
 In 16% of test cases AU8 and AU24 were encoded as 
well. Yet, we did not label these AUs as being typical 
for speech articulation since their frequency of the 
occurrence is much lower than that of the AUs listed 
above (they occur in more than 56% of test cases). 
Also, in 7% of test cases AU1 and AU2 were encoded. 
However, due to the fact that AU1 and AU2 affect the 
eyebrows rather than the mouth, they were excluded 
from the set of AUs typical for speech articulation.  

V. CONCLUSIONS 
The presented method for automatic AU recognition 
extends the state of the art in automatic facial gesture 
analysis in face image sequences in terms of number of 
AUs handled. The significance of this contribution is 
also in the performed experimental studies that suggest: 
(i) that it is possible to determine whether the observed 
subject is speaking or not from visual data only, and (ii) 

that at least 5 AUs are typical for speech articulation 
and could be, therefore, treated as noise in affect-
sensitive interpretation of visual speech data. 
 The presented algorithm for automatic AU coding of 
face image sequences does not take into account the 
temporal nature of facial gestures. Yet, the presented 
AU coder could greatly speed up the time-consuming 
(manual) process of acquiring AU-labeled data on 
which models that can capture the temporal nature of 
facial gestures (e.g., HMM) could be trained. Devising 
both a HMM-based AU coder and an affect-sensitive 
analyzer of AU-coded “silent” and “non-silent” facial 
data forms the main focus of our further research. 
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Fig. 5: The response of JRNN for a video sequence containing 5 sentences. The straight lines depict target 
outputs and the grey area represents the part of the sequence that was used as a test set. 


