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Spatiotemporal Salient Points for Visual
Recognition of Human Actions

Antonios Oikonomopoulos, Ioannis Patras, and Maja Pantic

Abstract—This paper addresses the problem of human-action recogni-
tion by introducing a sparse representation of image sequences as a collec-
tion of spatiotemporal events that are localized at points that are salient
both in space and time. The spatiotemporal salient points are detected by
measuring the variations in the information content of pixel neighborhoods
not only in space but also in time. An appropriate distance metric be-
tween two collections of spatiotemporal salient points is introduced, which
is based on the chamfer distance and an iterative linear time-warping
technique that deals with time expansion or time-compression issues. A
classification scheme that is based on relevance vector machines and on the
proposed distance measure is proposed. Results on real image sequences
from a small database depicting people performing 19 aerobic exercises
are presented.

Index Terms—Human-action recognition, relevance vector machines
(RVMs), salient regions, spatiotemporal actions, spatiotemporal saliency.

I. INTRODUCTION

Analysis and interpretation of image sequences have received a
great amount of interest in computer vision for the last few years.
Applications in the areas of video indexing, intelligent autonomous
systems, man–machine interaction, and surveillance, to name just a
few, reveal the importance of developing systems that are able to
extract semantically rich representations of image sequences and to
interpret them accordingly. Recognition and interpretation of human
activities is a significant research area by itself since a large amount of
the information in image sequences is carried in the human action.

In order to obtain a semantic description of the content of a scene,
we do not need to use all the available information. Determining which
part of the visual information is relevant is an open problem because it
naturally depends on the semantic description that we wish to obtain.
However, for a lot of applications, a good description of the scene can
be obtained by considering the information around certain points of
interest such as corners and edges—that is, in areas that are rich in
information. For content-based image-retrieval applications, the notion
of interesting points has been extensively used. According to Haralick
and Shapiro [5], an interesting point is: 1) distinguishable from its
neighbors and 2) its position is invariant with respect to the expected
geometric transformation and to radiometric distortions. Schmid and
Mohr [14] detect interesting points using a Harris corner detector and
estimate gray-value differential image invariants [9], [17] at different
scales. Loupias et al. [12] use wavelet-based salient-point detectors
in order to detect global and local variations in images for content-
based image-retrieval applications. Gilles introduces the notion of
saliency in terms of local signal complexity or unpredictability in [4].
Detectors of interesting points are compared in [15] and [16] in terms
of repeatability rate and information content.
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An important issue in salient-point detection is automatic selection
of the scale at which the salient points will be detected and the
local features will be extracted. Lindeberg [11] integrates a scale-
space approach for corner detection and search for local extremes
across scales. Itti et al. [7] use a dyadic Gaussian pyramid approach
in order to construct saliency maps from given images. The spatial
distribution of each saliency map is then modeled with a dynamical
neural network, in order to select locations of attention in the images.
Kadir and Brady [8] extend the original Gilles algorithm and estimate
the information content in circular neighborhoods at different scales in
terms of the entropy. Local extremes of changes in the entropy across
scales are detected and the saliency of each point at a certain scale
is defined in terms of both the entropy and its rate of change at the
scale in question. In addition, they develop a clustering algorithm in
order to form salient regions from groups of salient points that are
detected at similar locations and scales. In [6], the performance of
the salient-point detector developed in [8] is examined, and an object-
recognition approach using keypoints is described by Lowe [13]. The
spatiotemporal arrangement of the detected salient points is then used
for content-based image retrieval.

While a large amount of work has been done on image-based re-
trieval and object recognition, the concept of saliency has only recently
begun to be used for space–time content-based video retrieval and
for activity recognition. In [10], a Harris corner detector is extended
in the temporal dimension, leading to a number of corner points
in time, called space–time interest points. The resulting interesting
points correspond roughly to points in space–time where the motion
abruptly changes direction, such as stopping or starting. The result-
ing representations are then compared using a Mahalanobis distance
metric, while k-means clustering is used to group similar events.
In [3], hand gestures are recognized by using a hierarchical hand
model consisting of the palm and the fingers. Color features under
different scales are then extracted and a particle-filtering approach is
implemented to simultaneously track and detect the different motion
states occurring in the image sequence. However, the algorithm is
customized solely for hand-gesture recognition. Another interesting
spatiotemporal representation for human-activity recognition is pre-
sented in [1], where a temporal-template approach is implemented.
The input image sequence is used to construct motion energy images
(MEIs) and motion history images (MHIs), for determining where and
when, respectively, motion occurs in the sequence. For recognition, a
set of moment invariants is calculated for each resulting image and a
Mahalanobis distance metric is applied between the sets in order to
discriminate different kinds of motion.

In this paper, we detect spatiotemporal features in given image
sequences by extending in the temporal direction the information-
theoretic salient-feature detector developed in [8]. Our goal is to obtain
a sparse representation of a human action as a set of spatiotemporal
points that correspond to activity-variation peaks. In contrast to the
work of Laptev and Lindeberg [10], in which a sequence is represented
by the local activity endpoints (starts/stops), our representation con-
tains the spatiotemporal points at which there are peaks in activity
variation such as the edges of a moving object. Like the authors of
[8], we automatically detect the scales at which the entropy achieves
local maxima and form spatiotemporal salient regions by clustering
spatiotemporal points with similar location and scale. Each image
sequence is then represented as a set of spatiotemporal salient points,
the locations of which are normalized in order to achieve invariance
against the translation of the subjects performing the actions. We use
the chamfer distance as an appropriate distance metric between two
representations. In order to deal with different speeds in the execution
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of the actions and to achieve invariance against the subjects’ scaling,
we propose a linear space–time-warping technique that tries to linearly
warp any two examples by minimizing their chamfer distance. A
simple k-nearest neighbor (kNN) classifier and one based on relevance
vector machines (RVMs), introduced in [18], are used in order to
test the efficiency of the representation. We test the proposed method
using real image sequences, where we use aerobic exercises as our
test domain. Our experimental results show fairly good discrimination
between specific motion classes.

The remainder of the paper is organized as follows. In Section II,
the spatiotemporal-feature detector used is described in detail. In
Section III, the proposed recognition method is analyzed, including
the proposed space–time-warping technique. In Section IV, we present
our experimental results, and in Section V, final conclusions are drawn.

II. SPATIOTEMPORAL SALIENT POINTS

A. Spatiotemporal Saliency

Let us denote by Nc(s,�v) the set of pixels in an image I that
belongs to a circular neighborhood of radius s, which is centered
at pixel �v = (x, y). In [8], in order to detect salient points in static
images, Kadir and Brady define a saliency metric yD(s,�v) based
on measuring changes in the information content of Nc for a set of
different radii (i.e., scales). In order to detect spatiotemporal salient
points at peaks of activity variation, we extend Kadir’s detector by
considering cylindrical spatiotemporal neighborhoods at different spa-
tial radii s and temporal depths d. More specifically, let us denote
by Ncl(�s,�v) the set of pixels in a cylindrical neighborhood of scale
�s = (s, d) centered at the spatiotemporal point �v = (x, y, t) in the
given image sequence. At each point �v and for each scale �s, we will
define the spatiotemporal saliency yD(�s,�v) by measuring the changes
in the information content within Ncl(�s,�v). Since we are interested
in activity within an image sequence, we consider as input signal the
convolution of the intensity information with a first-order Gaussian
derivative filter. Gaussian derivative filters have been extensively used
for detecting interesting points in static images. Here, we apply them
in the temporal domain in order to arrive at a measure of activity.
Formally, given an image sequence I0(x, y, t) and a filter Gt, the input
signal that we use is defined as

I(x, y, t) = Gt ∗ I0(x, y, t). (1)

For each point �v = (x, y, t) in the image sequence, let us calculate
the Shannon entropy of the signal histogram in a spatiotemporal
neighborhood around it. Let us note that we considered cylindrical
spatiotemporal neighborhoods of radius s and depth d for simplicity
reasons. However, more complicated shapes, such as elliptical neigh-
borhoods at different orientations and with different axes ratios, could
be considered.

The signal entropy HD(�s,�v) in the spatiotemporal neighborhood
Ncl(�s,�v) is given by

HD(�s,�v) = −
∫

q∈D

pD(�s,�v) log2 pD(�s,�v)dq (2)

where pD(�s,�v) is the probability density of the signal histogram as a
function of scale �s and position �v. By q we denote the signal value
and by D the set of all signal values. In this paper, we use the values
that arise from (1) as signal values. It is possible, however, to use other
kinds of descriptors, such as optical flow vectors. We use the histogram
method to approximate the probability density pD(�s,�v). Alternatively,
the probability density can be estimated using Parzen window density
estimation or any other density-estimation technique.

Subsequently, we proceed with the automatic selection of the scale
[8], [11]. More specifically, we consider the scales at which the entropy
values achieve a local maximum as candidate salient scales. Let us
define as Ŝp the set of scales at which the entropy is peaked, i.e.,

Ŝp =

{
�s :

∂HD(�s,�v)

∂s
= 0
∧ ∂HD(�s,�v)

∂d

= 0
∧ ∂2HD(�s,�v)

∂s2
< 0
∧ ∂2HD(�s,�v)

∂d2
< 0

}
. (3)

Then, following the approach of [8], we can define the saliency
metric at the candidate scales as follows:

yD(�s,�v) = HD(�s,�v)WD(�s,�v) ∀�s ∈ Ŝp. (4)

Equation (4) gives a measure of how salient a spatiotemporal point �v
is at certain candidate scales �s. The first term of (4) is a measure of
the variation in the information content of the signal. The weighting
function WD(�s,�v) is a measure of how prominent the local maximum
is at �s, and is given by

WD(�s,�v) = s

∫
q∈D

∣∣∣∣ ∂∂spD(�s,�v)

∣∣∣∣ dq

+ d

∫
q∈D

∣∣∣∣ ∂∂dpD(�s,�v)

∣∣∣∣ dq ∀(s, d) ∈ Ŝp. (5)

When a peak in the entropy for a specific scale is distinct, then the
corresponding pixel probability density functions at the neighboring
scales will differ substantially, giving a large value to the integrals
of (5) and thus, to the corresponding weight value assigned. On the
contrary, when the peak is smoother, then the integrals in (5), and
therefore the corresponding weight, will have a smaller value.

In Fig. 1(b), the form of the entropy in (2) is presented, for the
corresponding action whose one instance is shown in Fig. 1(a). The
scale that corresponds to the distinct peak of the plot is considered a
candidate salient scale, and is assigned a saliency value, according to
(4) and (5).

B. Salient Regions

The analysis of the previous section leads to a set of candidate spa-
tiotemporal salient points S = {(�si, �vi, yD,i)}, where �vi = (x, y, t),
�si = (si, di), and yD,i are, respectively, the position vector, the scale,
and the saliency value of the feature point with index i. In order to
make the feature detector more robust against noise and to reduce
the dimensionality of the resulting feature space, we follow a similar
approach as that in [8] and develop a clustering algorithm that we apply
to the detected salient points. We define in this way corresponding
salient regions instead of salient points. The location of these regions
should be more stable than the individual salient points, since noise
is unlikely to affect all of the points within the region in the same
way. The proposed clustering algorithm removes salient points with
low saliency value and creates clusters that are: 1) well localized in
space, time, and scale; 2) sufficiently salient; and 3) sufficiently distant
from each other.

The steps of the proposed algorithm can be summarized as follows.

1) Derive a new set ST from S by applying a global threshold T to
the saliency of the points that consist S. Thresholding removes
salient points with low saliency, that is

ST = {(�si, �vi, yD,i) : yD,i > T} . (6)
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Fig. 1. (a) Single frame from a sample image sequence where the subject is
raising its right hand, and (b) the corresponding entropy plot as a function of the
spatial radius and temporal depth of all the applied cylindrical neighborhoods.
The origin of all the applied cylindrical neighborhoods is the center of the white
circle in (a).

2) Select the point with index i in ST , which has the highest
saliency value. Use the salient point i as a seed to initialize a
salient region Rk (in the first iteration, k = 1). That is

Rk = {i}. (7)

3) Add nearby points j to the region Rk as long as the intracluster
variance does not exceed a threshold TV. That is, as long as

1

|Rk|
∑
j∈Rk

d2
j < TV (8)

where Rk is the set of the points in the current region k and dj

is the Euclidean distance of the jth point from the seed point i.

4) If the overall saliency of the region Rk is lower than a saliency
threshold TS, that is ∑

j∈Rk

yD,j ≤ TS (9)

discard the points in the region back to the initial set of points
and continue from step 2) with the next highest salient point.
Otherwise, calculate the Euclidean distance of the center of
region Rk from the center of salient regions already defined in
the previous steps of the algorithm—that is, from salient regions
Rk′ , k′ < k.

5) If the distance is lower than the average scale of the region,
discard the points in the region, put them back to the initial set
of points, and continue from step 2) with the next highest salient
point. Otherwise, accept the region as a new cluster and store it
as the mean scale and spatial location of the points in it.

6) Form a new set ST consisting of the remaining salient points,
increase the cluster index k and continue from step 2) with the
next highest salient point.

By setting the threshold TV in step 2), we define clusters that have
local support and are well localized in space and time. In this way,
we avoid clusters with large variance in their spatiotemporal position
and scale. In addition, we want to take the saliency of the points into
consideration such that the overall saliency of the region is sufficient.
We do this in step 3), by setting a saliency threshold TS. Finally, the
purpose of step 4) is to accept and create clusters that are sufficiently
distant from each other. To summarize, a new cluster is accepted only
if it has sufficient local support, its overall saliency value is above the
saliency threshold, and it is sufficiently distant in terms of Euclidean
distance from already-existing clusters.

We set the global threshold T of the first step of our clustering
algorithm equal to 10% of the maximum saliency value. In order to en-
sure the sparseness of the resulting representation, we set the variance
threshold equal to half the maximum spatial scale of our cylindrical
sampling window. Furthermore, we set the saliency threshold equal
to 0.1% of the global detected saliency of the scene. We have found
empirically that these values were a reasonable compromise between
the amount of noise that we wish to remove and the actual signal values
that we want to keep. However, cross-validation methods could be used
for the selection of the thresholds.

The algorithm described above requires estimation of the spatiotem-
poral saliency metric (4) for each point in the image sequence. This
involves calculations at spatiotemporal neighborhoods at different
scales, which can be computationally very expensive. For N pixels
in an image sequence, O(N(sd)(s2d)) number of operations are
required in order to calculate the entropy, where (sd) is proportional
to the number of the cylindrical neighborhoods used and (s2d) is
proportional to the average number of pixels per cylindrical neigh-
borhood. In order to reduce the computational complexity, we also
propose a two-step approach for the detection of salient points, which
is an approximation of the full-search approach. In the experimental
section, we will present and compare results from both approaches.
In the first step of the proposed approximation approach, we select
only salient points in space for every frame of the sequence. Among
these detected points, there may be some that are also salient in time.
We detect these in a second step, by extending the salient-feature
detector in the temporal dimension. By applying this procedure, we
discard image points that are not salient in space, and therefore, not
likely to be salient in time. For the two-step approach, a number of
operations proportional to O(Ns(s2) + R(s2d)(sd)) are needed in
order to calculate the entropy. The first term of the summation is
proportional to the operations needed for the detection of salient points
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using only spatial information. More specifically, s is proportional to
the number of circular neighborhoods used and s2 is proportional to
the average number of pixels per circular neighborhood. The second
term is very similar to the complexity of the full search, only in this
case,R (the total number of pixels in the sequence for which the spatial
entropy is maximized) is used instead of N . In general, R is one order
of magnitude smaller than N , yielding a substantial reduction in the
complexity of the specific approach. More specifically, the two-step
approach is as follows.

1) In the first step, we detect salient regions in the spatial
domain—that is, for every individual frame—without taking
into account neighboring frames. The computational gain is
due to the use of circular neighborhoods instead of cylindrical
ones. The position vector �v in (2)–(5) is two-dimensional in
this case, �v = (x, y), where 1 ≤ x ≤ N1 and 1 ≤ y ≤ N2. The
above procedure leads to the creation of feature sets of the form
Ft = {(xt,i, yt,i, st,i, yDt,i), 1 ≤ t ≤ K, 1 ≤ i ≤ Lt}, where t
is the frame number and Lt is the total number of salient points
detected in frame t.

2) In the second step, we set �v = (xt,i, yt,i, t), 1 ≤ t ≤ K, 1 ≤
i ≤ Lt, and we apply (2)–(5) for cylindrical neighborhoods of
scale �s = (s, d). After clustering the detected spatiotemporal
salient points, we derive a feature set consisting of salient re-
gions in the space–time domain, F = {(xj , yj , tj , �sj , yDj), 1 ≤
j ≤ L}, where L is the number of salient regions detected.

III. RECOGNITION OF SPATIOTEMPORAL ACTIONS

Using the feature-detection scheme described in Section II, we
represent a given image sequence by a set of features, where each
feature corresponds to a cylindrical salient region of the image se-
quence in the space–time domain. In what follows, we will define an
appropriate distance metric that can be used subsequently for learning
and recognition of human actions in image sequences. Indeed, a wide
variety of classification schemes, ranging from kNN to support vector
machines (SVMs), depends on the definition of an appropriate distance
metric. We use the chamfer distance [2], as it can provide a distance
measure between feature sets with unequal number of features. More
specifically, for two feature sets F = {(xi, yi, ti), 1 ≤ i ≤ M} and
F ′ = {(x′

j , y
′
j , t

′
j), 1 ≤ j ≤ M ′} consisting of an M and M ′ number

of features, respectively, the chamfer distance of the set F from the set
F ′ is defined as follows:

D(F,F ′) =
1

M

M∑
i=1

M′
min
j=1

√(
x′

j − xi

)2
+
(
y′j − yi

)2
+
(
t′j − ti

)2
.

(10)

In other words, the proposed distance is defined as the average over
the set of the minimum Euclidean distances between the M feature
points of set F and the M ′ feature points of set F ′. Chamfer-distance
transformations have been used in [2] with edge matching in order
to match images of different resolutions. Here, since the number
of matching points in the corresponding representations is relatively
small, we loop through (10) in order to find the best matching points.

The distance metric of (10) is not symmetrical, since D(F,F ′) 	=
D(F ′, F ). For recognition purposes, it is desirable to select a distance
metric that is symmetrical. A metric that satisfies this requirement is
the average of D(F,F ′) and D(F ′, F ), that is

Dc(F,F
′) =

1

2
(D(F,F ′) + D(F ′, F )) . (11)

Let us note that for the calculation of the distance metric we only
consider the spatiotemporal position of the detected salient points.

A. Space–Time Warping

There is a large amount of variability between feature sets due to
differences in the execution speed of the corresponding actions from
subject to subject. Furthermore, we need to compensate for possible
shifting of the representations forward or backward in time, caused
by imprecise segmentation of the corresponding actions. To cope with
both these issues, we have developed a linear time-warping technique
with which we model variations in time using a time-scaling parameter
a and a time-shifting parameter b. In addition, in order to achieve
invariance against scaling of the subjects performing the actions,
we introduce a scaling parameter σ in the proposed time-warping
technique. Prior to warping, we transform the x and y coordinates
of the detected salient regions in each sequence so that they have
zero mean value. We do this in order to achieve invariance against
translation. The parameters a, b, and σ are estimated with a gradient-
descent iterative scheme that minimizes the chamfer distance between
the sets. More specifically, let us denote by Fw = {(σxi, σyi, a · ti −
b), 1 ≤ i ≤ M} the feature set F with respect to feature set F ′. Then,
the distance between F ′ and Fw is given by (10) as

D(Fw, F
′) =

1

M

M∑
i=1

M′
min
j=1

×
√(

x′
j − σxi

)2
+
(
y′j − σyi

)2
+
(
t′j − a · ti + b

)2
. (12)

Similarly, the feature set F ′ with respect to feature set F can be repre-
sented as F ′

w = {((1/σ)x′
j , (1/σ)y′j , (1/a) · t′j + b), 1 ≤ j ≤ M ′},

and their distance, as given by (10), as

D (F ′
w, F ) =

1

M ′

M′∑
j=1

M

min
i=1

×
√(

xi − 1

σ
x′

j

)2

+
(
yi − 1

σ
y′j

)2

+
(
ti − 1

a
· t′j − b

)2

. (13)

The distance to be optimized follows from the substitution of (12)
and (13) to (11). We follow an iterative gradient-descent approach for
the adjustment of the a, b, and σ parameters. The update rules are
given by

an+1 = an − λ1
∂Dc

∂an
(14)

bn+1 = bn − λ2
∂Dc

∂bn
(15)

σn+1 =σn − λ3
∂Dc

∂σn
(16)

where λ1, λ2, and λ3 are the learning rates, and n is the iteration index.
The algorithm iteratively adjusts the values of a, b, and σ towards the
minimization of the chamfer distance between the two feature sets,
given by (11). In order to determine the values of a, b, and σ, we need
to know the values of ∂Dc/∂a

n, ∂Dc/∂b
n, and ∂Dc/∂σ

n for every
iteration n. Let us denote by k the index of the point in F ′, which is
closest in terms of Euclidean distance to the point i in F , and by Aik

the corresponding distance. Similarly, let us denote by m the index of
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the point in F , which is closest to the point j in F ′, and by A′
mj the

corresponding distance. Then, from (11), we get

∂Dc

∂an
=

1

2M

M∑
i=1

∂

∂an
Aik +

1

2M ′

M′∑
j=1

∂

∂an
A′

mj

=
1

2M

M∑
i=1

∂

∂an

[
(x′

k − σnxi)
2
+ (y′k − σnyi)

2

+(t′k − anti + bn)
2
] 1

2

+
1

2M ′

M′∑
j=1

∂

∂an

[(
xm − 1

σn
x′

j

)2

+
(
ym − 1

σn
y′j

)2

+
(
tm − 1

an
t′j − bn

)2
] 1

2

.

Therefore

∂Dc

∂an
=

1

2M

M∑
i=1

ti
anti − t′k − bn

Aik

+
1

2M ′

M′∑
j=1

t′j
− 1

an t
′
j + tm − bn

(an)2A′
mj

. (17)

Similarly, for ∂Dc/∂b
n and ∂Dc/∂σ

n, we get

∂Dc

∂bn
= − 1

2M

M∑
i=1

anti − t′k − bn

Aik

+
1

2M ′

M′∑
j=1

1
an t

′
j − tm + bn

A′
mj

(18)

∂Dc

∂σn
=

1

2M

M∑
i=1

σn (x2
i + y2

i ) − xix
′
k − yiy

′
k

Aik

+
1

2M ′

M′∑
j=1

− 1
σn

(
x2′

j + y2′
j

)
+x′

jxm+y′jym

(σn)2A′
mj

. (19)

By using (17)–(19), we determine the values of a, b, and σ in every
iteration using the update rules given in (14)–(16). The iterative proce-
dure stops when the values of a, b, and σ do not change significantly
or after a fixed number of iterations.

B. RVM Classifier

Once a distance function is defined, a large number of pattern clas-
sification methods can be used for solving the L-class classification
problem of classifying a data sample (i.e., a feature set F ) in one of the
L classes of human actions. In this paper, we use a kNN and an RVM
classification scheme, where k = 1. Since the application of kNN is
straightforward, we will only discuss the RVM classifier.

An RVM classifier is a probabilistic sparse kernel model identical
in functional form to the SVM classifier. RVMs and SVMs have been
used successfully in a large range of classification problems. In their
simplest form, they attempt to find a hyperplane defined as a weighted
(linear) combination of a few relevance (support) vectors that separate
data samples of two different classes. In RVM, a Bayesian approach
is adopted for learning, where a prior is introduced over the model
weights, governed by a set of hyperparameters, one for each weight.

The most probable values of these hyperparameters are iteratively
estimated from the data. Sparsity is achieved because the posterior
distributions of many of the weights are sharply peaked around 0.
Unlike the support vector classifiers, the nonzero weights of RVM are
not associated with examples close to the decision boundary, but rather
appear to represent prototypical examples of classes. These examples
are called relevance vectors and, in our case, they can be thought of
as representative executions of a human action. The main advantage of
RVM is that while it is capable of a generalization performance com-
parable to that of an equivalent SVM, it uses substantially fewer kernel
functions. Furthermore, predictions in RVM are probabilistic, in con-
trast to the deterministic decisions provided by SVM. In their original
form, RVMs are suitable for solving two-class classification problems.

In order to use RVMs in an L-class classification problem, we will
train multiple (L) RVMs, each of which separates a class of human
actions from all other classes of human actions. Given a data sample
F , each of the L RVMs gives a probability that F belongs to each
of the L classes. A data sample is classified to the class with the
highest probability. In what follows, we will first briefly outline the use
of the RVMs for a two-class classification problem and then we will
formally define our classification scheme for the L-class classification
problem.

Given a training dataset of N input-target pairs {(Fn, ln), 1 ≤ n ≤
N}, an RVM learns the weights w =< w1, . . . , wn >, such that the
conditional probability P (l|w,F ) can be used for predicting the label
l of a data sample F . Learning is performed using a maximum a
posteriori estimation scheme where: 1) the conditional P (l|w,F ) is
appropriately modeled and 2) a prior probability p(w|a) ensures that
the weight vector w is sparse.

More specifically, given a training dataset of N input-target
pairs {(Fn, ln), 1 ≤ n ≤ N}, an RVM learns functional mappings of
the form

y(F ) =

N∑
n=1

wnK(F,Fn) + w0 (20)

where {wn} are the model weights and K(·, ·) is a kernel function,
which in the case of RVM can be viewed as a basis function. Gaussian
or radial basis functions have been extensively used as kernels in RVM
and can be viewed as a similarity measure between F and Fn. In our
case, we use as a kernel a Gaussian radial basis function defined by
the distance function of (11). That is

K(F,Fn) = e
− Dc(F,Fn)2

2η (21)

where η is the kernel width. Using a Bayesian approach, it is as-
sumed that the conditional probability p(l|F ) is Gaussian—that is,
N(l|y(F ), σ2). The mean of this distribution for a given F is modeled
by y(F ), as defined in (20). For classification, we want to predict
the posterior probability of class membership given the input F . The
conditional probability P (ln|w,Fn) is given by

P (ln|w,Fn) = σ {y(Fn)}ln [1 − σ {y(Fn)}]1−ln (22)

where σ(y) = 1/(1 + e−y) is the logistic sigmoid function. Since
maximum-likelihood estimation of the weights will lead to severe
overfitting, a Gaussian prior is introduced over the weights

p(w|a) =

N∏
i=1

N
(
wi|0, a−1

i

)
(23)

where ai is an individual hyperparameter for every weight, leading to
an α vector of N hyperparameters. In order to estimate the weights, an
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Fig. 2. Detected spatiotemporal features in four sample image sequences, corresponding to two action classes, for five time instances, ti, t′i, i = 1, . . . , 5.
For each class, the detected regions are drawn for two different subjects performing the action.

iterative procedure is utilized, and a Gaussian approximation over the
posterior of the weights is calculated. From that, the hyperparameters
are updated and the process is repeated until the change in the hyper-
parameter values is minimal or when a maximum number of iterations
has been reached. A detailed description of the training process of an
RVM classifier can be found in [18].

In the classification phase, for the two-class problem, a sample F
is classified to the class l ∈ [0, 1], which maximizes the conditional
probability p(l|F ). In order to use RVM classifiers for multiclass
problems, one classifier is trained for each separate class. For L
different classes, L different classifiers are trained and a given example
F is classified to the class for which the conditional distribution
pi(l|F ), 1 ≤ i ≤ L is maximized, that is

Class(F ) = arg max
i

(pi(l|F )) . (24)

IV. EXPERIMENTAL RESULTS

Similar to Bobick and Davis [1], we use aerobic exercises as a
test domain to evaluate the proposed method. We have created our
own set of examples, consisting of 19 different aerobic exercises,

performed by amateurs wearing everyday clothes, which have seen a
video with an instructor performing the same set of exercises. Each
exercise is performed twice by four different subjects, leading to a set
of 152 corresponding feature sets. In the experiments that follow, we
detect salient points using a full-search approach—that is, by applying
cylindrical neighborhoods for every single point in the input image
sequences. Further on in the same section, we will also present results
for the two-step approximation procedure presented in Section II-B.

In order to illustrate the ability of the proposed method to consis-
tently detect spatiotemporal events, we present in Fig. 2 the salient
regions detected in five instances of four sample image sequences. The
first two columns depict two executions of the same exercise by two
different subjects while the last two columns depict the execution of
another exercise by another pair of subjects. It is apparent that there is
consistency in the location and scale of the detected spatiotemporal
salient regions between different executions of the same exercise.
The detected salient points seem to appear in areas with significant
amount of activity, such as the points in space and time at which the
hands move fast. Since we use as input signal the convolution of the
image sequence with a first-order Gaussian derivative filter, some of
the detected points are located on the edges of moving objects rather
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Fig. 3. Effect of time warping. (First column) Reference sequence. (Second column) Space–time-warped sequence. (Third column) Stretched sequence.
(Fourth column) Original sequence.

than on the objects themselves (e.g., at instance t′1 of the second pair
of sequences). Moreover, there seems to be a correlation between
the scale of the detected regions and the motion magnitude—that is,
the scale of the detected regions is large when the motion is fast
(instances t4, t5, t

′
2, t

′
3, t

′
4), and smaller when the motion is slower

(t1, t2, t3, t
′
1, t

′
5). This can be explained by the fact that when the

motion is fast, the activity spreads over a larger spatial region than
when the motion is slow. Finally, let us note that the algorithm does
not guarantee that the detection of corresponding regions across the
examples will occur at the same time instance. For example, at the
time instances t2 and t3 of the first pair of image sequences of Fig. 2
(i.e., first two columns), the detection of the arms does not occur at the
same, but at neighboring time instances. Note that the image sequences
that are presented in Fig. 2 are time-warped pairwise.

In order to test the influence of our space–time-warping algorithm,
and consequently, the robustness of our method with respect to the
scale, we randomly selected one example per class from our original
example set and we resized it to 1.2 and 1.5 times its initial size. We
applied in each of these sequences the spatiotemporal salient-point
detector of Section II and we used the resulting representations in
order to warp them in space and time with the original sequences. The
result for a single pair of original-resized sequences is shown in Fig. 3,
where in the first column is the original and in the second column is the
space–time-warped sequence. We also stretched the latter sequence in
time, so that its duration matches that of the original one. The result is
shown in the third column of Fig. 3. From the figure, it is clear that the
space–time-warped sequence is closer to the original one, indicating
that our proposed algorithm effectively warps a sequence in space and
time with another, by using just the spatiotemporal salient features
detected in both of them. The σ parameter for the resized sequence
was calculated equal to 1.18, which is very close to the actual
value of 1.2.

In order to test the efficiency of the proposed method towards recog-
nition, we applied a simple kNN classifier and a RVM classifier to
the available feature sets. We performed our experiments in the leave-
one-subject-out manner. That is, in order to classify a test exercise

performed by a specific test subject, we trained our classifiers using
all available data except for those belonging to the same class and
performed by the same subject as the test exercise.

For the kNN classifier, the label assigned to each test example was
the label of the feature set belonging to the training set with the small-
est resulting chamfer distance. In this way, we constructed Table I,
which gives the recall and precision rates for every class. As can be
seen from the table, for many classes, the recognition rate is higher
than 80%, while for some classes, all the examples were correctly
classified. For other classes, however, the recall and precision rates are
lower (e.g., classes 7 and 13). An examination of the corresponding
image sequences reveals that there is very little difference between
the kind of motion performed in them, and therefore, in their resulting
spatiotemporal representations, as can be seen from Fig. 4. The main
difference in the sequences shown in the figure is that in one of
the cases, the torso of the subject remains in the upright position
throughout the execution of the exercise, while in the other, the subject
bends a little in the front. Since there is only one camera placed in front
of the subject, this difference cannot be depicted by the representation,
and the algorithm, therefore, cannot make a clear distinction between
them. The overall calculated recall rate for the kNN classifier
was 74.34%.

In order to classify a test example using the RVMs, we constructed
19 different classifiers, one for each class, and we calculated for
each test example F the conditional probability pi(l|F ), 1 ≤ i ≤ 19.
Each example was assigned to the class for which the corresponding
classifier provided the maximum conditional probability, as depicted
in (24). Note that for estimating each of the pi(l|F ), an RVM is
trained by leaving out the example F as well as all other instances
of the same exercise that were performed by the subject from F . The
corresponding recall and precision rates are also given in Table I,
where an improvement in their values is visible for some classes.
However, there is still confusion between classes (e.g., classes 7
and 13), which the kNN classifier also mixes up. This is due to the
minor differences in the corresponding representations, as can be seen
from Fig. 4. In Table II, the confusion matrix generated by the RVM
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TABLE I
RECALL AND PRECISION RATES FOR THE kNN AND RVM CLASSIFIERS

Fig. 4. Detected spatiotemporal features in two misclassified image sequences for three time instances, ti, i = 1, . . . , 3. The sequences correspond to two
different action classes that are performed by the same subject.

classifier is given. It is obvious from the table that there are mutual
confusions between specific classes, for instance, classes 5, 6, 7, 12,
and 13. As mentioned earlier, the reason for some of these confusions
lies to the inadequacy of a single camera to capture the valuable depth
information needed in order to discriminate the classes in question.
The global recall rate for the RVM classifier was 77.63%, which is a
relatively good performance, given the small number of examples with
respect to the number of classes, and the fact that the subjects were
not trained.

The confusion matrix of Table II conceals the fact that, for some of
the misclassified examples, the correct matching move might be very
close in terms of distance to the closest move selected. We used the av-
erage ranking percentile in order to extract this kind of information and

to measure the overall matching quality of our proposed algorithm. Let
us denote with rFn the position of the correct match for the test exam-
ple Fn, n = 1 . . . N2, in the ordered list of N1 match values. Rank rFn

ranges from r = 1 for a perfect match to r = N1 for the worst possible
match. Then, the average ranking percentile is calculated as follows:

r =

(
1

N2

N2∑
i=1

N1 − rFn

N1 − 1

)
100%. (25)

Since our dataset consists of 152 test image sequences divided in 19
separate classes, it follows that N1 = 19 and N2 = 152. Each of the
19 match values are provided for each example by the 19 trained RVM
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TABLE II
RVM CONFUSION MATRIX

classifiers. The average ranking percentile for the RVM classifier was
97.25%. Its high value shows that, for the majority of the misclassified
examples, the correct matches are located in the first positions in the
ordered list of match values.

In order to verify the robustness of our method to scaling, we
performed the same classification experiments as before, using
resized versions of the original image sequences. More specifically,
we randomly selected one example per class and we resized it to
1.2 and 1.5 times its initial size. Classification was performed by
considering each resized example as the test set and the entire initial
set of examples as the training set, except for those belonging to the
same class and performed by the same subject as the test example. For
the resized-by-1.2 set, 14 out of 19 examples were correctly classified
with the kNN classifier, and 13 out of 19 with the RVM classifier,
while for the resized-by-1.5 set, 13 out of 19 examples were correctly
classified by both classifiers.

The clustering process of Section II-B clusters the detected salient
points into salient regions by selecting the point with the highest
saliency value in the set as the starting point. In order to examine the
sensitivity of our method with respect to the estimates of the saliency
values, we performed the same classification experiments as before,
but with noisy versions of the original unclustered representations.
More specifically, we added to the saliency values of the detected
salient points Gaussian noise of zero mean and variance σ. The
resulting representations were clustered once again using the process
of Section II-B, and the same classification experiments as before were
performed. Salient points whose saliency was less than 0 after the noise
addition were not taken into account during the clustering process.

Fig. 5. Overall recognition rate, with respect to the sigma of the Gaussian
noise, that was added to the saliency values of the detected salient points prior
to clustering. (Dashed line) kNN. (Solid line) RVM.

The overall recognition rate that was achieved, for five levels of
noise of increasing variance, is plotted in Fig. 5. From the figure, we
conclude that the saliency values of the detected salient points carry
important information, since the performance deteriorates as the noise
increases. However, the deterioration is not very large, considering the
amount of added noise.

Finally, we compared our method with the work of Bobick
and Davis [1] on temporal templates. In [1], each single-view test
example was matched against seven views of each example in the
training set, which in turn, was performed several times by an
experienced aerobics instructor. A performance of 66.67% (12 out
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of 18 moves) was achieved. Our training set, however, consists of
single-view examples, performed several times by nonexpert subjects.
Furthermore, noise and shadow effects in the sequences of our dataset
create small nonzero pixel regions in areas of the corresponding MEIs
and MHIs where no motion exists. The overall recognition rate that
was achieved was 46.71%. Removal of most of the spurious areas
with different simple morphological operations (removal of small
connected components) led to deterioration in the overall performance.

We also present in Table I the RVM classification results for the
two-step approximation of a full search, presented in Section II-B.
As can be seen, the recall and precision rates are lower than the
ones corresponding to the full-search approach, leading to an overall
recognition rate of 73.68%. However, the reduction is low, and
therefore, it remains a good alternative to the full-search method when
faster recognition is required.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we extended the concept of saliency from the spatial
to the spatiotemporal domain, in order to represent human motion by
using a sparse set of spatiotemporal features that, loosely speaking,
correspond to activity peaks. We did this by measuring changes in the
information content of neighboring pixels, not only in space but also
in time. We devised an appropriate distance measure between sparse
representations containing different numbers of features, based on the
chamfer distance. The proposed distance measure allows us to use an
advanced kernel-based classification scheme, the RVMs. We devised
an iterative space–time-warping technique that aligns in time the rep-
resentations and achieves invariance against scaling, while translation
invariance is achieved through transformation of the features’ location
so that they have zero mean. We have illustrated the efficiency of our
representation in recognizing human actions using as a test domain
aerobic exercises. We presented results on real image sequences that
illustrate the consistency in the spatiotemporal localization and scale
selection of the proposed method. Classification results are presented
for two different types of classifiers, displaying the efficiency of the
representation in discriminating actions of different motion classes.
Furthermore, the classification results clearly illustrate the superiority
of the proposed kernel-based classification scheme over the simple
kNN classification.

In future research, we wish to increase the discriminating power
by investigating the extraction of spatiotemporal features around the
spatiotemporal salient points. This is a natural extension of similar
methods that extract texture features around the detected points in
the spatial domain. Making the method robust to rotation is also an
important issue, which can be potentially achieved by introducing an
additional parameter for rotation in the proposed space–time-warping
technique. Furthermore, our clustering results are affected by the order
of detection of new clusters, especially in the case where two or
more highly salient points are in nearby locations. By examining more
sophisticated clustering algorithms, it is possible to remedy this and

potentially enhance the efficiency of the representation. Finally, the
recognition rate can be potentially increased by using more advanced
classification schemes.

ACKNOWLEDGMENT

The work presented in this paper was conducted at the Delft
University of Technology. The data set was collected while I. Patras
was with the ISIS group at the University of Amsterdam.

REFERENCES

[1] A. F. Bobick and J. W. Davis, “The recognition of human movement using
temporal templates,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 3, pp. 257–267, Mar. 2001.

[2] G. Borgefors, “Hierarchical chamfer matching: A parametric edge match-
ing algorithm,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 10, no. 6,
pp. 849–865, Nov. 1988.

[3] L. Bretzner, I. Laptev, and T. Lindeberg, “Hand gesture recognition using
multi-scale colour features, hierarchical models and particle filtering,” in
Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, Washing-
ton, DC, May 2002, pp. 405–410.

[4] S. Gilles, “Robust description and matching of images,” Ph.D. thesis,
Dept. Eng. Sci., Univ. Oxford, Oxford, U.K., 1998.

[5] R. Haralick and L. Shapiro, Computer and Robot Vision II. Reading,
MA: Addison-Wesley, 1993.

[6] J. S. Hare and P. H. Lewis, “Salient regions for query by image content,”
in Proc. Int. Conf. Image and Video Retrieval, Dublin, Ireland, Jul. 2004,
pp. 317–325.

[7] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual at-
tention for rapid scene analysis,” U.K.IEEE Trans. Pattern Anal. Mach.
Intell., vol. 20, no. 11, pp. 1254–1259, Nov. 1998, Surrey.

[8] T. Kadir and M. Brady, “Scale saliency: A novel approach to salient
feature and scale selection,” in Proc. Int. Conf. Visual Information
Engineering, Surrey, U.K., Nov. 2000, pp. 25–28.

[9] J. J. Koenderink and A. J. van Doorn, “Representation of local geom-
etry in the visual system,” Biol. Cybern., vol. 55, no. 6, pp. 367–375,
Mar. 1987.

[10] I. Laptev and T. Lindeberg, “Space-time interest points,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, Nice, France, Oct. 2003,
pp. 432–439.

[11] T. Lindeberg, “Feature detection with automatic scale selection,” Int. J.
Comput. Vis., vol. 30, no. 2, pp. 77–116, Nov. 1998.

[12] E. Loupias, N. Sebe, S. Bres, and J.-M. Jolion, “Wavelet-based salient
points for image retrieval,” in Proc. IEEE Int. Conf. Image Processing,
Vancouver, BC, Canada, Sep. 2000, vol. 2, pp. 518–521.

[13] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proc. IEEE Int. Conf. Computer Vision, Kerkyra, Greece, Sep. 1999,
vol. 2, pp. 1150–1157.

[14] C. Schmid and R. Mohr, “Local grayvalue invariants for image retrieval,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 5, pp. 530–535,
May 1997.

[15] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point
detectors,” Int. J. Comput. Vis., vol. 37, no. 2, pp. 151–172, Jun. 2000.

[16] N. Sebe and M. S. Lew, “Comparing salient point detectors,” Pattern
Recognit. Lett., vol. 24, no. 1–3, pp. 89–96, Jan. 2003.

[17] B. M. ter Haar Romeny, L. M. J. Florack, A. H. Salden, and
M. A. Viergever, “Higher order differential structure of images,” Image
Vis. Comput., vol. 12, no. 6, pp. 317–325, Jul./Aug. 1994.

[18] M. E. Tipping, “The relevance vector machine,” in Advances Neural
Information Processing Systems, Denver, CO, Sep. 1999, pp. 652–658.


