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Dynamics of Facial Expression: Recognition of
Facial Actions and Their Temporal Segments

From Face Profile Image Sequences
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Abstract—Automatic analysis of human facial expression is a
challenging problem with many applications. Most of the existing
automated systems for facial expression analysis attempt to rec-
ognize a few prototypic emotional expressions, such as anger and
happiness. Instead of representing another approach to machine
analysis of prototypic facial expressions of emotion, the method
presented in this paper attempts to handle a large range of human
facial behavior by recognizing facial muscle actions that produce
expressions. Virtually all of the existing vision systems for facial
muscle action detection deal only with frontal-view face images and
cannot handle temporal dynamics of facial actions. In this paper,
we present a system for automatic recognition of facial action units
(AUs) and their temporal models from long, profile-view face image
sequences. We exploit particle filtering to track 15 facial points in
an input face-profile sequence, and we introduce facial-action-dy-
namics recognition from continuous video input using temporal
rules. The algorithm performs both automatic segmentation of an
input video into facial expressions pictured and recognition of tem-
poral segments (i.e., onset, apex, offset) of 27 AUs occurring alone
or in a combination in the input face-profile video. A recognition
rate of 87% is achieved.

Index Terms—Computer vision, facial action units, facial expres-
sion analysis, facial expression dynamics analysis, particle filtering,
rule-based reasoning, spatial reasoning, temporal reasoning.

I. INTRODUCTION

THE human face is involved in a large variety of different
activities. It houses the apparatus for speech production as

well as the majority of our sensors (eyes, nose, mouth). Besides
these biological functions, the human face provides a number
of social signals essential for our public life. The face mediates
person identification, attractiveness, and facial communicative
cues, that is, facial expressions. Our utterances are accompa-
nied by the appropriate facial expressions, which clarify what
is said and whether it is supposed to be important, funny or
serious. Facial expressions reveal our current focus of atten-
tion, synchronize the dialogue, signal comprehension or dis-
agreement; in brief, they regulate our interactions with the en-
vironment and other persons in our vicinity [1]. As indicated by
Mehrabian [2], whether the listener feels liked or disliked de-
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pends only for 7% on the spoken word, for 38% on vocal utter-
ances, while facial expressions determine 55% of this feeling.
Finally, facial expressions are our direct and naturally preemi-
nent means of communicating emotions [1], [3]. Hence, facial
expressions play a very important role in human face-to-face in-
terpersonal interaction. Automatic analysis of facial expressions
would, therefore, be highly beneficial for fields as diverse as
behavioral science, psychology, medicine, security, education,
and computer science (facilitating lip reading, face and visual
speech synthesis, videoconferencing, affective computing, and
anticipatory human-machine interfaces). It is this wide range of
applications that has produced a surge of interest in machine
analysis of facial expressions.

Most of the facial expression analyzers developed so far at-
tempt to recognize a small set of prototypic emotional facial ex-
pressions, i.e., fear, sadness, disgust, anger, surprise, and happi-
ness (e.g., [4]–[8]; for an exhaustive survey, see [9]). This prac-
tice may follow from the large body of psychological research
(from Darwin [10] to Ekman [3], [11]) which argues that these
“basic” emotions have corresponding prototypic facial displays.
However, there is also a growing body of psychological re-
search that argues that it is not prototypic expressions but some
components of those expressions (e.g., “squared” mouth, raised
eyebrows, etc.) which are commonly displayed and universally
linked with the emotion labels listed above [1], [12]. To de-
tect such subtle facial expressions and to make the facial ex-
pression information available for usage in the various applica-
tions mentioned above, automatic recognition of facial muscle
actions (i.e., atomic facial signals) is needed.

A. Facial Action Coding System (FACS)

There are several methods for measuring and describing fa-
cial muscular activity [13]. From these, the FACS is the most
widely used method in psychological research [13]. Ekman and
Friesen developed the original FACS in the 1970s by deter-
mining how the contraction of each facial muscle (singly and in
combination with other muscles) changes the appearance of the
face. They examined videotapes of facial behavior to identify
specific changes that occur with muscular contractions and how
to differentiate one from another. They associated the facial ap-
pearance changes with the action of muscles that produce them.
Namely, the changes in the facial expression are described with
FACS in terms of 44 different action units (AUs), each of which
is anatomically related to the contraction of either a specific fa-
cial muscle or of a set of facial muscles. Along with the defini-
tion of various AUs, FACS also provides the rules for visual de-
tection of AUs and their temporal segments (onset, apex, offset)
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in a video of the observed face. Using these rules, a FACS coder
(i.e., a human observer having a formal training in using FACS)
“dissects” a shown facial expression, decomposing it into the
specific AUs and their temporal segments that produced the ex-
pression. The FACS Manual was first published in 1978 [14].
The latest version was published in 2002 [15].

B. Automated FACS: Frontal Face

Although FACS provides a good foundation for AU coding of
face images by human observers, automatic recognition of AUs
by computers remains difficult. One problem is that AUs can
occur in more than 7000 different combinations [13], causing
bulges (e.g., by the tongue pushed under one of the lips) and var-
ious in-and out-of-plane movements of facial components (e.g.,
jetted jaw) that are difficult to detect in 2D face images. Few
methods have been reported for automatic AU detection in face
image sequences [16]. Some researchers described patterns of
facial motion that correspond to a few specific AUs but did not
report on actual recognition of these AUs (e.g., [4]–[6], [8], [17],
[18]). Only recently there has been an emergence of efforts to-
ward automatic analysis of facial expressions into elementary
AUs [19]. For instance, the Machine Perception group at UCSD
has proposed several methods for automatic AU coding of fa-
cial expressions. To detect 6 individual AUs in face image se-
quences free of head motions, Bartlett et al. [20] used a 61
10 feed-forward neural network. They achieved 91% ac-
curacy by feeding the pertinent network with the results of a
hybrid system combining holistic spatial analysis and optical
flow with local feature analysis. To recognize eight individual
AUs and four combinations of AUs in face image sequences free
of head motions, Donato et al. [21] used Gabor wavelet repre-
sentation and independent component analysis. They reported a
95.5% average recognition rate achieved by their method. The
most recent work by Bartlett et al. [22] reports on accurate au-
tomatic recognition of 18 AUs (95% average recognition rate)
from near frontal-view face image sequences using Gabor fil-
ters and Support Vector Machines. Another group that has fo-
cused on automatic FACS coding of face image sequences is
that led by Cohn and Kanade. To recognize eight individual AUs
and seven combinations of AUs in face image sequences free of
head motions, Cohn et al. [23] used facial feature point tracking
and discriminant function analysis and achieved an 85% av-
erage recognition rate. Tian et al. [24] used lip tracking, tem-
plate matching and neural networks to recognize 16 AUs oc-
curring alone or in combination in near frontal-view face image
sequences. They reported an 87.9% average recognition rate.
The authors’ group also reported on multiple efforts toward
automatic analysis of facial expressions into atomic facial ac-
tions. The majority of this previous work concerns automatic
AU recognition in static face images [7], [25]. Only recently,
the authors’ group has focused on automatic FACS coding of
face video. To recognize 15 AUs occurring alone or in combi-
nation in near frontal-view face image sequences, Valstar et al.
[26] used temporal templates (i.e., motion history images) and a
combined k-Nearest-Neighbor and rule-based classifier. An av-
erage recognition rate of 65% was reported.

C. Automated FACS: Profile Face

In contrast to these previous approaches to automatic AU
detection, which deal only with frontal-view face images and

cannot code temporal segments (i.e., onset, apex, offset) of AUs
[19], the research reported here addresses the problem of auto-
matic detection of AUs and their temporal segments from pro-
file-view face image sequences. It was undertaken with the fol-
lowing motivations.

1) In a frontal-view face image, facial actions such as tongue
pushed under the upper lip (AU36t) or pushing the jaw for-
ward (AU29) represent out-of-plane nonrigid movements
that are difficult to detect. Such facial actions are clearly
observable in a profile view. Hence, the use of face-profile
view promises a qualitative enhancement of AU detection
performed (by enabling detection of AUs that are difficult
to encode in a frontal view).

2) Existing AU detectors achieve good recognition rates, but
virtually all of them perform well only when the user
faces the camera and does not change his/her three-dimen-
sional (3-D) head pose. Robust AU detection, independent
of rigid head movements that can cause changes in the
viewing angle and the visibility of the tracked face and its
features, is yet to be attained. Perhaps the most promising
method for achieving this aim is through the use of mul-
tiple cameras yielding multiple views of the face [27]. For
example, the system could be trained using triplets of im-
ages per facial expression to be recognized shown at three
orientations that differ by a rotation of 90 (portrait, left
and right profile). Novel rotations at 30 and 45 from the
nearest trained orientation can be interpolated between the
trained orientations. Test images of facial displays shown
at any orientation between the left and the right profile
view of the face could be finally classified by general-
izing from independent facial expression representations
at each training/interpolated facial view. A basic under-
standing of how to achieve automatic AU detection from
the profile view of the face is necessary if such a techno-
logical framework for automatic AU detection from mul-
tiple views of the face is to be established.

3) There is now a growing body of psychological research
that argues that temporal dynamics of facial behavior (i.e.,
the timing and the duration of facial activity) is a crit-
ical factor for the interpretation of the observed behavior
[1]. For example, Schmidt and Cohn [28] have shown that
spontaneous smiles, in contrast to posed smiles, are fast in
onset, can have multiple AU12 apexes (i.e., multiple rises
of the mouth corners), and are accompanied by other AUs
that appear either simultaneously with AU12 or follow
AU12 within 1 s. Since it takes more than one hour to
manually score 100 still images or a minute of videotape
in terms of AUs and their temporal segments [14], it is
obvious that automated tools for the detection of AUs and
their temporal dynamics would be highly beneficial. Nev-
ertheless no effort in automating the detection of the tem-
poral segments of AUs in face image sequences has been
reported so far.

4) Areas where machine tools for the analysis of human fa-
cial expressions from face profile could expand and en-
hance research include numerous specialized areas in sci-
entific and professional sectors. Automatic analysis of
expressions from face-profile view would facilitate re-
search on human emotion, which is in turn important for
areas such as behavioral science, psychology, neurology
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Fig. 1. Outline of the profile-face-based method for detection of AUs and their temporal dynamics.

(in studies on dependence between emotional abilities im-
pairments and brain lesions), and psychiatry (in studies
on autism and schizophrenia) [29]. It seems that negative
emotions (where facial displays of AU2, AU4, AU9, etc.,
are often involved) are more easily perceivable from the
left hemiface and the full face than from the right hemi-
face and that, in general, the left hemiface is perceived to
display more emotion than the right hemiface [30]. Also,
it seems that facial actions involved in spontaneous emo-
tional expressions are more symmetrical, involving both
the left and the right side of the face, than deliberate ac-
tions displayed on request [31]. Based upon these obser-
vations, Mitra and Liu [32] have shown that facial asym-
metry has sufficient discriminating power to improve the
performance of an automated emotion classifier signifi-
cantly. Martinez [33] has shown that, by taking into ac-
count facial asymmetry caused by certain emotion, ex-
pression-invariant face recognition can be achieved. Fi-
nally, machine analysis of facial behavior from profile ex-
pressions could be of considerable value in any situation
where issues concerning emotion, attention, deception,
and attitude are of importance and frontal-face observa-
tions are not always feasible. Such situations occur often
in security sectors, where the observed persons should not
be aware of the video surveillance.

The authors have already built a first prototype of an auto-
mated profile-face-based AU detector [34], the novel version
of which is presented in this paper. This prototype system was
aimed at automatic recognition of 20 AUs from subtle changes

in the contour of the face profile tracked in an input face-profile
image sequence. This previous version of the profile-face-based
AU detector had several limitations: 1) it was applicable only
to images depicting the left profile of the face; 2) it did not
apply temporal reasoning; 3) it could not recognize temporal dy-
namics of AUs; and 4) AU coding was based only upon changes
in the contour of the face profile region (i.e., changes within the
face profile region were disregarded).

The current version of the method, proposed in this paper, ad-
dresses these limitations. Fig. 1 outlines this novel method, the
prelim of which was reported in [35]. It operates under two as-
sumptions: 1) the input video sequence is a nonoccluded (left or
right) near-profile view of the face with possible in-image-plane
head rotations and 2) the first frame of it shows a neutral ex-
pression. After the facial points are initialized in the first frame
of the input image sequence, we exploit particle filtering to
track the 15 points automatically in the rest of the sequence.
Based on the changes in the position of the points, we measure
changes in facial expression. Changes in the position of the fa-
cial points are first transformed into a set of mid-level param-
eters for AU recognition. Based upon the temporal consistency
of these parameters, a rule-based method encodes temporal seg-
ments (onset, apex, offset) of 27 AUs occurring alone or in com-
bination. The usage of temporal information allows us not only
to code a video segment to the corresponding AUs, but also to
automatically segment an arbitrarily long video sequence into
the segments that correspond to different expressions. Facial
point tracking, parametric representation of the extracted infor-
mation, recognition of AUs and their dynamics, and automatic
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Fig. 2. Facial points (fiducial points of the face components).

segmentation of the video sequence are explained in Sections II,
III, IV, and V. Evaluation studies and experimental results are
discussed in Section VI.

II. FACIAL POINT TRACKING

Contractions of facial muscles induce movements of the fa-
cial skin and changes in the appearance of facial features (fa-
cial components) such as the eyebrows, nose, and mouth. Their
shape and location, as visible in a face profile, can alter im-
mensely with facial expressions (e.g., pursed lips versus jaw
dropped). To be able to reason about the shown expression and
the facial muscle actions that produced it, one must first de-
tect the current appearance of the facial features. To do so, we
track a set of facial points illustrated in Fig. 2, the locations
of which alter as the current appearance of the facial features
changes with the facial expression. In this paper, we do not ad-
dress the problem of initially locating the facial points. We as-
sume that they are initialized either manually or automatically in
the first frame of the input face image sequence (e.g., using the
method proposed in [25] and/or in [36]) and they are automati-
cally tracked for the rest of the sequence by applying a particle
filtering method.

In recent years, particle filtering has been the dominant par-
adigm for tracking the state of a temporal event given a set
of noisy observations up to the current
time instant [37]–[43]. In our case, the state is the location
of a facial fiducial point while set is the
set of image frames up to the current time instant. The main
idea behind particle filtering is to maintain a set of solutions
that are an efficient representation of the conditional probability

. By maintaining a set of solutions instead of a single es-
timate (as is done by Kalman filtering, for example), particle
filtering is able to track multimodal conditional probabilities

, and it is therefore robust to missing and inaccurate data
and particularly attractive for estimation and prediction in non-
linear, non-Gaussian systems. In this paper, we adapt the aux-
iliary particle filtering method that was introduced by Pitt and
Shepard [39] to independently track the location of the 15 fa-
cial features depicted in Fig. 2. In order to make the tracking
robust to in-plane head rotations and translations as well as to
small translations along the z-axis, we estimate a global affine

transformation for each frame and based on it we register the
current frame to the first frame of the sequence. In order to esti-
mate the global affine transformation, we track three referential
points. These are: the top of the forehead (P1), the tip of the nose
(P4), and the ear canal entrance (P15). We use these points as the
referential points because of their stability with respect to non-
rigid facial movements: contractions of facial muscles do not
cause physical displacement of these points [44]. We estimate
the global affine transformation as the one that minimizes the
distance (in the least-squares sense) between the -based pro-
jection of the tracked locations of the referential points and these
locations in the first frame of the sequence. The rest of the facial
features are tracked in image frames that have been compen-
sated for the transformation . In what follows, without loss of
generality, we will describe the proposed color-based tracking
scheme for tracking a single facial feature.

A. Auxiliary Particle Filtering

The tracking is initialized in the first frame of the input image
sequence when a window is centered around the facial feature
to be tracked. Let denote the template that contains the color
information in such a window. We will use to denote the un-
known location of the facial feature at the current time instant
and will denote the observations (i.e., the
images) up to the current time instant. In order to fully specify a
particle filter, we need to model two probability densities. One
is the observation likelihood , which expresses in our
case how similar the color information in a window in image
around the position is to the color template . The second den-
sity is the transition density which, in our case, models
the temporal dynamics of the facial feature. That is,
models the probability that the facial feature is at position in
the current frame, given that it was at position in the pre-
vious frame.

The main idea of particle filtering is to maintain a particle-
based representation of the a posteriori probability of
the state given all the observations up to the current time
instance. This means that the distribution is represented
by a set of pairs such that if is chosen with proba-
bility equal to , then it is as if is drawn from . That
is [40], the probability is approximated by the discrete
distribution , where is the Dirac function
and . Let the particles be sampled from a sam-
pling distribution which has a positive probability density
function that (up to a normalization constant) is equal to a func-
tion . Then calculate the weights as ,
where . It can be shown that, if the pairs

are chosen in this way then, as the number of parti-
cles approaches infinity, an estimation converges
to the expected (under the distribution ) value of the
function . Therefore, once a particle-based representation
of the a posteriori probability is available, we can esti-
mate statistics such as the mean ( ) and the variance
( ) of the state. In our case, an estimation of the the
position of the facial feature is obtained as the mean of the state

, that is

(1)
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In the particle filtering framework, our representation of the
a posteriori probability of the state is updated in a
recursive way. More specifically, let us assume that at the current
time instant we have a particle-based representation of the a
posteriori probability of the state at the previous
time instant. That is, let us assume that we have a collection of

particles and their corresponding weights (i.e., )
that represent the a posteriori probability at the previous time
instant. Then, we can summarize a step of the Auxiliary Particle
Filtering that will result in a collection of particles and their
corresponding weights (i.e., ) that represent the a
posteriori probability at the current time instant as follows.

1) Propagate all particles via the transition probability
in order to arrive at a collection of particles

.
2) Evaluate the likelihood associated with each particle ,

that is, let .
3) Draw particles from the probability density that is rep-

resented by the collection (see Fig. 4, lower
left plot). Let be the index of the particle that was drawn
at the draw ( ), that is, let the particle
be selected at the draw (in general ). This is the
essence of the auxiliary particle filtering; it favors parti-
cles with high (i.e., particles that end up in areas with
high likelihood when propagated with the transition den-
sity).

4) Propagate each of the particles that were draw at step 3
with the transition probability in order to arrive
at a collection of particles .

5) Assign a weight to each particle according to (2)

(2)

This results in a collection of particles and their corre-
sponding weights (i.e., ). This representation
is an approximation of the density .1

An outline of the auxiliary particle filtering algorithm, in
which the steps of the algorithm are visually depicted, is given
in Fig. 3. At each subfigure, a set of circles depicts a set of par-
ticles, where larger circles depict particles with higher weights.
At each subfigure, the continuous line depicts the probability
density function that is represented by the corresponding set of
particles. In addition, in the top-right subfigure the observation
likelihood is depicted with a dashed line. Note that
the horizontal axes of the two plots at the left represent the
state (i.e. the state at the previous time instant) while the
horizontal axes of the two plots at the right depict the state
at the current time instant.

We proceed by modeling the observation likelihood
and the transition density . The observation likelihood
is used at steps 2 and 5 and its role is to assign higher weights

to particles according to how similar the color information

1To be more specific, with the above scheme, at step 4 we arrive at a collection
of pairs (s ; k) (i.e. a particle s and the index k of the particle that was
drawn at the k draw at step 3), each one of which is sampled from a probability
G(�; k) with density proportional to g(�; k) = p(yj� )p(�js )� . With the
weighting of step 5, the set f((s ; k); w )g is a particle-based representation
of p(�; kjY ) which up to proportionality is p(yj�)p(�js )� . By dropping
the index k from the above set f((s ; k); w )g, we arrive at a particle-based
representation of p(�jY ). See [39] for a complete proof.

Fig. 3. Outline of the auxiliary particle filtering method [39].

around the position is to the color template . Note that we
need an observation model that given an image , a position
and a color template can evaluate the scalar value .
The transition density is used at steps 1 and 4. Its role is
to propagate a particle from the previous frame to a position
in which is likely to be in the current frame. Note that we
need a transition model from which we can sample, that is, a
model that, given a particle , can produce a particle with a
probability equal to . In what follows we will formally
define the two density models that we use.

B. Robust Color-Based Observation Model

Various observation models have been proposed for template-
based tracking, where special attention is given to both the ro-
bustness in the presence of clutter and occlusions and the adapta-
tion of the observation model [45], [46]. Recently, attention has
been drawn to color-based tracking [42], [47]. In what follows,
we propose a color-based observation model that is invariant to
global illumination changes.

Our observation model is initialized in the first frame of the
input image sequence when the user centers a window around
the facial point to be tracked. Let denote the template fea-
ture vector that contains the RGB color information in such a
window in the first frame and let denote the color at a pixel
. Clearly, has a dimensionality equal to three times the number

of pixels in the window. We need to define the probability den-
sity . Let denote the data vector that contains the
RGB color information at the image window around position

and let denote the color at a pixel . We propose a
color-based distance between the vectors and that is in-
variant to global changes in the intensity. For each pixel , the
color distance is defined as

(3)

where is the mean of vector (i.e., the average intensity
of the color template ) and is the mean of vector
(i.e., the average intensity of the color template ). By di-
viding the color at each pixel with the average intensity of the
color template to which it belongs, the color difference vector

becomes invariant to changes in the illumination
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intensity. Finally, we define the scalar color distance using a ro-
bust function [48]. More specifically

(4)

where is the norm and is the absolute value in our
experiments. Then, the observation likelihood is

(5)

where Z is a normalization term that can be ignored since in
the context of particle filtering the weights of the particles are
renormalized at each iteration [see (2)]. The term is a scaling
parameter which was set to 0.01 in all of our experiments.

C. Transition Model

Once the observation model has been defined, we need to
model the transition probability that is used to generate a new
set of particles given the current one. The transition probability
models our knowledge of the dynamics of the feature, that is, it
models our knowledge of the feature’s position in the current
frame given its position in the previous frame. We model the
transition probability of each feature as a mixture of Gaus-
sians. The first few components model the feature’s dynamics
as a mixture of Gaussians around the previous position . The
last few components of the Gaussian mixture ignore the infor-
mation about the position in the previous frame and model the
static prior . These last components are essentially used to
recover the tracking by creating particles at positions with high
priors, such as the position of the facial points in the expression-
less face. More specifically

(6)

where the coefficient is set to 95%. This means that 95%
of the samples are generated based on the feature’s dynamics.
The number of the Gaussians to be used for each feature is a de-
sign choice, which depends on the degree of freedom of each
facial feature. In our implementation, we used a very simple
model with 1 or 2 Gaussians for the dynamic components (i.e.,

1 2) and 1 to 3 Gaussians (i.e., 2 5) for the static
components. To obtain valid static components, we first need
to compensate for head motion using the global transformation

. Then, we need to compensate for physiognomic variability.
Namely, different people have different faces, and the facial fea-
tures are not located at exactly the same position in each face.
We handle this by translating the mean of each Gaussian com-
ponent of the second term of (6) by a vector estimated based
on the location of the facial feature in the first frame (neu-
tral expression frame) of the input image sequence. The means
and the variances of the components of the Gaussians are esti-
mated using the EM algorithm on a semi-automatically anno-
tated training dataset containing the coordinates of the facial
features under consideration. This dataset contains images of
two persons (other than the 19 persons whose images are used

to test the performance of the system as a whole) showing var-
ious facial expressions. The parameters of the transition model
of each facial feature are estimated independently of the transi-
tion models of the other facial features.

D. Tracking Multiple Facial Points

The application of auxiliary particle filtering for tracking the
position of each facial point results in a set of particles and
their corresponding weights in each frame of the se-
quence. This set is a representation of the posterior . An
estimate of the position of the facial point is then given by (1).
Typical results of this algorithm are illustrated in Figs. 4 and
5. Finally, let us note that the computational complexity of the
above algorithm is linear with respect to the number of parti-
cles and to the number of facial points. The main computational
burdens of the algorithm are the evaluation of the likelihood

of the particles and the calculation of the color dis-
tance in (4). In our experiments, we used 100 particles for each
of the 15 points which, for our Matlab code, resulted in the pro-
cessing of 1 frame per 15 s on a 2.5-GHz Pentium. We expect
that a careful C/C++ implementation can achieve a near-real
time performance.

III. MID-LEVEL PARAMETRIC REPRESENTATION

Contractions of facial muscles alter the shape and location
of the facial components (eyebrows, eyes, mouth, chin). Some
of these changes in facial expression are observable from the
changes in the position of the tracked points. To classify the
tracked changes in terms of AUs, these changes are transformed
first into a set of mid-level parameters. We have defined two
mid-level parameters in total: and .

1) Parameter , where 1
stands for the 1st frame and for the current frame, de-
scribes upward and downward movements of point . If

, point moves upwards. If
, point moves downwards. The value of

is the y-coordinate of point and the value of is 1 pixel.
2) Parameter , where

stands for the 1st frame and for the current frame, de-
scribes the increase or decrease of the distance between
points and . If , distance
increases. If , distance decreases.
Distance is calculated as the Euclidian distance
between and .

Originally, in the first prototype of our profile-face-based AU
detector [34], we used another parameter as well. The parameter
in question, , describes inward
and outward movements of point . For a left-profile view of
the face, describes an inward movement of
point . On the other hand, for a right-profile view of the face,

describes an outward movement of point .
Thus, this parameter depends upon the facial view depicted in
the input image, which is the main reason why we chose not
to use this parameter in the current version of our profile-face-
based AU detector. In the current version of the system we use

instead. We represent an outward movement
of point as 15 (i.e., as an increase of
the distance between points P15 and ). Similarly, an inward
movement of point is represented as 15
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Fig. 4. Results of the facial point tracking. First and second rows: frames 1 (neutral), 14 (blink, i.e., apex AU45), 75 (onset AU1+2+5), 89 (apex AU1+2+5),
131 (apex AU1 + 2 + 45), 137 (offset AU1 + 2 + 45), 148 (neutral). 3rd and 4th rows: frames 1 (neutral), 19 (onset AU36T + 26), 23 (apex AU45, onset
AU36T+ 26), 38 (apex AU36T+ 26), 76 (offset AU36T+ 26), 159 (apex AU4, onset AU17+ 24), 194 (apex AU4+ 17+ 24), 237 (offset AU4+ 17+ 24).

(i.e., as an decrease of the distance between points P15 and ).
As explained in Section II, we use point P15 (Fig. 2) as the
referential point because it is a stable facial point.

Ascanbeseenfromthesedefinitions, themid-levelparameters
are calculated for various points for each input frame by com-
paring the position of the points in the current frame with that of
the relevant points in the first (neutral expression) frame. Before
these calculations can be carried out, all rigid head motions in the
input image sequence must be eliminated. Otherwise we would
not be certain whether the value of a given parameter had changed

due to the movement of the relevant points or due to a rigid head
movement. As explained in Section II, to handle in-image-plane
rotations and variations in scale of the observed face profile, we
register each frame of the input image sequence using a global
affine transformation that we estimate for each frame based on
the tracked location of P1, P4, and P15. The feature parameters
are then calculated for various points tracked in each frame of the
registered sequence. As can be seen in Fig. 6, the values of the
mid-level parameters change as a function of time and, thus, can
be used to measure temporal dynamics of AUs.
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Fig. 5. Results of the facial point tracking. First row: frames 1 (neutral), 48 (onset AU29), 59 (apex AU29), 72 (offset AU29). Second row: frames 1 (neutral), 17
(onset AU44 + 9 + 10 + 20 + 25), 25 (apex AU44 + 9 + 10 + 20 + 25), 66 (apex AU45, offset AU44 + 9 + 10 + 20 + 25). Third row: frames 1 (neutral),
12 (onset AU36B + 26), 43 (apex AU36B + 26), 62 (offset AU36B + 26). Fourth row: frames 1 (neutral), 25 (onset AU12), 30 (onset AU6 + 12), 55 (apex
AU6 + 12 + 25 + 45).

IV. RECOGNITION OF AUS AND THEIR TEMPORAL DYNAMICS

We transform the calculated mid-level feature parameters into
a set of AUs describing the facial expression(s) captured in the
input video. We use a set of temporal rules and a fast direct
chaining inference procedure to encode 27 AUs occurring alone
or in combination in an input face-profile image sequence. To
minimize the effects of noise and inaccuracies in facial point
tracking and to enable the recognition of the temporal dynamics

of shown AUs, we consider the temporal consistency of the mid-
level parameters.

We divide each facial action into three temporal segments:
the onset (beginning), apex (peak), and offset (ending). We de-
fine each temporal rule for AU recognition in a unique way ac-
cording to the relevant FACS rule and using the mid-level pa-
rameters explained in Section III. Tables I–III provide the list
of the utilized rules. Fig. 6 illustrates the meaning of these rules
for the case of AU1, AU2, and AU12. In Fig. 6, the horizontal
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Fig. 6. Values of four mid-level feature parameters (in left-to-right order): up=down(P12) and up=down(P11) computed for 163 frames of AU1 + 2 + 5
face-profile video depicted in the first two rows of Fig. 4, and up=down(P7) and inc=dec(P5P7) computed for 92 frames of AU6+ 12+ 25 face-profile video
depicted in the fourth row of Fig. 5.

axis represents the time dimension (i.e., the frame number) and
the vertical axis represents values that the mid-level feature pa-
rameters take. As implicitly suggested by the two left-hand-side
graphs of Fig. 6, P12 (respectively P11) should move upward
and it should be above its neutral-expression location to label
a frame as an “AU1 (respectively AU2)2 onset”. The upward
motion should terminate, resulting in a (relatively) stable tem-
poral location of P12 (P11), for a frame to be labeled as “AU1
(AU2) apex”. Eventually, P12 (P11) should move downward
toward its neutral-expression location to label a frame as an
“AU1 (AU2) offset”. Similarly, as implicitly suggested by the
two right-hand-side graphs of Fig. 6, P7 should move upward,
above its neutral-expression location, and the distance between
points P5 and P7 should increase, exceeding its neutral-expres-
sion length, in order to label a frame as an “AU123 onset”.
In order to label a frame as “AU12 apex”, the increase of the
values of the relevant mid-level parameters should terminate.
Once the values of these mid-level parameters begin to decrease,
a frame can be labeled as “AU12 offset”. Note that the two
right-hand-side graphs of Fig. 6 show two distinct peaks in the
increase of the pertinent mid-level parameters. As shown by
Schmidt and Cohn [28], this is typical for spontaneous smiles
and in contrast to posed smiles.

Generally, for each and every AU, it must be possible to detect
a temporal segment (an onset, apex, or offset) continuously over
at least five consecutive frames for the facial action in question
to be scored. We determined this temporal duration empirically
based on a video frame rate of 24 frames/s (i.e., five frames have
a duration of less than 1/4 of a second) and based on research
findings that suggest that temporal changes in neuromuscular
facial activity last from 1/4 of a second (e.g., a blink) to several
minutes (e.g., a jaw clench) [15].

The employed fast direct chaining inference procedure takes
advantage of both a relational representation of the knowledge
and a depth-first search to find as many conclusions as possible
within a single “pass” through the knowledge base [49]. The use

2Since the upward motion of the inner corner of the eyebrow is the principle
cue for the activation of AU1, the upward movement of the fiducial point P12
is used as the criterion for detecting the onset of the AU1 activation. Reversal
of this motion is used to detect the offset of this facial expression. Similarly, the
upward movement of the outer corner of the eyebrow (i.e., point P11) is used as
the criterion for detecting the onset of the AU2 activation.

3The upward, oblique motion of the mouth corner is the principle cue for
the activation of AU12. Hence, the upward movement of the fiducial point P7
and the increase of the distance between points P5 and P7, typical for oblique
(AU12) rather than sharp (AU13) upward movement of the mouth corner, are
used as the criteria for detecting the onset of the AU12 activation. Reversal of
these motions is used to detect the offset of this facial expression.

of R-list achieves a relational representation of the knowledge.
The R-list is a 4-tuple list, where the first two columns identify
the conclusion of a certain rule that forms the premise of an-
other rule identified in the next two columns of the R-list. For
example, the relation between rules 13 and 21 (Table II) is rep-
resented as (21, 1, 13, 2), which means that the 1st conclusion
of rule 21 forms the 2nd premise of rule 13. The term direct in-
dicates that as the inference process is executing, it creates the
proper chain of reasoning.

A recursive process starts with the first rule of the knowledge
base. Then, it searches the R-list for a link between the fired rule
and the rule that the process will try to fire in the next loop. If
such a relation does not exist, the procedure tries to fire the rule
that in the knowledge base comes after the rule last fired.

Inaccuracies in facial point tracking and occurrences of non-
prototypic facial activity may result in frames and temporal seg-
ments that are unlabeled (i.e., neither the onset, nor the apex, nor
the offset) and in frames and temporal segments that are labeled
incorrectly. The latter may arise, for example, when an apex
frame or an apex temporal segment of an AU is detected either
between two onset segments or between two offset segments.
To handle such situations, we employ a memory-based process
that takes into account the dynamics of facial expressions. More
specifically, we examine the labels of both the previous and the
next frame/temporal segment and re-label the current frame /
temporal segment according to the ruled-based system summa-
rized in Table IV.

For instance, any unlabeled temporal segment and/or any
apex segment that have been detected between two onset
segments are re-labeled as “onset”. Finally, an AU should be
recognized, in general, only when the full temporal pattern of
that AU is observed (e.g., see Fig. 6 for cases of AU1, AU2, and
AU12). However, in order to deal with fast transitions between
onsets and offsets, we score AUs even if the relevant apexes are
missing.

V. AUTOMATIC SEGMENTATION OF AN INPUT VIDEO SEQUENCE

Virtually all the existing AU detectors only perform well on
isolated or pre-segmented facial expression image sequences
showing a single temporal activation pattern of one or more
AUs. In reality, such segmentation is not available and, hence,
there is a need to find an automatic way of segmenting face
image sequences into the different facial expressions pictured.
A way to achieve this has been proposed by Otsuka and Ohya
[50] and Cohen et al. [51]. To cope with cases where two facial
expressions of emotion are displayed contiguously, Otsuka and
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TABLE I
RULES FOR RECOGNIZING AU1, AU2, AU4–AU7, AU9, AU10, AU12, AU13, AU15, AND AU16 FROM A FACE-PROFILE IMAGE SEQUENCE. LEGEND: FOR

NOTATIONAL SIMPLICITY, (x < x ) STANDS FOR (x < x � "), (x = x ) FOR (jx � x j � "), (x > x ) FOR (x > x + "), t1 FOR THE

FIRST FRAME, t FOR THE CURRENT FRAME, t � 1 FOR THE PREVIOUS FRAME. THE VALUE ASSIGNED TO " IS 1 pixel. THRESHOLD T1 = 1/2 P13 P14
DISTINGUISHES BETWEEN THE ACTIVATION OF AU6, AU7, AU41 AND THAT OF AU44, AU43 AND AU45. THE VALUE OF T1 HAS BEEN DECIDED BASED

UPON THE THRESHOLD DESCRIPTION PROVIDED BY THE RELEVANT FACS RULES

Ohya applied a heuristic approach and modified the employed
Hidden Markov model (HMM) computation such that when the
peak of a facial motion is detected, the current emotional expres-
sion is assumed to start from the previous frame with minimal
facial motion. Similarly, Cohen et al. proposed a HMM-based
method for recognition of six basic emotions. This assumes that
the transitions between emotions pass through the neutral facial
expression. Loosely speaking, we adopted a similar approach.

To automatically segment an arbitrarily long video sequence
into the segments that correspond to expressive and expression-

less facial displays, we use a sequential facial expression model.
A display of expressive facial behavior in video corresponds to
a temporal sequence of facial movement that we represent as
a sequence of temporal patterns (onset-apex-offset) of one or
more AUs. Since the presence of facial activity determines the
shown facial expression, its absence can be used to delimit the
transition between different expressions. The term “neutral fa-
cial expression” (“expressionless face”) is usually used to des-
ignate the absence of facial activity. Thus, to solve the segmen-
tation problem, we use a neutral-expressive-neutral sequential
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TABLE II
RULES FOR RECOGNIZING AU17, AU18, AU20, AND AU23–AU29 FROM A FACE-PROFILE IMAGE SEQUENCE. LEGEND: FOR NOTATIONAL SIMPLICITY,

(x < x ) STANDS FOR (x < x � "), (x = x ) FOR (jx � x j � "), (x > x ) FOR (x > x + "), t1 FOR THE FIRST FRAME, t FOR THE

CURRENT FRAME, AND t � 1 FOR THE PREVIOUS FRAME. THE VALUE ASSIGNED TO " IS 1 pixel. THRESHOLD T2 = 1/2P 8 P10 DISTINGUISHES

BETWEEN THE ACTIVATION OF AU26 AND THAT OF AU27. THE VALUE OF T2 HAS BEEN DECIDED BASED UPON EARLIER STUDIES ON

AUTOMATIC ANALYSIS OF FACIAL EXPRESSIONS FROM STATIC-FACE IMAGES [25]

model, where an “expressive” segment contains temporal pat-
terns (onset-apex-offset) of one or more AUs encoded by our
AU recognizer.

Since we assume that the input to our system consists of fa-
cial expression sequences that always start with a neutral fa-
cial expression, the neutral-expressive-neutral sequential facial
expression model suffices. The model will also be applicable
to the data contained in the Cohn–Kanade Face Database [54],
which is one of the most commonly used data-sets in the re-
search on automatic facial expression analysis. This is because

all facial expression sequences in the Cohn–Kanade Face Data-
base start with a neutral expression. However, in cases where no
constraints are posed on input facial expression sequences, the
proposed model will not suffice. Also, if one wants to segment
input face video in terms of specific facial displays such as the
emotional facial expressions, the proposed model will suffice
only if each of these specific states begins and ends with a neu-
tral facial expression. This is because the model has been devel-
oped to differentiate facial activity (presence of AUs) from inac-
tivity; it delimits the transition between different facial displays
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TABLE III
RULES FOR RECOGNIZING AU36, AU41, AU43, AU44, AND AU45 FROM A FACE-PROFILE IMAGE SEQUENCE. LEGEND: FOR NOTATIONAL SIMPLICITY,

(x < x ) STANDS FOR (x < x � "), (x = x ) FOR (jx � x j � "), (x > x ) FOR (x > x + "), t1 FOR THE 1ST FRAME, t FOR THE

CURRENT FRAME, AND t � 1 FOR THE PREVIOUS FRAME. THE VALUE ASSIGNED TO " IS 1 pixel. FOR T1 SEE TABLE I

TABLE IV
RULES FOR RESOLVING TEMPORAL CONFLICTS AND UNCERTAINTIES. EXCEPT FOR RULE 3, THE RULES ARE UTILIZED IN BOTH CASES: IF SINGLE FRAMES ARE

UNLABELED OR LABELED INCORRECTLY AND IF TEMPORAL SEGMENTS (A SEQUENCE OF AT LEAST FIVE CONSECUTIVE FRAMES) ARE UNLABELED OR LABELED

INCORRECTLY. RULE 3 IS UTILIZED FOR TEMPORAL SEGMENTS ONLY. RULE 4 HAS A MORE COMPLEX FORM FOR THE CASE OF TEMPORAL SEGMENTS. NAMELY,
ONLY IF A SEQUENCE ONSET-APEX-UNLABELED-APEX-OFFSET IS ENCOUNTERED, THE UNLABELED TEMPORAL SEGMENT WILL BE RE-LABELED AS “APEX”

based on the absence of facial activity rather than the difference
in facial activity. Thus, in the case of neutral sad smile
neutral facial display, the proposed model will handle the “sad”
and “smile” segments as a single expressive segment rather than
two distinct facial expressions. To achieve segmentation in spe-
cific facial displays and to handle cases where no constraints
are posed on input facial expression sequences, an extended
variable-neutral-expressive-variable sequential model, where a
“variable” segment contains either an expressive or neutral fa-
cial appearance, should be used. However, appropriate handling
of these “variable” segments and the associated problems in-
cluding the registration of the input video sequence and cancel-
lation of noise is not an easy task.

VI. EXPERIMENTAL EVALUATION

In spite of repeated calls for the need of a comprehensive,
readily accessible reference set of face images that could pro-

vide a basis for benchmarks for all different efforts in research
on machine analysis of facial expressions, no such database
has been yet created that is shared by all diverse facial-expres-
sion-research communities [9], [16], [29]. In general, only iso-
lated pieces of such a facial database exist. An example is the un-
published database of Ekman–Hager Facial Action Exemplars
[52]. It has been used by several research groups (e.g., [20],
[21], [24]) to train and test their methods for AU detection from
frontal-view facial expression sequences. The facial expression
image databases that have been made publicly available but are
still not used by all diverse facial-expression-research groups
are the JAFFE database [53] and the Cohn–Kanade AU-coded
face image database [54].

None of these existing databases contains images of faces in
profile view and none contains images of all possible single-AU
activations. Also, the metadata (labels) associated with each
database object usually do not identify the temporal segments
(onset, apex, offset) of AUs and emotional facial displays shown
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Fig. 7. Examples of MMI-Face-Database images. First row: static frontal-view images. Second row: apex frames of dual-view video sequences.

in the face video in question. Finally, these databases are not
easily accessible and searchable. Once permission to use one
of these databases has been issued, large, unstructured files of
material are sent. As an attempt to address these issues, we have
created a novel facial-expression-image database, which we call
the MMI Face Database [55].

The MMI Face Database has been developed to address all the
issues mentioned above. It contains more than 1500 samples of
both static images and image sequences of faces in frontal and
in profile view displaying various facial expressions of emotion,
single AU activation, and multiple AU activation. It is publicly
available and it has been developed as a web-based direct-ma-
nipulation application, allowing easy access and easy search of
the available images. All data samples stored in the database
have been acquired in the following way.

• Sensing: The static facial-expression images are all
true color (24-bit) images which, when digitized, mea-
sure 720 576 pixels. There are approximately 600
frontal-view images and 140 dual-view images (i.e.,
combining frontal and profile view of the face, recorded
using a mirror) of facial expressions. All video sequences
have been recorded at a rate of 24 frames/s using a
standard PAL camera. There are approximately 30 pro-
file-view and 750 dual-view facial-expression sequences.
The sequences are of variable length, lasting between 40
and 520 frames. Examples of recordings stored in the
MMI Face Database are illustrated in Figs. 4, 5, and 7.

• Subjects: Our database includes 52 different faces of stu-
dents and research staff members of both sexes (44% fe-
male), ranging in age from 19 to 62, having either a Eu-
ropean, Asian, or South American ethnic background.

• Samples: The subjects were asked to display expressions
that included either a single AU or a prototypic combi-
nation of AUs (such as in expressions of emotion). They
were instructed by an expert (a FACS coder) on how to
display the required facial expressions, and they were
asked to include a short neutral state at the beginning and
at the end of each expression. The subjects were asked
to display the required expressions while minimizing
out-of-plane head motions.

• Metadata: Two experts (FACS coders) were asked to de-
pict the AUs displayed in the images constituting the MMI
Face Database. In the case of facial-expression video se-

quences, they were also asked to depict the temporal seg-
ments of displayed AUs. When in doubt, decisions were
made by consensus.

In order to test the AU recognition method described in the
previous sections, we used 26 profile-view and 70 dual-view
video sequences of the MMI Face Database (19 different sub-
jects in total). In the case of dual-view video sequences, we
used only the profile view of the face as the actual data. The
metadata associated with these 96 image sequences represent
the ground-truth with which we compared the judgments gener-
ated by our method. According to the neutral-expressive-neutral
sequential facial expression model described in Section V, the
sequences were first segmented into the different facial expres-
sions pictured. Then, we initialized nine profile-contour facial
points (P1–P6 and P8–P10, Fig. 2) as the extremities of the pro-
file contour as proposed in [25]. Other six facial points (P7 and
P11–P15, Fig. 2) were manually initialized in the first frame
of each of 96 test sequences. (Note, however, that the method
proposed in [36] can be easily trained to localize points P7 and
P11–P15 automatically.) The accuracy of the method was mea-
sured with respect to the misclassification rate of each “expres-
sive” segment of the input sequence, not with respect to each
frame.

The results are summarized in Table V. The first column of
Table V lists all different AUs occurring in 96 test image se-
quences according to the ground-truth. The second column iden-
tifies the total number of occurrences of each AU in the test data
set according to the ground-truth. Correct means that the AUs
detected by our method were identical to AUs indicated by the
ground-truth. Partially correct denotes either that some, but not
all, of the AUs indicated by the ground-truth were not recog-
nized by our method (Missing AUs), or that some AUs that were
not indicated by the ground-truth were recognized in addition
to those that were (Extra AUs). Incorrect means that none of
the AUs indicated by the ground-truth were recognized by the
method. The overall recognition rate of the system has been cal-
culated with respect to both the number of input AUs indicated
by the ground-truth and the number of input samples (i.e., the
number of “expressive” segments in the input video sequence).
The average recognition rate of the system with respect to the
number of AUs has been calculated as the ratio between the
number of correctly recognized AUs and the number of input
AUs. The average recognition rate of the system with respect to
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TABLE V
METHOD’S AU RECOGNITION PERFORMANCE FOR 96 TEST FACE-PROFILE IMAGE SEQUENCES. LEGEND: THE AVERAGE RECOGNITION RATE OF THE SYSTEM

WITH RESPECT TO THE NUMBER OF INPUT AUS: CORRECT/NR. OF OCCURRENCES. THE AVERAGE RECOGNITION RATE OF THE SYSTEM WITH

RESPECT TO THE NUMBER OF INPUT SAMPLES (i.e., TO THE NUMBER OF “EXPRESSIVE” SEGMENTS OF INPUT VIDEO SEQUENCES): NR.
OF CORRECTLY RECOGNIZED INPUT SAMPLES/THE TOTAL OF 119 INPUT SAMPLES

the number of input samples has been calculated as the ratio be-
tween the number of correctly recognized input samples and the
total of 119 input samples. We achieved an average recognition
rate of 93.6% input AUs-wise and an average recognition rate
of 86.6% input samples-wise (Table V).

As far as misidentifications produced by our method are con-
cerned, most of them arose from confusion between similar
AUs (AU41 and AU43, AU23 and AU24) and from omission
of very fast blinks (AU45 having a duration of less than five
frames in either onset or offset). Both AU41 and AU43 cause
the upper eyelid to drop down and narrow the eye opening.
Only the height of the eye opening distinguishes AU41 from
AU43, causing misidentification of AU41 in the case where the
observed subject has long eyelashes or an eye opening that is
naturally narrow. Since both AU23 and AU24 tighten the lips
and reduce the height of the lips (vertical direction), only the
length of the lips (horizontal direction) distinguishes AU24 from
AU23, causing misidentification of any AU23 that is accompa-
nied by an unintentional, small, out-of-plane head motion that

makes the mouth appear shorter. Note that AU23 and AU24 are
also often confused by human FACS coders [15] and by other
automated AU analyzers (e.g., [22]). In addition, note that the
temporal pattern of feature motion in AU23 activation is very
similar to the one occurring in AU24 activation. Hence, the dis-
tinction between these two AUs may be more amenable to ap-
pearance-based analysis than to feature motion analysis.

In addition to the misidentifications listed above, the mistaken
identifications of AU26 merit an explanation as well. In two
cases, AU26 was present but the slightly parted teeth in a closed
mouth remained undetected by human observers. In these cases,
our method coded the input samples correctly, unlike the human
observers.

As can be seen from Fig. 8, the temporal segments of the
AUs indicated by the ground-truth varied slightly from those
detected by our method. In Fig. 8, the full line represents the
values calculated by the method for the relevant mid-level pa-
rameters over the number of frames defined at the horizontal
axis. The dotted line represents the temporal segments of the
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Fig. 8. Temporal segments of the AUs indicated by the ground truth (dashed line) and those detected by the method (dotted line). (a) AU2 activation in 163
frames of an “expressive” segment of AU1 + 2 + 5 video sequence (first two rows of Fig. 4). (b) AU12 activation in 92 frames of an “expressive” segment of
AU6+ 12+ 25 video sequence (the fourth row of Fig. 5). (c) AU27 activation in 85 frames of an “expressive” segment of AU27 video sequence (not illustrated).

AUs calculated by the method. The dashed line represents an
abstraction of the temporal segments of the AUs indicated by
the ground-truth. For most AUs the boundaries of temporal seg-
ments were detected either at the same moment or a little bit
later than prescribed by the ground-truth [Fig. 8(a)]. The mea-
sured delays take up to three frames on average, that is, up to
1/8 of a second. However, in the case of AUs whose activation
becomes apparent from the movement of the mouth corner (i.e.,
AU12, AU13, AU15, and AU20), the temporal segments were
almost always detected later than indicated by the ground-truth.
The measured delays have an average duration of three to six
frames, that is, up to 1/4 of a second [Fig. 8(b)]. The reason for
these delays is the temporal rules used for recognition of AU
activation. It seems that human observers detect activation of
the AUs in question not only based on the presence of a certain
movement (e.g., an upward movement of the mouth corner in the
case of AU12) but also based on the appearance of the facial re-
gion around the mouth corner. Since appearance-based analysis
is not performed by the system, only the movement of the mouth
corner, which is detected usually later than the actual occurrence
of the movement (due to thresholding), indicates the presence of
the AUs in question, causing a delayed detection of these AUs.
In addition, it is interesting to note that in cases of spontaneous
smiles, the human observers indicated the presence of multiple
apexes of AU12 but, in contrast to the analysis performed by
our system, did not indicate the presence of multiple full tem-
poral patterns (onset-apex-offset) of AU12 [Fig. 8(b)]. However,
whether this difference is just a matter of a human coder blindly
applying an accepted coding scheme according to which such a
“dampened” smile is represented as a multiple-apex-AU12 [28]
or a matter of a genuine insensitivity of the human eye to subtle
offsets of AU12 occurring in between the apexes of AU12 re-
mains an interesting research question.

Finally, upon a close inspection of the temporal rule used to
recognize AU27 activation (rule 20, Table II), one may con-
clude that the onset of AU27 will always be detected later than
indicated by the ground-truth. Namely, since both AU26 and
AU27 pull down the lower jaw, only the extent of that pull dis-
tinguishes AU27 from AU26, causing misidentifications in the
onset of AU27, that is, it causes a delayed detection of the onset
of AU27. This is consistent with experimental data that show
correlation between the extent of facial motion involved in a
facial expression and the delay in the recognition of that ex-

pression [8], [56]: the larger the motion (and, in turn, the defor-
mation in facial expression), the longer the response time. To
handle this, any “onset AU26” segment that has been detected
before the “onset AU27” segment is re-labeled as “onset AU27”.
In turn, the onset of AU27 is detected without delays [Fig. 8(c)].

VII. CONCLUSIONS

Automating the analysis of facial signals, especially rapid fa-
cial signals (i.e., AUs), is important to advance studies on human
emotion and nonverbal communication, to design multimodal
human-machine interfaces, and to boost numerous applications
in fields as diverse as security, medicine, and education. In this
paper, we presented a novel method for AU detection based
upon changes in the position of the facial points tracked in a
video of a near profile view of the face. The significance of this
contribution are the following.

• The presented approach to automatic AU recognition ex-
tends the state of the art in automatic AU detection from
face image sequences in several ways, including the facial
view (profile), the temporal segments of AUs (onset, apex,
offset), the number (27 in total), and the difference in AUs
(e.g., AU29, AU36) handled. To wit, the automated sys-
tems for AU detection from face video that have been re-
ported so far do not deal with the profile view of the face,
cannot handle temporal dynamics of AUs, cannot detect
out-of-plane movements such as thrusting the jaw forward
(AU29), and, at best, can detect 16 to 18 AUs (from in total
44 AUs).

• This paper provides a basic understanding of how to
achieve automatic detection of AUs and their temporal
segments in a face-profile image sequence. Further re-
search on facial expression symmetry, spontaneous vs.
posed facial expressions, and facial expression recogni-
tion from multiple facial views can be based upon it.

Based upon the validation study presented in Section VI, it
can be concluded that the proposed method exhibits an accept-
able level of expertise. The achieved results are similar to those
reported for other automated FACS coders of face video. Com-
pared to the AFA system [24], our method achieves an average
recognition rate of 86.6% for encoding of 27 AU codes and
their combinations in 119 test samples, while the AFA system
achieves an average recognition rate of 87.9% for encoding of
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16 AUs and their combinations in 113 test samples. In compar-
ison to the system proposed recently by Bartlett et al. [22], our
method achieves an average recognition rate of 93.6% AU-wise
for encoding of 27 AUs and their combinations, while their
system achieves an average recognition rate of 94.5% AU-wise
for encoding of 18 AUs and their combinations.

Except the profile view, the number of AUs, the difference in
AUs, and the temporal dynamics handled, our method has also
improved other aspects of automated AU detection compared to
previously reported systems. In contrast to earlier approaches to
automated AU detection, our system facilitates automatic seg-
mentation of input image sequences into expressive and expres-
sionless facial behavior pictured. Also, the performance of the
proposed method is invariant to occlusions like glasses and fa-
cial hair as long as these do not entirely occlude facial fiducial
points (e.g., P10 in the case of a long beard). Finally, due to the
usage of the color-based observation model (Section II-B), the
method performs well independently of changes in the illumi-
nation intensity.

However, the method cannot recognize the full range of fa-
cial behavior (i.e., all 44 AUs defined in FACS); it detects 27
AUs occurring alone or in combination in a near profile-view
face image sequence. Although it has been reported that feature-
based methods are usually outperformed by holistic template-
based methods using Gabor wavelets, Independent Component
Analysis, and Eigenfaces [20], [53], the comparison given above
indicates that our feature-based method performs just as well as
the best template-based method proposed up to date (i.e. [22]).
We believe, however, that further research efforts toward com-
bining both approaches are necessary if the full range of human
facial behavior is to be coded in an automatic way.

If we consider the state of the art in face detection and facial
point localization and tracking, noisy and partial data should
be expected. As remarked by Pantic et al. [9], [19], a facial
expression analyzer should be able to deal with these imper-
fect data and to generate its conclusion so that the certainty
associated with it varies with the certainty of face and facial
point localization and tracking data. To deal with inaccuracies
in facial point tracking, our method employs a memory-based
process that takes into account the dynamics of facial expres-
sions (Table IV). However, our method does not calculate the
output data certainty by propagating the input data certainty
(i.e., the certainty of facial point tracking). Future work on this
issue aims at investigating on the use of measures that can ex-
press the confidence to facial point tracking and that can facili-
tate both more robust AU recognition and the assessment of the
certainty of the performed AU recognition.

Finally, our method assumes that the input data are near pro-
file-view face image sequences showing facial displays that al-
ways begin with a neutral state. In reality, such an assumption
cannot be made; variations in the viewing angle should be ex-
pected. Also, human facial behavior is more complex and tran-
sitions from a facial display to another do not have to involve
intermediate neutral states. As a consequence, the proposed fa-
cial expression analyzer cannot deal with spontaneously oc-
curring facial behavior. Yet, answering the question of how to
achieve parsing the stream of facial and head movements not
under volitional control is essential for the realization of multi-
modal human-machine interfaces and for advancing studies on

human emotion and nonverbal communication [57]. This forms
the main focus of our current and future research efforts.
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