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Abstract - This paper addresses the problem of template-
based tracking of non rigid objects. We use the well-
known framework of auxiliary particle filtering and propose
an observation model that explicitly addresses appearance
changes that are caused by local deformations of the tracked
object. In addition, by adopting a colour difference that is
invariant to local changes in the illumination, the proposed
observation model can deal with changing lighting condi-
tions and shadows. Experimental results with real image se-
quences demonstrate the efficiency of the proposed method
in tracking facial features, such as mouth and eye corners.

1. Introduction

Boosted by applications in surveillance, military target
tracking, multimedia analysis and, recently, by applications
in the area of Human Machine Interaction, there has been a
considerable interest in visual object tracking. In this frame-
work, the goal is the estimation of the location of an object
at each frame of an image sequence based on a template that
models the appearance of the object in question. The tem-
plate is either learned off-line from a database containing
images of the object in question, or is initialised at the first
frame of the sequence. The main challenge in template-
based tracking is that the template cannot always find a
good match at the true location of the object because of oc-
clusions, changing lighting conditions and non rigid object
motion.

In particular, the problem of changes in the object’s ap-
pearance due to rigid and non rigid transformations has been
in the focus of the academic community for more than a
decade. A popular and robust approach, when the object or
the class of the object in question (e.g. faces, or vehicles)
is known in advance, is to train an appearance model from
a database that contains instances the object in question. In
this framework a number of approaches that lie at different
parts of the spectrum between tracking and detection have
been proposed [3] [2] [4] [11]. However, training databases
are available only for a limited classes of objects, such as

faces, and therefore the applicability of such schemes is lim-
ited. Furthermore, the construction of a database is by no
means a trivial task.

On the other hand, the approaches that rely on a template
that is initialized at a single (the first) frame of an image se-
quence attempt to deal with changes in the illumination and
in the object’s appearance a) by designing robust similar-
ity functions for matching the template with image patches
or b) by adopting schemes that incrementally update the
information that is contained in the template. The most
common choice for the definition of a similarity function is
the Mean of Squared Differences defined at an appropriate
colour/intensity space. However, such a similarity function
is known to be sensitive to outliers (that is mismatched pix-
els at which the colour/intensity difference is usually very
high) and therefore not robust to occlusions and changes
in the appearance due to object deformations. Jepson et al
[1] propose a robust appearance model that is based on a
mixture of three distributions, one of which, the so called
wandering component, is designed to cope with outliers. In
a similar approach, Nguyen and Smeulders [10] design ro-
bust similarity functions that are based on M-estimators and
reduce the effect of outliers by limiting the cost that is in-
troduced by large mismatches. They report results for both
an intensity-based appearance model and well as with the
use of a normalised RGB space. Finally, Matthews et al [8]
adopt an update strategy that aims at reducing the problem
of template drifting, that is the gradual loss of tracking due
to the update of the template with background information,
by maintaining the template that was extracted at the first
frame of the image sequence.

Although significant, these works do not explicitly ad-
dress the problem of structural appearance changes caused
by object deformation. Instead their similarity functions im-
plicitly assume that the changes in the colour/intensity of a
single pixel are generated by a random process and not, as is
the case of deformable motion, by ’structural displacement’
of colour/intensity values within the template. In what fol-
lows we present a method that explicitly addresses varia-
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tion in the appearance of the model that are caused by non
rigid deformations within the template. More specifically,
we propose a distance measure between a template c that is
extracted at the first frame of the sequence and the image
data around position α at image y. The distance measure
comprises of a colour distance term and a shape deforma-
tion term and can be seen as a generalization of distance
transformations used for tracking deformable binary con-
tours. Finally, we will address appearance changes due to
changes in the lighting conditions by utilizing a colour dis-
tance that is invariant to local changes to the illumination
intensity. We will incorporate our observation model in the
particle filtering framework and more specifically use the
auxiliary particle filtering as this was introduced by Pitt and
Shephard [14].

The rest of the paper is organized as follows. In section
2 we will briefly describe the auxiliary particle filtering and
in section 2.1 we give an extended description of the pro-
posed observation model. In section 2.2 we briefly describe
the transition model that we have used. In section 3 we
present experimental results for tracking deformable objects
and facial features in real image sequences and compare the
proposed observation model with other robust observation
models. Finally, in section 4 we draw conclusions and dis-
cuss future research directions.

2. Auxiliary Particle Filtering
In the recent years, particle filtering has been the domi-
nant paradigm [5] [6] [14] [9] [7] [13] [16] for tracking
the state α of a temporal event given a set of noisy obser-
vations Y = {. . . , y−, y} up to the current time instant;
in our case we denote with Y the image sequence up to
the current time instant. Its ability to maintain simultane-
ously multiple solutions, the so called particles, makes it
particularly attractive when the noise in the observations is
not Gaussian and makes it robust to missing or inaccurate
data. The main idea of the particle filtering is to maintain
a particle based representation of the a posteriori probabil-
ity p(α|Y ) of the state α given all the observations Y up
to the current time instance. This means that the distribu-
tion p(α|Y ) is represented by a set of pairs {(sk, πk)} such
that if sk is chosen with probability equal to πk, then it is
as if sk was drawn from p(α|Y ). In the particle filtering
framework our knowledge about the a posteriori probabil-
ity is updated in a recursive way. Suppose that we have a
particle based representation of the density p(α−|Y −), that
is we have a collection of K particles and their correspond-
ing weights (i.e. {(s−k , π−

k )}). Then, the Auxiliary Particle
Filtering can be summarized as follows:

1. Propagate all particles s−k via the transition probability
p(α|α−) in order to arrive at a collection of K particles
µk.

2. Evaluate the likelihood associated with each particle
µk, that is let λk = p(y|µk).

3. Draw K particles s−k from the probability density that
is represented by the collection {(s−k , λkπ−

k )}. This
is the essence of the auxiliary particle filtering; in this
way it favors particles with high λk , that is particles
which, when propagated with the the transition den-
sity, end up at areas with high likelihood.

4. Propagate each particle s−k with the transition proba-
bility p(α|α−) in order to arrive at a collection of K
particles sk.

5. Assign a weight πk to each particle as follows,

wk =
p(y|sk)

λk
, πk =

wk∑
j wj

(1)

This results in a collection of K particles and their corre-
sponding weights (i.e. {(sk, πk)}) which is an approxima-
tion of the density p(α|Y ).

2.1 The observation model

We subsequently define the observation model, that is the
likelihood p(y|α; c). This likelihood expresses how well the
image content y can be explained, given that the template is
at position α. This likelihood is parametrized by the tem-
plate c as this was extracted at the first frame of the image
sequence.

More specifically, let us denote with y(α) the image
patch centered around the spatial position α in the image
y. With y(α, i) we denote the colour of the pixel i of image
y expressed in the coordinate system defined by α and the
image axes. Similarly, let us denote with c(i) the colour at
the pixel i of the colour template c.

We will define the likelihood p(y|α; c) in terms of a
novel distance metric d(y(α), c) between the template c and
the image patch y(α). Classically, the colour template and
the image patch y(α) are aligned and the distance is defined
as the summation of colour distances between pixels that
are at the same position. Formally,

d(y(α), c) =
∑

i

‖c(i) − y(α, i)‖ (2)

where ‖.‖ is an appropriate colour distance which is classi-
cally taken to be the L2 norm in the RGB colour space.

The main problem with such colour metrics is that the
correspondence between the pixels of the colour template
and the pixels of the image patch y(α) does not hold in
general due to rigid or non rigid motions that the depicted
object undergoes. Such underlying motions create appear-
ance changes that do not vary smoothly with respect to the
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underlying transformations and, therefore, can be bad mea-
sures for the localization of the template. As in the similar
problem of the dense motion estimation, a low pass filter
(i.e. smoothing) alleviates the problem. However, a low
pass filtering a) leads to loss of detail and therefore can lead
to bad localization and b) when applied in the colour do-
main introduces new colours on which colour-based invari-
ant distances can no longer be applied. The latter is of par-
ticular importance in tracking with changing illumination
conditions. Furthermore, the most common choice for a
distance metric, that is the L2 norm, is sensitive to outliers,
that is to large values of c(i)− y(α, i) that are caused when
the correspondence between the pixel i in the template and
the pixel i in the image patch y(α) does not hold.

Let us denote with Φ : N2 → N2 the unknown transfor-
mation that gives the correct correspondence between the
pixel coordinates of the colour template c and the image
patch y(α). We propose a novel distance metric that con-
tains two terms. The first term, dc(c, y(α, Φ))), is a colour
distance between the colour template c and the template that
results after applying the non rigid shape transformation Φ
on the image patch y(α). The second term, ds(Φ), is a
measure of the shape deformation that is introduced by the
transformation Φ. The distance measure is the minimum,
over all possible trasformations Φ, of the colour-based dis-
tance and the shape-based deformation cost. Formally,

d(y(α), c) = min
Φ

(dc(c, y(α, Φ))(1 + λds(Φ)p)) (3)

where the first term of the product is used to penalize large
colour-based distance, and the second term is used to pe-
nalize large shape deformations Φ. The parameters λ and
the exponent p control the relative importance of the shape
deformation term.

More specifically, the first term in eq. 3 is a colour-based
distance between the colour template c and the colour tem-
plate y(α, Φ) that is formed after the transformation Φ is
applied to the image patch y(α). Formally,

y(α, Φ) =< . . . , y(α, Φ(i)), y(α, Φ(i + 1)), . . . > (4)

where i is the pixel index.
We define the colour distance to be invariant to local

changes in the intensity by normalizing each colour tem-
plate with the average intensity. Finally, in order to reduce
the effect of outliers, that is, the effect of large differences
at certain pixels that are the result of noise or occlusions, we
choose a robust error norm ρ(.) . Formally, the colour-based
difference is defined as follows:

dc(c, y(α, Φ)) =
1
σc

Ei

{
ρ

(∥∥∥∥ c(i)
E{c} − y(α, Φ(i))

E{y(α)}
∥∥∥∥

1

)}

(5)
where E{c} is the mean of c, that is, the average intensity
of the colour template oi, ‖.‖ is the L1 vector norm and as a

robust function ρ we have used the absolute value. Finally,
σc is a classical data scaling factor. It is easy to show that
the proposed colour difference metric is invariant to global
changes in the light intensity.

The second term of the product of eq. 3 is used to pe-
nalize large deformations Φ. Formally, ds(Φ) it is defined
as the average Euclidean distance over the pixel based dis-
placements, that is

ds(Φ) = Ei

{√
‖i − Φ(i)‖2

}
(6)

where, with a slight abuse of notation, i denotes pixel co-
ordinates. The essence of the shape deformation term is
depicted in fig. 1 where the dashed line represents a struc-
ture in the template c and the solid line represents the same
structure that at the image patch y(α) is slightly deformed
under the (unknown) transformation Φ.

y(a)

c

Ni
i

|i − j|
j

Figure 1: Shape distance for template matching.

The definition of the deformation cost as in eq. 6 allows
an efficient estimation of d(y(α), c), that is, the minimiza-
tion of eq. 3 over all possible transformations Φ. Since
both colour difference and the deformations of neighbor-
ing pixels are considered independently, the minimization
of eq. 3 can be performed independently for each pixel. It
is straightforward to show that the transformation Φ∗, that
minimizes eq. 3 is given by

Φ∗(i) = argmin
j

1
σc

ρ

(∥∥∥∥ c(i)
E{c} − y(α, j)

E{y(α)}
∥∥∥∥

1

)
(1+λ

√
‖i − j‖2)

(7)
In practice, given a reasonable choice for the parameter

λ, large deformations, that is large Φ∗(i)− i are unlikely to
minimize eq. 7. For computational efficiency, we restrict the
search for Φ∗(i) in a neighborhood of i, which we denote
with Ni. Fig. 1 presents the colour template c projected
on the image patch y(α), the neighborhood Ni of a pixel
i in the colour template c and a pixel j in the image patch
y(a) that is considered as a candidate for the minimization
of eq. 7.
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Notice that for λ → ∞, the shape transformation what
minimizes eq. 7 is given by Φ∗(i) = i and the proposed dis-
tance (eq. 3) reduces to a classical color template distance.
In our case, this color distance is the Mean Absolute color
Difference. Finally, let us note that there are also other ef-
ficient ways of combining the color-based distance and the
shape-based deformation cost. In [15] we presented results
with d(y(α), c) = minΦ (dc(c, y(α, Φ)) + λds(Φ)). Ex-
perimentally, we have found that it is easier to tune the pa-
rameter λ for the definition of eq.3. In all of our experiments
we have used λ = 0.1 and p = 0.3.

Finally, the observation likelihood p(y|α; c) is defined
as:

p(y|α; c) = max
{

ε,
1
Z

e−d(y(α),c)

}
(8)

where Z is a normalization term that can be ignored, since
in the context of the particle filtering the likelihoods are
renormalized at each iteration (eq. 1). The term ε is a con-
stant that is used in order to deal with large occlusions, and
in general with situations at which the dissimilarity between
the template c and all candidate image patches y(α), c) is
very large. In such situations, where the tracking is effec-
tively lost, the presence of the term ε does not allow the
solution to be attracted by an image patch y(α) that is a
good match relatively to the other image patches, but bad
match in absolute terms. Effectively, the term ε assumes
a uniform likelihood p(y|α; c) at occlusions or when the
tracking is lost. Similar terms that limit the effect of large
discrepancies between the template and the data have been
extensively used in the framework of robust estimation and
tracking [1] [10].

2.2 The transition model

In what follows we will describe the transition model, that
is the probability density p(α|α−) that is used to generate
a new set of particles given the current one. The transition
probability models our knowledge about the feature dynam-
ics, that is our prior knowledge about their position α in
the current frame given their position α− in the previous
frame. In the case that the domain is known, prior knowl-
edge can be very effective for reliable long term tracking.
In [12] multiple facial features are simultaneously tracked
and their joint positions are constrained by a probability that
was learned from previously tracked points. However, in the
case that the domain is not known, general constraints are
usually imposed in the form of a first order (constant veloc-
ity) or second order (constant acceleration) models. Here,
we use a simple zero order model in which the probability
density p(α|α−) is modelled as a Gaussian noise around the
position α− in the previous frame. Formally,

p(α|α−) = N (
α−, Σ

)
(9)

3. Experimental Results
We have applied the proposed method to a number of im-
age sequences and here we present results for tracking fa-
cial features, that is the position of the mouth corners and
the inner eye corners. We define small rectangular tem-
plates around each facial feature at the first frame and sub-
sequently track the facial feature for the rest of the image
sequence.

We have compared our method with the auxiliary par-
ticle filtering using different observation functions that are
widely used in the literature, such as the mean of the ab-
solute differences, the median and the Huber’s function
[10]. Here we will present results with the mean of ab-
solute differences and with the median, which are known to
perform better to the presence of outliers than the mean of
squared differences.

In fig. 2 we present experimental results for tracking the
corners of the eyes of a person wearing glasses in an im-
age sequence that contains free 3D head movements. Note,
that the appearance changes are due both to the difference in
the appearance of the corner of the eye when viewed from
different viewpoints, but also due to the relative displace-
ment of the skeleton of the glasses that the person is wear-
ing. While the first source of appearance variation could be
explicitly modelled by a projective transformation (whose
coefficients need to be estimated), the changes that are due
to the relative displacement of the skeleton are more diffi-
cult to model explicitly since they depend on the relative
distance of the glasses with respect to the face. Finally, non
rigid appearance changes are also present and are due to un-
intentional blinking of the subject. In fig.2 we present some
frames of the image sequence for each of the three trackers.
It is clear that the proposed method performs well under all
sources of appearance change and is able to track reliably
the eye corners throughout the image sequence. In contrast
the observation functions that are based on the median filter
and on the sum of the absolute differences loose the tracking
as soon as the subject blinks and although they occasionally
recover, they loose regularly the track of the eyes. All three
tracking schemes have been initialised at the same position
and all utilise the same colour space.

Finally, in order to better illustrate the performance of
the proposed method, we present results from two more im-
age sequences, containing appearance changes that are due
to scaling, 3D head rotation as well as non rigid motion
of the corner of the mouth and of the eye due to blinking.
In both image sequences the trackers that are based on the
mean and the median absolute differences loose the track
after some frames and although they occasionally recover,
they are not able to track reliably the facial features for
the whole image sequence. Note that the image sequence
’Emile’ contains significant changes in the apparent light-
ing conditions due to the automatic gain control of the cam-
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(a) Deformable template tracking: Frames 1, 30, 60, 90, 130, 150, 190

(b) Median-based template tracking: Frames 30, 60, 120

(c) MeanAbsoluteDifference-based template tracking: Frames 30, 60, 120

Figure 2: ’Erik’ image Sequence

era and a total occlusion of the facial features for around 10
frames.

Figure 3: ’Emile’ image sequence

4. Conclusions
We have presented a novel observation model for track-
ing non rigid objects in changing lighting conditions. The
proposed observation model is robust to moderate changes
in the illumination and to moderate deformations of the
tracked object. We have integrated the observation model
in the particle filtering framework and we were able to ro-
bustly track facial features and other objects under moder-
ate appearance changes that are due to facial expressions

Figure 4: ’Maja’ image sequence

and 3D motion. Although our approach did not explicitly
model geometrical transformations due to rigid 3D motion,
our explicit modelling of local deformations proved robust
in dealing with in plane and out of plane object rotations
and scaling. We have experimentally demonstrated the ro-
bustness of the proposed method in a number of image se-
quences and have provided comparative results with two
other popular appearance models. Finally, we have devised
a colour-based scheme that is invariant to changes in the in-
tensity of the illumination and experimentally proved to be
robust to the camera gain control in indoor environments.
For future work we intend to use the proposed observation
model in an online scheme for learning object appearances
for object recognition.
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