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Abstract. The human face is used to identify other people, to regulate the con-
versation by gazing or nodding, to interpret what has been said by lip reading, 
and to communicate and understand social signals, including affective states 
and intentions, on the basis of the shown facial expression. Machine under-
standing of human facial signals could revolutionize user-adaptive social inter-
faces, the integral part of ambient intelligence technologies. Nonetheless, 
development of a face-based ambient interface that detects and interprets hu-
man facial signals is rather difficult. This article summarizes our efforts in 
achieving this goal, enumerates the scientific and engineering issues that arise 
in meeting this challenge and outlines recommendations for accomplishing this 
objective. 

1   Introduction 

Films portraying the future often contain visions of human environments of the future. 
Fitted out with arrays of intelligent, yet invisible devices, homes, transportation means and 
working spaces of the future can anticipate every need of their inhabitants (Fig. 1). It is 
this vision of the future that coined the term “ambient intelligence”. According to the 
Ambient Intelligence (AmI) paradigm, humans will be surrounded by intelligent interfaces 
that are supported by computing and networking technology embedded in all kinds of 
objects in the environment and that are sensitive and responsive to the presence of differ-
ent individuals in a seamless and unobtrusive way [1,40,79]. Thus, AmI involves the con-
vergence of ubiquitous computing, ubiquitous communication, and social user interfaces 
[64,71] and it assumes a shift in computing – from desktop computers to a multiplicity of 
smart computing devices diffused into our environment. In turn, it assumes that computing 
will move to the background, that it will weave itself into the fabric of everyday living 
spaces and disappear from the foreground [45,74,84], projecting the human user into it 
[65], and leaving the stage to intuitive social user interfaces. Nonetheless, as computing 
devices disappear from the scene, become invisible, weaved into our environment, a new 
set of issues concerning the interaction between ambient intelligence technology and hu-
mans is created [74,88]. How can we design the interaction of humans with devices that 
are invisible? How can we design implicit interaction for sensor-based interfaces? What 
about users? What does a home dweller, for example, actually want? What are the relevant 
parameters that can be used by the systems to support us in our activities? If the context is 
key, how do we arrive at context-aware systems? 
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Fig. 1. Human environments of the future envisioned in motion pictures: (a) speech-based 
interactive car (Blade Runner, 1982), (b) speech- and iris-identification driven car (Minority 
Report, 2002), (c) hand-gesture-based interface (Minority Report, 2002), (d) multimedia diag-
nostic chart and an entirely AmI-based environment (The Island, 2005) 

One way of tackling these problems is to move from computer-centered designs 
and toward human-centered designs for human computer interaction (HCI). The for-
mer usually involve conventional interface devices like keyboards, mice, and visual 
displays, and assume that the human will be explicit, unambiguous and fully attentive 
while controlling information and command flow. This kind of interfacing and 
categorical computing works well for context-independent tasks like making plane 
reservations and buying and selling stocks. However, it is utterly inappropriate for 
interacting with each of the (possibly hundreds) computer systems diffused through-
out future AmI environments and aimed at improving the quality of life by anticipat-
ing the users’ needs. The key to ambient interfaces is the ease of use - in this case, the 
ability to unobtrusively sense the user’s behavioral cues and to adapt automatically to 
the particular user behavioral patterns and the context in which the user acts. Thus, 
instead of focusing on the computer portion of the HCI context, designs for ambient 
interfaces should focus on the human portion of the HCI context. They should go 
beyond the traditional keyboard and mouse to include natural, human-like interactive 
functions including understanding and emulating social signaling. The design of these 
functions will require explorations of what is communicated (linguistic message, non-
linguistic conversational signal, emotion, person identification), how the information 
is communicated (the person’s facial expression, head movement, tone of voice, hand 
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and body gesture), why, that is, in which context the information is passed on (where 
the user is, what his current task is, how he/she feels), and which (re)action should be 
taken to satisfy user needs and requirements.  

As a first step towards the design and development of such multimodal context-
sensitive ambient interfaces, we investigated facial expressions as a potential modality 
for achieving a more natural, intuitive, and efficient human interaction with comput-
ing technology. 

1.1   The Human Face 

The human face is the site for major sensory inputs and major communicative out-
puts. It houses the majority of our sensory apparatus: eyes, ears, mouth and nose, 
allowing the bearer to see, hear, taste and smell. It houses the speech production appa-
ratus and it is used to identify other members of the species, to regulate conversation 
by gazing or nodding, and to interpret what has been said by lip reading. Moreover, 
the human face is an accessible “window” into the mechanisms that govern an indi-
vidual’s emotional and social life. It is our direct and naturally preeminent means of 
communicating and understanding somebody’s affective state and intentions on the 
basis of the shown facial expression [38]. Personality, attractiveness, age and gender 
can also be seen from someone’s face. Thus, the human face is a multi-signal input-
output communicative system capable of tremendous flexibility and specificity [24]. 
In general, it conveys information via four kinds of signals. 

1. Static facial signals represent relatively permanent features of the face, such as 
the bony structure, the soft tissue, and the overall proportions of the face. 
These signals contribute to an individual’s appearance and are usually ex-
ploited for person identification. 

2. Slow facial signals represent changes in the appearance of the face that occur 
gradually over time, such as the development of permanent wrinkles and 
changes in skin texture. These signals can be used for assessing the age of an 
individual. Note that these signals might diminish the distinctness of the facial 
features and impede recognition of the rapid facial signals. 

3. Artificial signals are exogenous features of the face, such as glasses and cos-
metics. These signals provide additional information that can be used for gen-
der recognition. Note that these signals might obscure facial features or, con-
versely, might enhance them. 

4. Rapid facial signals represent temporal changes in neuromuscular activity that 
may lead to visually detectable changes in facial appearance, including blush-
ing and tears. These (atomic facial) signals underlie facial expressions.

All four classes of signals contribute to facial recognition, i.e., person identification. 
They all contribute to gender recognition, attractiveness assessment, and personality 
prediction as well. In Aristotle’s time, a theory has been proposed about mutual de-
pendency between static facial signals (physiognomy) and personality: “soft hair 
reveal a coward, strong chin a stubborn person, and a smile a happy person”1. Today, 

1 Although this theory is often attributed to Aristotle [4], this is almost certainly not his work 
(see [4], p. 83). 
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Fig. 2. Type of messages communicated by rapid facial signals. First row: affective states 
(anger, surprise, disbelief and sadness). Second row: emblems (wink and thumbs up), illustra-
tors and regulators (head tilt, jaw drop, look exchange, smile), manipulators (yawn).

few psychologists share the belief about the meaning of soft hair and strong chin, but 
many believe that rapid facial signals (facial expressions) communicate emotions 
[2,24,38] and personality traits [2]. In fact, among the type of messages communi-
cated by rapid facial signals are the following [23,67]:  

1. affective states and moods, e.g., joy, fear, disbelief, interest, dislike, frustration, 
2. emblems, i.e., culture-specific communicators like wink, 
3. manipulators, i.e., self-manipulative actions like lip biting and yawns, 
4. illustrators, i.e., actions accompanying speech such as eyebrow flashes, 
5. regulators, i.e., conversational mediators such as the exchange of a look, head 

nods and smiles. 

Given the significant role of the face in our emotional and social lives, it is not sur-
prising that the potential benefits of efforts to automate the analysis of facial signals, 
in particular rapid facial signals, are varied and numerous, especially when it comes to 
computer science and technologies brought to bear on these issues. As far as natural 
interfaces between humans and computers (PCs / robots / machines) are concerned, 
facial expressions provide a way to communicate basic information about needs and 
demands to the machine. In fact, automatic analysis of rapid facial signals seems to 
have a natural place in various vision sub-systems, including automated tools for gaze 
and focus of attention tracking, lip reading, bimodal speech processing, face / visual 
speech synthesis, and face-based command issuing. Where the user is looking (i.e., 
gaze tracking) can be effectively used to free computer users from the classic key-
board and mouse. Also, certain facial signals (e.g., a wink) can be associated with 
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certain commands (e.g., a mouse click) offering an alternative to traditional keyboard 
and mouse commands. The human capability to “hear” in noisy environments by 
means of lip reading is the basis for bimodal (audiovisual) speech processing that can 
lead to the realization of robust speech-driven interfaces. To make a believable “talk-
ing head” (avatar) representing a real person, tracking the person’s facial signals and 
making the avatar mimic those using synthesized speech and facial expressions is 
compulsory. Combining facial expression spotting with facial expression interpreta-
tion in terms of labels like “did not understand”, “disagree”, “inattentive”, and 
“approves” could be employed as a tool for monitoring human reactions during vid-
eoconferences and web-based lectures. Attendees’ facial expressions will inform the 
speaker (teacher) of the need to adjust the (instructional) presentation.  

The focus of the relatively recently-initiated research area of affective computing
lies on sensing, detecting and interpreting human affective states and devising appro-
priate means for handling this affective information in order to enhance current HCI 
designs [61]. The tacit assumption is that in many situations human-machine interac-
tion could be improved by the introduction of machines that can adapt to their users 
(think about computer-based advisors, virtual information desks, on-board computers 
and navigation systems, pacemakers, etc.). The information about when the existing 
processing should be adapted, the importance of such an adaptation, and how the 
processing/reasoning should be adapted, involves information about how the user 
feels (e.g. confused, irritated, frustrated, interested). As facial expressions are our 
direct, naturally preeminent means of communicating emotions, machine analysis of 
facial expressions forms an indispensable part of affective HCI designs [52].  

Automatic assessment of boredom, fatigue, and stress, will be highly valuable in 
situations where firm attention to a crucial, but perhaps tedious task is essential, such 
as aircraft and air traffic control, space flight and nuclear plant surveillance, or simply 
driving a ground vehicle like a truck, train, or car. If these negative affective states 
could be detected in a timely and unobtrusive manner, appropriate alerts could be 
provided, preventing many accidents from happening. Automated detectors of fatigue, 
depression and anxiety could form another step toward personal wellness technolo-
gies [20], which scale with the needs of an aging population, as the current medical 
practices that rely heavily on expensive and overburdened doctors, nurses, and physi-
cians will not be possible any longer. An advantage of machine monitoring is that 
human observers need not be present to perform privacy-invading monitoring; the 
automated tool could provide advice, feedback and prompts for better performance 
based on the sensed user’s facial expressive behavior.  

Monitoring and interpretation of facial signals are also important to lawyers, po-
lice, security and intelligence agents, who are often interested in issues concerning 
deception and attitude. Automated facial reaction monitoring could form a valuable 
tool in these situations, as now only informal interpretations are used. Systems that 
can recognize friendly faces or, more important, recognize unfriendly or aggressive 
faces, determine an unwanted intrusion or hooligan behavior, and inform the appro-
priate authorities, represent another application of facial measurement technology. 
Systems that adjust music and light levels according to the number, activity, and 
mood of the users form also an AmI application of this technology.  
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1.2   Why Face for Ambient Interface? 

One can easily formulate the answer to this question by considering the breadth of the 
applied research on AmI and perceptual HCI that uses measures of the face and facial 
behavior. The preceding section has separately enumerated several computer science 
research areas and multiple applications in healthcare, industrial, commercial, and 
professional sectors that would reap substantial benefits from facial measurement 
technology. This section emphasizes these benefits in the light of the design guide-
lines defined for ambient interfaces (Table 1). 

Table 1. The fitness of facial measurement technology for the design of ambient interfaces 
based upon the design guidelines defined for such interfaces [30,63] 

Effective One basic goal for ambient interfaces is continuous provision of 
background information without disrupting user’s foreground tasks. 
Monitoring the user’s attentiveness to the current foreground task 
based upon his/her facial behavior could help realizing this goal. 

Efficient Ambient interfaces should support users in carrying out their tasks 
efficiently. Examples of how facial measurement technology can 
help achieving this goal include face-based user identification that 
relieves users from typing user names and passwords, adapting the 
amount of the presented information to the level of user’s fatigue, 
and provision of appropriate assistance if confusion can be read 
from the user’s face.  

easy to learn 
& remember 

It is particularly challenging to achieve ambient interfaces that are 
easy for the users to learn and to remember, since novel metaphors 
are used. Nevertheless, the face is the human natural means used to 
regulate the interaction by gazing, nodding, smiling, frowning, etc. 
Face-based interfaces would probably be the easiest for the users to 
“learn and remember”.  

context-
aware 

One basic goal for ambient interfaces is the achievement of the 
systems’ awareness of the context in which the users act [59]: who 
they are, what their current task is, where they are, how they feel. 
Face recognition, gaze tracking, and facial affect analysis offer the 
basis for the design of personalized, affective, task-dependent, natu-
ral feeling interfaces. 

Control  
adequate  

It is a particular challenge to realize unambiguous mapping between 
controls and their effects in the case of ambient interfaces. Note, 
however, that there should be little (if any) ambiguity about the 
effect of input facial signals like identity, gaze focus, smiles and 
frowns, especially when it comes to typically constrained AmI sce-
narios involving a certain individual’s home, car, or work space. 

Domain  
adequate 

Adequacy of the ambient interfaces for the target domain including 
the users, their tasks and the environment should be ensured [73]. 
Although facial measurement technology cannot ensure realization 
of this goal on its own, it has the potential to accommodate a broad 
range of users through customized face-based interaction controls 
for support of different users with different abilities and needs.  
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participatory 
design 

In the design of ambient interfaces, it is important to stimulate the 
users to contribute to the design at early stages, so that products 
tailored to their preferences, needs and habits can be ensured. This 
is inherent in face-based AmI technology, which relies on machine 
learning and sees the human user as the main actor. Improving the 
quality of life by anticipating one’s needs via rigid, impersonalized 
systems is unrealistic; the necessary mapping of sensed facial sig-
nals (there are more than 7000 of these [69]) onto a set of controls 
and preemptive behaviors is by far too complex to be precompiled 
and hardwired into the system. Systems should learn their expertise 
by having the user instruct them (explicitly / implicitly) on the de-
sired (context-sensitive) interpretations of sensed facial signals [52]. 

In addition, ambient interfaces should have good utility (e.g. they are not suitable 
for complex information processing) and be transparent (i.e. users should be aware, 
at any time, of what is expected from them, whether the input was received, 
whether the actions are or will be performed, etc.). Facial measurement technology 
represents a novel interface modality; it has no direct answers to these basic design 
questions. 

While all agree that facial measurement technology has a natural place in AmI 
technologies, especially in human-centered natural-feeling ambient interfaces, one 
should be aware of the likelihood that face-based ambient interfaces still lie in the 
relatively distant future. Although humans detect and analyze faces and facial expres-
sions in a scene with little or no effort, development of an automated system that 
accomplishes this task is rather difficult. There are several related problems [52]. The 
first is to find faces in the scene independent of clutter, occlusions, and variations in 
head pose and lighting conditions. Then, facial features such as facial characteristic 
points (e.g. the mouth corners) or parameters of a holistic facial model (e.g. parame-
ters of a fitted Active Appearance Model) should be extracted from the regions of the 
scene that contain faces. The system should perform this accurately, in a fully auto-
matic manner and preferably in real time. Eventually, the extracted facial information 
should be interpreted in terms of facial signals (identity, gaze direction, winks, blinks, 
smiles, affective states, moods) in a context-dependent (personalized, task- and appli-
cation-dependent) manner. For exhaustive surveys of the entire problem domain, the 
readers are referred to: Samal and Iyengar [68] for an overview of early works, Tian 
et al. [78] and Pantic [47] for surveys of techniques for detecting facial muscle actions 
(AUs), and Pantic and Rothkrantz [51,52] for surveys of current efforts. These 
surveys indicate that although the fields of computer vision and facial information 
processing witnessed rather significant advances in the past few years, most of the 
aforementioned problems still represent significant challenges facing the researchers 
in these and the related fields. This paper summarizes our efforts in solving some of 
these problems, enumerates the scientific and engineering issues that arise in meeting 
these challenges and outlines recommendations for accomplishing the new facial 
measurement technology. 
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2   Face Detection 

The first step in facial information processing is face detection, i.e., identification of 
all regions in the scene that contain a human face. The problem of finding faces
should be solved regardless of clutter, occlusions, and variations in head pose and 
lighting conditions. The presence of non-rigid movements due to facial expression 
and a high degree of variability in facial size, color and texture make this problem 
even more difficult. Numerous techniques have been developed for face detection in 
still images [39,87]. However, most of them can detect only upright faces in frontal or 
near-frontal view. The efforts that had the greatest impact on the community (as 
measured by, e.g., citations) include the following.  

Rowley et al. [66] used a multi-layer neural network to learn the face and non-face 
patterns from the intensities and spatial relationships of pixels in face and non-face 
images. Sung and Poggio [75] have proposed a similar method. They used a neural 
network to find a discriminant function to classify face and non-face patterns using 
distance measures. Moghaddam and Pentland [44] developed a probabilistic visual 
learning method based on density estimation in a high-dimensional space using an 
eigenspace decomposition. The method has been applied to face localization, coding 
and recognition. Pentland et al. [60] developed a real-time, view-based and modular 
(by means of incorporating salient features, such as the eyes and the mouth) eigen-
space description technique for face recognition in variable pose.  

Among all the face detection methods that have been employed by automatic facial 
expression analyzers, the most significant work is arguably that of Viola and Jones 
[82]. They developed a real-time face detector consisting of a cascade of classifiers 
trained by AdaBoost. Each classifier employs integral image filters, which remind of 
Haar Basis functions and can be computed very fast at any location and scale 
(Fig. 4(a)). This is essential to the speed of the detector. For each stage in the cascade, 
a subset of features is chosen using a feature selection procedure based on AdaBoost. 

There are several adapted versions of the Viola-Jones face detector and the one that 
we employ in our systems uses GentleBoost instead of AdaBoost. It also refines the 
originally proposed feature selection by finding the best performing single-feature 
classifier from a new set of filters generated by shifting and scaling the chosen filter 
by two pixels in each direction, as well as by finding composite filters made by re-
flecting each shifted and scaled feature horizontally about the center and superimpos-
ing it on the original [27]. Finally the employed version of the face detector uses a 
smart training procedure in which, after each single feature, the system can decide 
whether to test another feature or to make a decision. By this, the system retains in-
formation about the continuous outputs of each feature detector rather than converting 
to binary decisions at each stage of the cascade. The employed face detector was 
trained on 5000 faces and millions of non-face patches from about 8000 images col-
lected from the web by Compaq Research Laboratories [27]. On the test set of 422 
images from the Cohn-Kanade facial expression database [37], the most commonly 
used database of face images in the research on facial expression analysis, the detec-
tion rate was 100% [83]. 
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3   Facial Feature Extraction 

After the presence of a face has been detected in the observed scene, the next step is 
to extract the information about the displayed facial signals. The problem of facial 
feature extraction from regions in the scene that contain a human face may be divided 
into at least three dimensions [51]:  

1. Is temporal information used?  
2. Are the features holistic (spanning the whole face) or analytic (spanning sub-

parts of the face)?  
3. Are the features view- or volume based (2D/3D)? 

Given this glossary and if the goal is face recognition, i.e., identifying people by 
looking at their faces, most of the proposed approaches adopt 2D holistic static facial 
features. On the other hand, many approaches to automatic facial expression analysis 
adopt 2D analytic spatio-temporal facial features [52]. This finding is also consistent 
with findings from the psychological research suggesting that the brain processes faces 
holistically rather than locally whilst it processes facial expressions locally [9,13]. What 
is, however, not entirely clear yet is whether information on facial expression is passed 
to the identification process to aid recognition of individuals or not. Some experimental 
data suggest this [42]. Although relevant for the discussion of facial measurement tools 
and face-based ambient interfaces, these issues are not elaborated further in this paper, 
as the focus of our past research was mainly automatic facial expression analysis. For 
exhaustive surveys of efforts aimed at face recognition, the readers are referred to: Zhao 
et al. [90], Bowyer [12], and Li and Jain [39].  

Most of the existing facial expression analyzers are directed toward 2D spatio-
temporal facial feature extraction, including the methods proposed by our research 
team. The usually extracted facial features are either geometric features, such as the 
shapes of the facial components (eyes, mouth, etc.) and the locations of facial fiducial 
points (corners of the eyes, mouth, etc.) or appearance features representing the tex-
ture of the facial skin, including wrinkles, bulges, and furrows [7,8]. Typical exam-
ples of geometric-feature-based methods are those of Gokturk et al. [29], who used 19 
point face mesh, and of Pantic et al. [49,53,81], who used a set of facial characteristic 
points like the ones illustrated in Fig. 10. Typical examples of hybrid, geometric- and 
appearance-feature-based methods are those of Tian et al. [77], who used shape-based 
models of eyes, eyebrows and mouth and transient features like crows-feet wrinkles 
and nasolabial furrow, and of Zhang and Ji [89], who used 26 facial points around the 
eyes, eyebrows, and mouth and the same transient features as Tian et al [77]. Typical 
examples of appearance-feature-based methods are those of Bartlett et al. [8,21] and 
Guo and Dyer [32], who used Gabor wavelets, of Anderson and McOwen [3], who 
used a holistic, monochrome, spatial-ratio face template, and of Valstar et al. [80], 
who used temporal templates (see Section 3.2).  

It has been reported that methods based on geometric features are usually outper-
formed by those based on appearance features using, e.g., Gabor wavelets or eigen-
faces [7]. Recent studies have shown that this claim does not always hold [49,81]. 
Moreover, it seems that using both geometric and appearance features might be the 
best choice in the case of certain facial expressions [49]. 



 Face for Ambient Interface 41 

Fig. 3. Examples of 2D and 3D face models. First row: Results of Tao-Huang 3D-wireframe 
face-model fitting algorithm for happy, occluded and angry face image frames [76]. Second 
row: Results of the CMU 2D-AAM fitting algorithm for happy and occluded face image frames 
and results of fitting the CMU 2D+3D AAM [5,85].  

Few approaches to automatic facial expression analysis based on 3D face model-
ing have been proposed recently (Fig. 3). Gokturk et al. [29] proposed a method for 
recognition of facial signals like brow flashes and smiles based upon 3D deforma-
tions of the face tracked on stereo image streams using a 19-point face mesh and 
standard optical flow techniques. The work of Cohen et al. [14] focuses on the de-
sign of Bayesian network classifiers for emotion recognition from face video based 
on facial features tracked by so-called Piecewise Bezier Volume Deformation 
tracker [76]. This tracker employs an explicit 3D wireframe model consisting of 16 
surface patches embedded in Bezier volumes. Cohn et al. [15] focus on automatic 
analysis of brow actions and head movements from face video and use a cylindrical 
head model to estimate the 6 degrees of freedom of head motion. Baker and his 
colleagues developed several algorithms for fitting 2D and combined 2D+3D Ac-
tive Appearance Models to images of faces [85], which can be used further for vari-
ous studies concerning human facial behavior [5]. 3D face modeling is highly rele-
vant to the present goals due to its potential to produce view-independent facial 
signal recognition systems. The main shortcomings of the current methods concern 
the need of a large amount of manually annotated training data and an almost al-
ways required manual selection of landmark facial points in the first frame of the 
video-based input on which the face model will be warped to fit the face. Automatic 
facial feature point detection of the kind proposed in Section 3.1 offers a solution to 
these problems. 
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Fig. 4. Outline of our Facial Point Detection method [83]. (a) Face detection using Haar-
feature-based GentleBoost classifier [27]; (b) ROI extraction, (c) feature extraction based on 
Gabor filtering, (d) feature selection and classification using GentleBoost classifier, (e) output 
of the system compared to the face drawing with facial landmark points we aim to detect. 

3.1   Geometric Feature Extraction – Facial Feature Point Detection 

The method that we use for fully automatic detection of 20 facial feature points, illus-
trated in Fig. 4(e) and Fig 10, uses Gabor-feature-based boosted classifiers [83]. The 
method adopts the fast and robust face detection algorithm explained in Section 2, 
which represents an adapted version of the original Viola-Jones detector [27,82].  

The detected face region is then divided in 20 regions of interest (ROIs), each one 
corresponding to one facial point to be detected. The irises and the medial point of the 
mouth are detected first. The detection is done through a combination of heuristic 
techniques based on the analysis of the vertical and horizontal histograms of the upper 
and the lower half of the face-region image achieves this (Fig. 5). Subsequently, we 
use the detected positions of the irises and the medial point of the mouth to localize 
20 ROIs. An example of ROIs extracted from the face region for points B, I, and J, is 
depicted in Fig. 4(b). 

The employed facial feature point detection method uses individual feature patch 
templates to detect points in the relevant ROI. These feature models are GentleBoost 
templates built from both gray level intensities and Gabor wavelet features. Recent 
work has shown that a Gabor approach for local feature extraction outperformed Prin-
cipal Component Analysis (PCA), the Fisher’s Linear Discriminant (FLD) and the 
Local Feature Analysis [21]. This finding is also consistent with our experimental 
data that show the vast majority of features (over 98%) that were selected by the 
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utilized GentleBoost classifier [28] were from the Gabor filter components rather than 
from the gray level intensities. The essence of the success of Gabor filters is that they 
remove most of the variability in image due to variation in lighting and contrast, while 
being robust against small shifts and deformation [35].  

Fig. 5. (a) Dividing the face horizontally in half and dividing the upper face region vertically in 
half. (b) Finding the mouth region within the face region by means of Eye Distance (ED). (c) 
Positive and negative examples for training point B. The big white square on the inner corner of 
the eye represents 9 positive examples. Around that square are 8 negative examples randomly 
chosen near the positive examples. Another 8 negative examples are randomly chosen from the 
rest of the region. 

The feature vector for each facial point is extracted from the 13×13 pixels image 
patch centered on that point. This feature vector is used to learn the pertinent point’s 
patch template and, in the testing stage, to predict whether the current point represents 
a certain facial point or not. This 13×13 pixels image patch is extracted from the gray 
scale image of the ROI and from 48 representations of the ROI obtained by filtering 
the ROI with a bank of 48 Gabor filters at 8 orientations and 6 spatial frequencies 
(2:12 pixels/cycle at ½ octave steps). Thus, 169×49=8281 features are used to repre-
sent one point. Each feature contains the following information: (i) the position of the 
pixel inside the 13×13 pixels image patch, (ii) whether the pixel originates from a 
grayscale or from a Gabor filtered representation of the ROI, and (iii) if appropriate, 
which Gabor filter has been used (Fig. 4(c)). 

In the training phase, GentleBoost feature templates are learned using a representa-
tive set of positive and negative examples. As positive examples for a facial point, we 
used 9 image patches centered on the true point and on 8 positions surrounding the 
true (manually labeled) facial point in a training image. For each facial point we used 
two sets of negative examples. The first set contains 8 image patches randomly dis-
placed 2-pixels distance from any of the positive examples. The second set contains 8 
image patches randomly displaced in the relevant ROI (Fig. 5). 

In the testing phase, each ROI is filtered first by the same set of Gabor filters used 
in the training phase (in total, 48 Gabor filters are used). Then, for a certain facial 
point, an input 13×13 pixels window (sliding window) is slid pixel by pixel across 49 
representations of the relevant ROI (grayscale plus 48 Gabor filter representations). 
For each position of the sliding window, the GentleBoost classification method [28]  
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Fig. 6. Typical results of our Facial Feature Point Detector [83]. (a)-(c) Examples of accurate 
detection. (d)-(j) Examples of inaccurate detection of point D1 (d), point E (e), point B (f), 
points F and H (g), point D and K (i), and point A1 (j). For point notation see Fig. 12. 

outputs a response depicting the similarity between the 49-dimensional representation 
of the sliding window and the learned feature point model. After scanning the entire 
ROI, the position with the highest response reveals the feature point in question. 

We trained and tested the facial feature detection method on the Cohn-Kanade fa-
cial expression database [37]. We used only the first frames of the 300 Cohn-Kanade 
database samples. No further registration of the images was performed. The 300 im-
ages of the data set were divided into 3 subsets containing 100 images each. The 
proposed method has been trained and tested using a leave-one-subset-out cross vali-
dation. To evaluate the performance of the method, each of the automatically located 
facial points was compared to the true (manually annotated) point. As explained 
above, we used as positive examples the true location of the point and 8 positions 
surrounding the true facial point in a training image. Hence, automatically detected 
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Fig. 7. Original maximal activation (apex) frames and the related Motion History Images 
(MHI). Left: AU1+AU2+AU5+AU27 (from the Cohn-Kanade facial expression database). 
Right: AU9+AU10+AU25 (from the MMI facial expression database). 

points displaced 1-pixel distance from relevant true facial points are regarded as 
SUCCESS. Additionally, we define errors with respect to the inter-ocular distance 
measured in the test image (80 to 120 pixels in the case of image samples from the 
Cohn-Kanade database). An automatically detected point displaced in any direction, 
horizontal or vertical, less than 5% of inter-ocular distance (i.e., 4 to 6 pixels in the 
case of image samples from the Cohn-Kanade database) from the true facial point is 
regarded as SUCCESS. This is in contrast to the current related approaches developed 
elsewhere (e.g. [17]), which are usually regarded as SUCCESS if the bias of auto-
matic labeling result to the manual labeling result is less than 30% of the true (anno-
tated manually) inter-ocular distance.  

Overall, we achieved an average recognition rate of 93% for 20 facial feature 
points using the above described evaluation scheme. Typical results are shown in 
Fig. 6. Virtually all misclassifications (most often encountered with points F1 and M) 
can be attributed to the lack of consistent rules for manual annotation of the points. 
For details about this method, the readers are referred to Vukadinovic and Pantic [83]. 

3.2   Appearance Feature Extraction – Temporal Templates 

Temporal templates are 2D images constructed from image sequences, which show 
motion history, that is, where and when motion in the input image sequence has 
occurred [11]. More specifically, the value of a pixel in a Motion History Image 
(MHI) decays over time, so that a high intensity pixel denotes recent motion, a low 
intensity pixel denotes a motion that occurred earlier in time, and intensity zero de-
notes no motion at all at that specific location (Fig. 7). A drawback innate to temporal 
templates proposed originally by Bobick and Davis [11] is the problem of motion 
self-occlusion due to overwriting. Let us explain this problem by giving an example. 
Let us denote an upward movement of the eyebrows as action A1 and a downward 
movement of the eyebrows back to the neutral position as action A2. Both actions 
produce apparent motion in the facial region above the neutral position of the eye-
brows (Fig. 7). If A2 follows A1 in time and if the motion history of both actions is 
recorded within a single Motion History Image (MHI), then the motion history of 
action A2 overwrites the motion history of A1; the information about the motion 
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history of action A1 is lost. To overcome this problem, we proposed to record the 
motion history at multiple time intervals and to construct Multilevel Motion History 
Image (MMHI), instead of recording the motion history once for the entire image 
sequence and constructing a single MHI [80]. 

Before we can construct a MMHI from an input video, the face present in the video 
needs to be registered in two ways. Intra registration removes all rigid head 
movements within the input video, while the inter registration places the face at a 
predefined location in the scene. This transformation uses facial points whose spatial 
position remains the same even if a facial muscle contraction occurs (i.e., points B, 
B1, and N illustrated in Fig. 10). The inter registration process warps the face onto a 
predefined “normal” face, eliminating inter-person variation of face shape and facili-
tating the comparison between the facial expression shown in the input video and 
template facial expressions. Under the assumption that each input image sequence 
begins and ends with a neutral facial expression, we downsample the number of 
frames to a fixed number of (n+1) frames. In this way, our system becomes robust to 
the problem of varying duration of facial expressions. 

After the registration and time warping of the input image sequence, the MHI is 
obtained as follows. Let I(x, y, t) be an image sequence of pixel intensities of k frames 
and let D(x, y, t) be the binary image that results from pixel intensity change detec-
tion, that is by thresholding ( ) ( ) thtyxItyxI >−− 1,,,, , where x and y are the spatial 

coordinates of picture elements and th is the minimal intensity difference between two 
images. In an MHI, say Ht, the pixel intensity is a function of the temporal history of 
motion at that point with t being a frame of the downsampled input video (with (n+1) 
frames). Using the known parameter n, Ht is defined as: 
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where ( )ns /255=  is the intensity step between two history levels and where 

( ) 0=tyxtH ,, for 0≤t . The final MHI, say H(x, y), is found by iteratively computing 

equation (1) for 11 += nt .
With an MMHI, we want to encode motion occurring at different time instances on 

the same location such that it is uniquely decodable later on. To do so, we use a sim-
ple bit-wise coding scheme. If motion occurs at time instance t at position (x, y), we 
add 2 to the power of (t-1) to the old value of the MMHI:  

( ) ( ) ( ) 12,,1,,,, −⋅+−= ttyxDtyxMtyxM  . (2)

with ( ) 0,, =tyxM for 0≤t . Because of the bitwise coding scheme, we are able to 
separate multiple motions occurring at the same position in the classification stage. 

We utilized further a temporal-template-based face image sequence representation 
for automatic recognition of facial signals such as brow flashes, smiles, frowns, etc. 
(i.e., for AU detection). Comparison of two classification schemes: (i) a two-stage 
classifier combining a kNN-based and a rule-based classifier, and (ii) a SNoW classi-
fier, can be found in Valstar et al. [80]. The evaluations studies on two different data-
bases, the Cohn-Kanade [37] and the MMI facial expression database [56], suggest 
that (M)MHIs are very suitable for detecting various facial signals. Especially 
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AU1+AU2 (eyebrows raised), AU10+AU25 (raised upper lip), AU12+AU25 (smile 
with lips parted) and AU27 (mouth stretched vertically) are easily recognized. How-
ever, as it is the case with all template-based methods, for each and every facial signal 
(new class) to be recognized, a separate template should be learned. Given that there 
are more than 7000 different facial expressions [69], template-based methods includ-
ing temporal templates, do not represent the best choice for realizing facial measure-
ment tools. 

4   Facial Feature Tracking 

Contractions of facial muscles induce movements of the facial skin and changes in the 
appearance of facial components such as eyebrows, nose, and mouth. Since motion of 
the facial skin produces optical flow in the image, a large number of researchers have 
studied optical flow tracking [39,51]. The optical flow approach to describing face 
motion has the advantage of not requiring a facial feature extraction stage of process-
ing. Dense flow information is available throughout the entire facial area, regardless 
of the existence of facial components, even in the areas of smooth texture such as the 
cheeks and the forehead. Because optical flow is the visible result of movement and is 
expressed in terms of velocity, it can be used to represent facial actions directly. One 
of the first efforts to utilize optical flow for recognition of facial expressions was the 
work of Mase [43]. Many other researchers adopted this approach including Black 
and Yacoob [10], who used the flows within local facial areas of the facial compo-
nents for expression recognition purposes. For exhaustive surveys of these methods, 
the reader is referred to Pantic and Rothkrantz [51] and Li and Jain [39].  

Standard optical flow techniques [6,41,72] are also most commonly used for track-
ing facial feature points. DeCarlo and Metaxas [19] presented a model-based tracking 
algorithm in which face shape model and motion estimation are integrated using opti-
cal flow and edge information. Gokturk et al. [29] track the points of their 19-point 
face mesh on the stereo image streams using the standard Lucas-Kanade optical flow 
algorithm [41]. To achieve facial feature point tracking Tian et al. [77] and Cohn et al. 
[15,16] used the standard Lucas-Kanade optical flow algorithm too. To realize fitting 
of 2D and combined 2D+3D Active Appearance Models to images of faces [85], Xiao 
et al. use an algorithm based on an "inverse compositional" extension to the Lucas-
Kanade algorithm.  

To omit the limitations inherent in optical flow techniques, such as the accumula-
tion of error and the sensitivity to noise, occlusion, clutter, and changes in illumina-
tion, several researchers used sequential state estimation techniques to track facial 
feature points in image sequences. Both, Zhang and Ji [89] and Gu and Ji [31] used 
facial point tracking based on a Kalman filtering scheme, which is the traditional tool 
for solving sequential state problems. The derivation of the Kalman filter is based on 
a state-space model [36], governed by two assumptions: (i) linearity of the model and 
(ii) Gaussianity of both the dynamic noise in the process equation and the measure-
ment noise in the measurement equation. Under these assumptions, derivation of the 
Kalman filter leads to an algorithm that propagates the mean vector and covariance 
matrix of the state estimation error in an iterative manner and is optimal in the Bayes-
ian setting. To deal with the state estimation in nonlinear dynamical systems, the 
extended Kalman filter has been proposed, which is derived through linearization of  the 
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state-space model. However, many of the state estimation problems, including human 
facial expression analysis, are nonlinear and quite often non-Gaussian too. Thus, if the 
face undergoes a sudden or rapid movement, the prediction of features positions from 
Kalman filtering will be significantly off. To handle this problem, Zhang and Ji [89] and 
Gu and Ji [31] used the information about the IR-camera-detected pupil location to-
gether with the output of Kalman filtering to predict facial features positions in the next 
frame of an input face video. To overcome these limitations of the classical Kalman 
filter and its extended form in general, particle filters have been proposed. An extended 
overview of the various facets of particle filters can be found in [33]. 

The tracking scheme that we utilize to track facial feature points in an input face im-
age sequence is based on particle filtering. The main idea behind particle filtering is to 
maintain a set of solutions that are an efficient representation of the conditional prob-
ability )|( Yp α , where α  is the state of a temporal event to be tracked given a set of 
noisy observations Y = {y1,…, y¯, y} up to the current time instant. This means that the 
distribution )|( Yp α  is represented by a set of pairs ( ){ }kks π,  such that if ks  is chosen 

with probability equal to kπ , then it is as if ks  was drawn from )|( Yp α . By maintain-

ing a set of solutions instead of a single estimate (as is done by Kalman filtering), parti-
cle filtering is able to track multimodal conditional probabilities )|( Yp α , and it is 
therefore robust to missing and inaccurate data and particularly attractive for estimation 
and prediction in nonlinear, non-Gaussian systems. In the particle filtering framework, 
our knowledge about the a posteriori probability )|( Yp α  is updated in a recursive way. 
Suppose that at a previous time instance we have a particle-based representation of the 

density )|( −− Yp α , i.e., we have a collection of K  particles and their corresponding 

weights (i.e. ( ){ }−−
kks π, ). Then, the classical particle filtering algorithm, so-called Con-

densation algorithm, can be summarized as follows [34].  

1. Draw K  particles −
ks  from the probability density that is represented by the 

collection ( ){ }−−
kks π, .

2. Propagate each particle −
ks  with the transition probability )|( −ααp in order to 

arrive at a collection of K  particles ks .

3. Compute the weights kπ for each particle as ( )kk syp=π  and then normalize so 

that 1=k kπ .

This results in a collection of K  particles and their corresponding weights (i.e. 
( ){ }kks π, ), which is an approximation of the density )|( Yp α .

The Condensation algorithm has three major drawbacks. The first drawback is that 
a large amount of particles that result from sampling from the proposal density 

)|( −Yp α  might be wasted because they are propagated into areas with small likeli-
hood. The second problem is that the scheme ignores the fact that while a particle 

kNkkk ssss ,,, 21= might have low likelihood, it can easily happen that parts of it 

might be close to the correct solution. Finally, the third problem is that the estimation 
of the particle weights does not take into account the interdependences between the 
different parts of the state α .
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To track facial feature points for the purposes of facial expression analysis, we util-
ize two different extensions to classical Condensation algorithm. The first one is the 
Auxiliary Particle Filtering introduced by Pitt and Shepard [62], which addresses the 
first drawback of the Condensation algorithm by favoring particles that end up in 

areas with high likelihood when propagated with the transition density )|( −ααp . The 
second extension to classical Condensation algorithm that we utilize for facial point 
tracking is the Particle Filtering with Factorized Likelihoods proposed by Patras and 
Pantic [57]. This algorithm addresses all of the aforementioned problems inherent in 
the Condensation algorithm by extending the Auxiliary Particle Filtering to take into 
account the interdependences between the different parts of the state α . In order to do 
so in we partition the state α into sub-states iα  that correspond to the different facial 

features, that is >=< nααα ,...,1 . At each frame of the sequence we obtain a particle-

based representation of )|( yp α in two stages. In the first stage, we apply one com-
plete step of a particle filtering algorithm (in our case the auxiliary particle filtering) 
in order to obtain a particle-based representation of )|( yp iα ), for each facial feature 

i. That is, at the first stage, each facial feature is tracked for one frame independently 
from the other facial features. At the second stage, interdependencies between the 
sub-states are taken into consideration, in a scheme that samples complete particles 

from the proposal distribution ∏
i

i yp )|(α and evaluates them using )|( −ααp . The 

density )|( −ααp , that captures the interdependencies between the locations of the  

Fig. 8. Results of the facial point tracking in face-profile image sequences [49]. First row: 
frames 1 (neutral), 48 (onset AU29), 59 (apex AU29), and 72 (offset AU29). Second row: 
frames 1 (neutral), 25 (onset AU12), 30 (onset AU6+12), and 55 (apex AU6+12+25+45). 
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facial features is estimated using a kernel-based density estimation scheme. Finally, 
we define an observation model that is based on a robust color-based distance be-
tween the color template o = {oi | i = 1…M} and a color template c = {ci | i = 1…M} 
at the current frame. We attempt to deal with shadows by compensating for the global 
intensity changes. We use the distance function d, defined by equation (3), where M is 
the number of pixels in each template, mc is the average intensity of template c = {ci}, 
mo is the average intensity of template o = {oi}, i is the pixel index, and ( ).ρ  is a ro-
bust error function such as the Geman-McClure. 
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Typical results of the Auxiliary Particle Filtering, adapted for the problem of color-
based template tracking as explained above and applied for tracking facial points in video 
sequences of profile view of the face [49], are shown in Fig. 8. Typical results of the Parti-
cle Filtering with Factorized Likelihoods, applied for tracking color-based templates of 
facial points in image sequences of faces in frontal-view [81], are shown in Fig. 9.  

Fig. 9. Results of the facial point tracking in frontal-view face image sequences [81]. First row: 
frames 1 (neutral), 14 (onset AU1+2+5+20+25+26), and 29 (apex AU1+2+5+20+25+ 26). 
Second row: frames 1 (neutral), 32 (apex AU4+7+17+24), and 55 (apex AU45, offset 
AU4+7+17+24). 
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5   Facial Action Coding 

Most approaches to automatic facial expression analysis attempt to recognize a small 
set of prototypic emotional facial expressions, i.e., fear, sadness, disgust, happiness, 
anger, and surprise (e.g. [3,10,14,32,42,43,89]; for exhaustive surveys of the past 
work on this research topic, the reader is referred to [51,52,68]). This practice may 
follow from the work of Darwin [18] and more recently Ekman [22,24,38], who sug-
gested that basic emotions have corresponding prototypic facial expressions. In eve-
ryday life, however, such prototypic expressions occur relatively rarely; emotions are 
displayed more often by subtle changes in one or few discrete facial features, such as 
the raising of the eyebrows in surprise [46]. To detect such subtlety of human emo-
tions and, in general, to make the information conveyed by facial expressions avail-
able for usage in various applications summarized in Sections 1.1 and 1.2, automatic 
recognition of rapid facial signals, i.e., facial muscle actions, such as the action units 
(AUs) of the Facial Action Coding System (FACS) [25,26], is needed. 

5.1   Facial Action Coding System 

Rapid facial signals are movements of the facial muscles that pull the skin, causing a 
temporary distortion of the shape of the facial features and of the appearance of folds, 
furrows, and bulges of skin. The common terminology for describing rapid facial 
signals refers either to culturally dependent linguistic terms indicating a specific 
change in the appearance of a particular facial feature (e.g., smile, smirk, frown, 
sneer) or to the linguistic universals describing the activity of specific facial muscles 
that caused the observed facial appearance changes. 

There are several methods for linguistically universal recognition of facial changes 
based on the facial muscular activity [69]. From those, the facial action coding system 
(FACS) proposed by Ekman et al. [25,26] is the best known and most commonly used 
system. It is a system designed for human observers to describe changes in the facial 
expression in terms of visually observable activations of facial muscles. The changes in 
the facial expression are described with FACS in terms of 44 different Action Units 
(AUs), each of which is anatomically related to the contraction of either a specific facial 
muscle or a set of facial muscles. Examples of different AUs are given in Table 2. 
Along with the definition of various AUs, FACS also provides the rules for visual detec-
tion of AUs and their temporal segments (onset, apex, offset) in a face image. Using 
these rules, a FACS coder (that is a human expert having a formal training in using 
FACS) decomposes a shown facial expression into the AUs that produce the expression. 

5.2   Automated Facial Action Coding 

Although FACS provides a good foundation for AU-coding of face images by human 
observers, achieving AU recognition by a computer is by no means a trivial task. A 
problematic issue is that AUs can occur in more than 7000 different complex combi-
nations [69], causing bulges (e.g., by the tongue pushed under one of the lips) and 
various in- and out-of-image-plane movements of permanent facial features (e.g., 
jetted jaw) that are difficult to detect in 2D face images. 
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Table 2. Examples of Facial Action Units (AUs) defined by the FACS system [25,26] 

Few methods have been reported for automatic AU detection in face image se-
quences [37,51,78]. Some researchers described patterns of facial motion that corre-
spond to a few specific AUs, but did not report on actual recognition of these AUs 
(e.g. [10,29,42,43,76]). Only recently there has been an emergence of efforts toward 
explicit automatic analysis of facial expressions into elementary AUs [47,78]. For 
instance, the Machine Perception group at UCSD has proposed several methods for 
automatic AU coding of input face video. To detect 6 individual AUs in face image 
sequences free of head motions, Bartlett et al. [7] used a 61×10×6 feed-forward neural 
network. They achieved 91% accuracy by feeding the pertinent network with the 
results of a hybrid system combining holistic spatial analysis and optical flow with 
local feature analysis. To recognize 8 individual AUs and 4 combinations of AUs in 
face image sequences free of head motions, Donato et al. [21] used Gabor wavelet 
representation and independent component analysis. They reported a 95.5% average 
recognition rate achieved by their method. The most recent work by Bartlett et al. [8] 
reports on accurate automatic recognition of 18 AUs (95% average recognition rate) 
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from near frontal-view face image sequences using Gabor wavelet features and a 
classification technique based on AdaBoost and Support Vector Machines (SVM). 
Another group that has focused on automatic FACS coding of face image sequences 
is the CMU group led by Takeo Kanade and Jeff Cohn. To recognize 8 individual 
AUs and 7 combinations of AUs in face image sequences free of head motions, Cohn 
et al. [16] used facial feature point tracking and discriminant function analysis and 
achieved an 85% average recognition rate. Tian et al. [77] used lip tracking, template 
matching and neural networks to recognize 16 AUs occurring alone or in combination 
in near frontal-view face image sequences. They reported an 87.9% average recogni-
tion rate.  

Our group also reported on multiple efforts toward automatic analysis of facial ex-
pressions into atomic facial actions. The majority of this previous work concerns 
automatic AU recognition in static face images [50,53]. To our best knowledge, these 
systems are the first (and at this moment the only) to handle AU detection in static 
face images. However, these works are not relevant to the present goals, since they 
cannot handle video streams inherent in AmI applications. Only recently, our group 
has focused on automatic FACS coding of face video. To recognize 15 AUs occurring 
alone or in combination in near frontal-view face image sequences, Valstar et al. [80] 
used temporal templates (Section 3.2) and compared two classification techniques: (i) 
a combined k-Nearest-Neighbor and rule-based classifier, and (ii) a SNoW classifier. 
An average recognition rate ranging from 56% to 68% has been achieved. Except for 
this work, and based upon the tracked movements of facial characteristic points, we 
mainly experimented with rule-based [48,49] and SVM-based methods [81] for rec-
ognition of AUs in either near frontal-view (Fig. 10) or near profile-view (Fig. 11) 
face image sequences.  

A basic understanding of how to achieve automatic AU detection from the profile 
view of the face is necessary if a technological framework for automatic AU detection 
from multiple views of the face is to be established [49]. The automatic AU detection 
from the profile view of the face was deemed the most promising method for achiev-
ing robust AU detection [86], independent of rigid head movements that can cause 
changes in the viewing angle and the visibility of the tracked face and its features. To 
our knowledge, our system for AU recognition from face profile-view image se-
quences is the first (and at this moment the only) to address this problem. 

In contrast to the aforementioned methods developed elsewhere, which address 
mainly the problem of spatial modeling of facial expressions, the methods proposed 
by our group address the problem of temporal modeling of facial expressions as well. 
In other words, the methods proposed here are very suitable for encoding temporal 
activation patterns (onset  apex  offset) of AUs shown in an input face video. This 
is of importance for there is now a growing body of psychological research that ar-
gues that temporal dynamics of facial behavior (i.e., the timing and the duration of 
facial activity) is a critical factor for the interpretation of the observed behavior [67]. 
For example, Schmidt and Cohn [70] have shown that spontaneous smiles, in contrast 
to posed smiles, are fast in onset, can have multiple AU12 apexes (i.e., multiple rises 
of the mouth corners), and are accompanied by other AUs that appear either simulta-
neously with AU12 or follow AU12 within 1 second. Since it takes more than 
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Fig. 10. Outline of our AU detectors from frontal-view face image sequences [48,81] 

Fig. 11. Outline of our AU detector from profile-view face image sequences [49] 

one hour to manually score 100 still images or a minute of videotape in terms of AUs 
and their temporal segments [25], it is obvious that automated tools for the detection 
of AUs and their temporal dynamics would be highly beneficial. To our best knowl-
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edge, our systems are the first (and at this moment the only) to explicitly handle tem-
poral segments of AUs. 

To recognize a set of 27 AUs occurring alone or in combination in a near frontal-
view face image sequence [48], we proceed under 2 assumptions (as defined for video 
samples of either the Cohn-Kanade [37] or the MMI facial expression database [56]): 
(1) the input image sequence is non-occluded near frontal-view of the face, and (2) 
the first frame shows a neutral expression and no head rotations. To handle possible 
in-image-plane head rotations and variations in scale of the observed face, we register 
each frame of the input image sequence with the first frame based on three referential 
points (Fig. 10): the tip of the nose (N) and the inner corners of the eyes (B and B1). 
We use these points as the referential points because of their stability with respect to 
non-rigid facial movements: facial muscle actions do not cause physical displace-
ments of these points. Each frame is registered with the first frame by applying an 
affine transformation. Except of N, B and B1, which are tracked in unregistered input 
video sequences, other facial fiducial points are tracked in the registered input image 
sequence. Typical tracking results are shown in Fig. 9. Based upon the changes in the 
position of the fiducial points, we measure changes in facial expression. Changes in 
the position of the fiducial points are transformed first into a set of mid-level parame-
ters for AU recognition. We defined two parameters: up/down(P) and inc/dec(PP’).
Parameter up/down(P) = y(Pt1) – y(Pt) describes upward and downward movements 
of point P and parameter inc/dec(PP’) = PP’t1 – PP’t describes the increase or de-
crease of the distance between points P and P’. Based upon the temporal consistency 
of mid-level parameters, a rule-based method encodes temporal segments (onset, 
apex, offset) of 27 AUs occurring alone or in combination in the input face videos. 
For instance, to recognize the temporal segments of AU12 (Table 2), which pulls the 
mouth corners upwards in a smile, we exploit the following temporal rules (for ex-
periments with a SVM-based binary classifier instead of rules, see [81]): 

IF (up/down(I) > ε AND inc/dec(NI) < -ε)
  OR (up/down(J) > ε AND inc/dec(NJ) < -ε) THEN AU12-p
IF AU12-p AND {([up/down(I)]

t
 > [up/down(I)]

t-1
 )

  OR ([up/down(J)]
t
 > [up/down(J)]

t-1
 )} THEN AU12-onset

IF AU12-p AND {( | [up/down(I)]
t
 – [up/down(I)]

t-1
 | ≤ ε )

  OR ( | [up/down(I)]
t
 – [up/down(I)]

t-1
 | ≤ ε )} THEN AU12-apex

IF AU12-p AND {([up/down(I)]
t
 < [up/down(I)]

t-1
 ) 

  OR ([up/down(J)]
t
 < [up/down(J)]

t-1
 )} THEN AU12-offset 

Fig. 12 illustrates the meaning of these rules. The horizontal axis represents the 
time dimension (i.e., the frame number) and the vertical axis represents values that the 
mid-level feature parameters take. As implicitly suggested by the graphs of Fig. 12, I 
and/or J should move upward and be above their neutral-expression location to label a 
frame as an “AU122 onset”. The upward motion should terminate, resulting in a (rela-
tively) stable temporal location of I and/or J, for a frame to be labeled as “AU12 

2 Since the upward motion of the mouth corners is the principle cue for the activation of AU12, 
the upward movement of the fiducial points I and/or J (i.e., point P7 in the case of the profile 
view of the face) is used as the criterion for detecting the onset of the AU12 activation. Re-
versal of this motion is used to detect the offset of this facial expression.  
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apex”. Eventually, I and/or J should move downward toward their neutral-expression 
location to label a frame as an “AU12 offset”. Note that, at the end of the offset phase, 
the graphs show a distinct increase of the values of the mid-level parameters, beyond 
their neutral-expression values. As shown by Schmidt and Cohn [70], this is typical 
for so-called “dampened” spontaneous smiles and in contrast to posed smiles. 

Fig. 12. The changes in x and y coordinates of points I and J (mouth corners) computed for 90 
frames of an AU6+12+25 frontal-view face video (the apex frame is illustrated). (a)-(b) Point I. 
(c)-(d) Point J. 

Similarly, to recognize a set of 27 AUs occurring alone, or in combination in a near 
profile-view face image sequence [49], we proceed under 2 assumptions (as defined 
for video samples of the MMI facial expression database [56]): (1) the input image 
sequence is non-occluded (left or right) near profile-view of the face with possible in-
image-plane head rotations, and (2) the first frame shows a neutral expression. To 
make the processing robust to in-image-plane head rotations and translations as well 
as to small translations along the z-axis, we estimate a global affine transformation ϑ
for each frame, and based on it we register the current frame to the first frame of the 
sequence. In order to estimate the global affine transformation, we track three referen-
tial points. These are (Fig. 11): the top of the forehead (P1), the tip of the nose (P4), 
and the ear canal entrance (P15). We use these points as the referential points because 
of their stability with respect to non-rigid facial movements. We estimate the global 
affine transformation ϑ  as the one that minimizes the distance (in the least-squares 
sense) between the ϑ -based projection of the tracked locations of the referential 
points and these locations in the first frame of the sequence. The rest of the facial 
points illustrated in Fig. 11 are tracked in frames that have been compensated for the 
transformation ϑ . Typical tracking results are shown in Fig. 8. Changes in the posi-
tion of the facial points are transformed first into a set of mid-level parameters for AU 
recognition described above. Based upon the temporal consistency of mid-level pa-
rameters, a rule-based method encodes temporal segments (onset, apex, offset) of 27 
AUs occurring alone or in combination in the input face videos. For instance, to rec-
ognize the temporal segments of AU12, we exploit the following temporal rules: 
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IF (up/down(P7) > ε AND inc/dec(P5P7) ≥ ε) THEN AU12-p
IF AU12-p AND {([up/down(P7)]

t
 > [up/down(P7)]

t-1
 ) THEN 

AU12-onset
IF AU12-p AND {( | [up/down(P7)]

t
 – [up/down(P7)]

t-1
 | ≤ ε)

THEN AU12-apex
IF AU12-p AND {([up/down(P7)]

t
 < [up/down(P7)]

t-1
 ) THEN 

AU12-offset

Fig. 13 illustrates the meaning of these rules. P7 should move upward, above its neu-
tral-expression location, and the distance between points P5 and P7 should increase, 
exceeding its neutral-expression length, in order to label a frame as an “AU12 onset”. 
In order to label a frame as “AU12 apex”, the increase of the values of the relevant 
mid-level parameters should terminate. Once the values of these mid-level parameters 
begin to decrease, a frame can be labeled as “AU12 offset”. Note that the graphs of 
Fig. 13 show two distinct peaks in the increase of the pertinent mid-level parameters. 
According to [70], this is typical for spontaneous smiles. 

Fig. 13. The values of mid-level parameters (a) up/down(P7) and (b) inc/dec(P5P7) computed 
for 92 frames of AU6+12+25 face-profile video (the apex frame is illustrated) 

We tested our method for AU coding in near frontal-view face image sequences on 
both Cohn-Kanade [37] and MMI facial expression database [56]. The accuracy of the 
method was measured with respect to the misclassification rate of each “expressive” 
segment of the input sequence, not with respect to each frame [48]. Overall, for 135 
test samples from both databases, we achieved an average recognition rate of 90% 
sample-wise for 27 different AUs occurring alone or in combination in an input video. 
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Since Cohn-Kanade database does not contain images of faces in profile view (it 
contains only displays of emotions recorded in frontal facial view), the method for 
AU coding in near profile-view face video was tested on MMI facial expression data-
base only. The accuracy of the method was measured with respect to the misclassifi-
cation rate of each “expressive” segment of the input sequence[49]. Overall, for 96 
test samples, we achieved an average recognition rate of 87% sample-wise for 27 
different AUs occurring alone, or in combination, in an input video. 

6   Facial Expression Interpretation and Facial Affect Recognition  

As already noted above, virtually all systems for automatic facial expression analysis 
attempt to recognize a small set of universal/basic emotions [51,52]. However, pure 
expressions of “basic” emotions are seldom elicited; most of the time people show 
blends of emotional displays [38]. Hence, the classification of facial expressions into 
a single “basic”-emotion category is not realistic. Also, not all facial actions can be 
classified as a combination of the “basic” emotion categories. Think, for instance, 
about fatigue, frustration, anxiety, or boredom. In addition, it has been shown that the 
comprehension of a given emotion label and the ways of expressing the related affec-
tive state may differ from culture to culture and even from person to person [67]. 
Furthermore, not all facial actions should be associated with affective states. Think, 
for instance, about face-based interface-control systems for support of disabled users. 
Hence, pragmatic choices (user- and use-case-profiled choices) must be made regard-
ing the selection of interpretation labels (such as affective labels) to be assigned by an 
automatic system to sensed facial signals. This is especially the case with AmI tech-
nologies, where one basic goal is to ensure that products are tailored to the user’s 
preferences, needs and abilities (Table 1).  

We developed a case-based reasoning system that learns its expertise by having the 
user instruct the system on the desired (context-sensitive) interpretations of sensed 
facial signals [54]. To our best knowledge, it is the first (and at this moment the only) 
system facilitating user-profiled interpretation of facial expressions. We used it to 
achieve classification of AUs into the emotion categories learned from the user.  

Since AUs can occur in more than 7000 combinations [69], the classification of 
AUs in an arbitrary number of emotion categories learned from the user is a very 
complex problem. To tackle this problem, one can apply either eager or lazy learning 
methods. Eager learning methods, such as neural networks, extract as much informa-
tion as possible from training data and construct a general approximation of the target 
function. Lazy learning methods, such as case-based reasoning, simply store the pre-
sented data and generalizing beyond these data is postponed until an explicit request 
is made. When a query instance is encountered, similar related instances are retrieved 
from the memory and used to classify the new instance. Hence, lazy methods have the 
option of selecting a different local approximation of the target function for each 
presented query instance. Eager methods using the same hypothesis space are more 
restricted because they must choose their approximation before presented queries are 
observed. In turn, lazy methods are usually more appropriate for complex and incom-
plete problem domains than eager methods, which replace the training data with ab-
stractions obtained by generalization and which, in turn, require an excessive amount 
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of training data. Therefore, we chose to achieve classification of the AUs detected in 
an input face video into the emotion categories learned from the user by case-based 
reasoning, a typical lazy learning method.  

The utilized case base is a dynamic, incrementally self-organizing event-content-
addressable memory that allows fact retrieval and evaluation of encountered events 
based upon the user preferences and the generalizations formed from prior input. Each 
event (case) is one or more micro-events, each of which is a set of AUs. Micro-events 
related by the goal of communicating one specific affective state are grouped within 
the same dynamic memory chunk. In other words, each memory chunk represents a 
specific emotion category and contains all micro-events to which the user assigned 
the emotion label in question. The indexes associated with each dynamic memory 
chunk comprise individual AUs and AU combinations that are most characteristic for 
the emotion category in question. Finally, the micro-events of each dynamic memory 
chunk are hierarchically ordered according to their typicality: the larger the number of 
times a given micro-event occurred, the higher its hierarchical position within the 
given chunk. The initial endowment of the dynamic memory is achieved by asking 
the user to associate an interpretation (emotion) label to a set of 40 typical facial ex-
pressions (micro-events that might be hardwired to emotions according to [46]). 
Fig. 14 illustrates a number of examples of the utilized stimulus material. 

Fig. 14. Sample stimulus images from the MMI Facial Expression Database [56] used for initial 
endowment of the case base. Left to right: AU1+2, AU10, AU6+12, AU15+17. 

The classification of the detected AUs into the emotion categories learned from the 
user is further accomplished by case-based reasoning about the content of the dy-
namic memory. To solve a new problem of classifying a set of input AUs into the 
user-defined interpretation categories, the following steps are taken:  

1. Search the dynamic memory for similar cases, retrieve them, and interpret the 
input set of AUs using the interpretations suggested by the retrieved cases.  

2. If the user is satisfied with the given interpretation, store the case in the dy-
namic memory. Otherwise, adapt the memory according to user-provided feed-
back on the interpretation he associates with the input facial expression. 

The utilized retrieval and adaptation algorithms employ a pre-selection of cases that is 
based upon the clustered organization of the dynamic memory, the indexing structure 
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of the memory, and the hierarchical organization of cases within the clusters/ chunks 
according to their typicality [54].  

Two validation studies on a prototype system have been carried out. The question 
addressed by the 1st validation study was: How acceptable are the interpretations given 
by the system after it is trained to recognize 6 basic emotions? The question addressed 
by the 2nd validation study was: How acceptable are the interpretations given by the 
system, after it is trained to recognize an arbitrary number of user-defined interpretation 
categories? In the first case, a human FACS coder was asked to train the system. In the 
second case, a lay expert, without formal training in emotion signals recognition, was 
asked to train the system. The same expert used to train the system was used to evaluate 
its performance, i.e., to judge the acceptability of interpretations returned by the system. 
For basic emotions, in 100% of test cases the expert approved of the interpretations 
generated by the system. For user-defined interpretation categories, in 83% of test cases 
the lay expert approved entirely of the interpretations and in 14% of test cases the expert 
approved of most but not of all the interpretation labels generated by the system for the 
pertinent cases. These findings indicate that the facial expression interpretation achieved 
by the system is rather accurate. 

7   Conclusions 

Automating the analysis of facial signals, especially rapid facial signals (i.e., AUs), is 
important to realize context-sensitive, face-based (multimodal) ambient interfaces, to 
advance studies on human emotion and affective computing, and to boost numerous appli-
cations in fields as diverse as security, medicine, and education. This paper provided an 
overview of the efforts of our research group in approaching this goal. To summarize: 

• Our methods for automatic facial feature point detection and tracking extend 
the state of the art in facial point detection and tracking in several ways, includ-
ing the number of facial points detected (20 in total), the accuracy of the 
achieved detection (93% of the automatically detected points were displaced in 
any direction, horizontal or vertical, less than 5% of the inter-ocular distance 
[83]), the accuracy, and the robustness of the tracking scheme including the in-
variance to noise, occlusion, clutter and changes in the illumination intensity 
(inherent in Particle Filtering with Factorized Likelihoods [57,58]).  

• Our approaches to automatic AU coding of face image sequences extend the 
state of the art in the field in several ways, including the facial view (profile), 
the temporal segments of AUs (onset, apex, offset), the number (27 in total), 
and the difference in AUs (e.g. AU29, AU36) handled. To wit, the automated 
systems for AU detection from face video that have been reported so far do not 
deal with the profile view of the face, cannot handle temporal dynamics of 
AUs, cannot detect out-of-plane movements such as thrusting the jaw forward 
(AU29), and, at best, can detect 16 to 18 AUs (from in total 44 AUs). The basic 
insights in how to achieve automatic detection of AUs in profile-face videos 
and how to realize automatic detection of temporal segments of AUs in either 
frontal- or profile-view face image sequences can aid and abet further research 
on facial expression symmetry, spontaneous vs. posed facial expressions, and 
facial expression recognition from multiple facial views [48,49]. 
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• We also proposed a new facial expression interpretation system that performs 
classification of AUs into the emotion categories learned from the user [54]. 
Given that the previously reported systems for high-abstraction-level analysis 
of facial expressions are able to classify facial expressions only in one of the 6 
basic emotion categories, our facial expression interpreter extends the state of 
the art in the field by enabling facial signal interpretation in a user-adaptive 
manner. Further research on accomplishing context-sensitive (user-, task-, use-
case-, environment-dependent) interpretation of facial (or any other behavioral) 
signals can be based upon our findings. This is especially important for AmI 
technologies where one basic goal is to ensure that products are tailored to the 
user’s preferences, needs and abilities. 

However, our methods cannot recognize the full range of facial behavior (i.e. all 44 
AUs defined in FACS); they detect up to 27 AUs occurring alone or in combination in 
near frontal- or profile-view face image sequences. A way to deal with this problem is 
to look at diverse facial features. Although it has been reported that methods based on 
geometric features are usually outperformed by those based on appearance features 
using, e.g., Gabor wavelets or eigenfaces [7], our studies have shown that this claim 
does not always hold [49,81]. We believe, however, that further research efforts to-
ward combining both approaches are necessary if the full range of human facial be-
havior is to be coded in an automatic way. 

If we consider the state of the art in face detection and facial point localization and 
tracking, then noisy and partial data should be expected. As remarked by Pantic et al. 
[47,52], a facial expression analyzer should be able to deal with these imperfect data 
and to generate its conclusion so that the certainty associated with it varies with the 
certainty of face and facial point localization and tracking data. Our point tracker is 
very robust to noise, occlusion, clutter and changes in lighting conditions and it deals 
with inaccuracies in facial point tracking using a memory-based process that takes 
into account the dynamics of facial expressions [49,57,58]. However, our methods do 
not calculate the output data certainty by propagating the input data certainty (i.e. the 
certainty of facial point tracking). Future work on this issue aims at investigating the 
use of measures that can express the confidence to facial point tracking and that can 
facilitate both a more robust AU recognition and the assessment of the certainty of the 
performed AU recognition. 

Finally, our methods assume that the input data are near frontal- or profile-view 
face image sequences showing facial displays that always begin with a neutral state. 
In reality, such assumption cannot be made; variations in the viewing angle should be 
expected. Also, human facial behavior is more complex and transitions from a facial 
display to another do not have to involve intermediate neutral states. Consequently, 
our facial expression analyzers cannot deal with spontaneously occurring (unposed) 
facial behavior. In turn, actual deployment of our methods in ambient interfaces and 
AmI sensing technologies is still in the relatively distant future. There are a number of 
related issues that should be addressed. How to achieve parsing of the stream of facial 
and head movements not under volitional control? What properties should automated 
analyzers of human expressive behavior have in order to be able to analyze human 
spontaneous behavior? How should one elicit spontaneous human expressive behav-
ior, including genuine emotional responses, necessary for the training automated 
systems? How should the grammar of human expressive behavior be learned? 
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Tian et al. [78] and Pantic et al. [52,55] have discussed some of these aspects of 
automated facial expression analysis and they form the main focus of our current and 
future research efforts. Yet, since the complexity of these issues concerned with the 
interpretation of human behavior at a deeper level is tremendous and spans several 
different disciplines in computer and social sciences, we believe that a large, focused, 
interdisciplinary, international program directed towards computer understanding and 
responding to human behavioral patterns (as shown by means of facial expressions 
and other modes of social interaction) should be established if we are to experience 
breakthroughs in human-computer and ambient interface designs. 
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