
382 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

Teaching Introductory Artificial Intelligence Using a
Simple Agent Framework

Maja Pantic, Member, IEEE, Reinier Zwitserloot, and Robbert Jan Grootjans

Abstract—This paper describes a flexible method of teaching in-
troductory artificial intelligence (AI) using a novel, Java-imple-
mented, simple agent framework developed specifically for the pur-
poses of this course. Although numerous agent frameworks have
been proposed in the vast body of literature, none of these available
frameworks proved to be simple enough to be used by first-year
students of computer science. Hence, the authors set out to create a
novel framework that would be suitable for the aims of the course,
for the level of computing skills of the intended group of students,
and for the size of this group of students. The content of the in-
troductory AI course in question is a set of assignments that re-
quires the students to use intelligent agents and other AI tech-
niques to monitor, filter, and retrieve relevant information from the
World Wide Web. It represents, therefore, a synthesis of the tra-
ditional objectivist approach and a real-world-oriented, construc-
tivist approach to teaching programming to novices. The main aim
of implementing such a pedagogy was to engage the students in
learning to which they personally relate while attaining intellec-
tual rigor. Classroom experience indicates that students learn more
effectively when the traditional objectivist approach is combined
with a constructivist approach than when this orthodox approach
to teaching programming to novices is used alone.

Index Terms—Agent framework, artificial intelligence (AI)
course, intelligent agents, introductory engineering course, Java,
rule-based reasoning, semantic network, World Wide Web search.

I. INTRODUCTION

ACCORDING to the Dutch Statistical Bureau, 77% of
Dutch households have an Internet connection [1]. This

ever-increasing role of computers in society clearly forecasts
which type of working environment and information–com-
munication space Dutch people, and people of the Western
Hemisphere in general, are about to use in everyday activities.
Even now, the majority of the people living in the Western
Hemisphere use a computer to work and the Internet to com-
municate, to shop, to seek out new information, and to entertain
themselves. This trend clearly indicates that in the future people
will perform a larger and larger part of their daily activities with
the aid of computers in cyberspace, across distance, cultures,
and time. Of course, the specifics of such cyber worlds, smart
environments, and the related interfaces (which should facilitate
easy and natural communication within those environments
and with a variety of embedded computing devices) are far

Manuscript received March 10, 2004; revised September 23, 2004. The work
of M. Pantic is supported by the Netherlands Organization for Scientific Re-
search (NWO) under Grant EW-639.021.202.

The authors are with the Electrical Engineering, Mathematics, and Com-
puter Science Department, Delft University of Technology, 2628 CD Delft,
The Netherlands (e-mail: mpantic@ieee.org; reinier@zwitserloot.com;
robbertjan@dds.nl).

Digital Object Identifier 10.1109/TE.2004.842906

from settled. Hence, computing technology breakthroughs
are necessary. This necessity forms the main drive behind
the abundance of job offers for information technology (IT)
specialists in The Netherlands. It also explains why so many
of the Dutch prospective students choose just this branch of
exact sciences to examine their capabilities, to enhance their
skills, and to turn into valuable experts in one of the IT fields.
As computers become ever more ubiquitous in society, further
developments in computing technology become more and more
exciting and economically important in both the IT industry
and the academic community.

This view on reality has motivated the development of
a new educational program called Media and Knowledge
Technology (MKT) of the Computer Science of Delft Univer-
sity of Technology, Delft, The Netherlands. In the academic
year 2001–2002, this new program was officially introduced.
The main objective of this program is to educate students to
become engineers who are able to design and develop intelli-
gent systems for multimedia and multimodal information and
knowledge processing and who are able to design, realize, and
deploy properly working man–machine interfaces.

As a part of this program, an introductory first-year course on
AI was developed with the following aims:

1) to introduce the basic concepts of knowledge engi-
neering and the relevant AI techniques, including
search algorithms, knowledge representation tech-
niques, rule-based reasoning algorithms, and agent
technology;

2) to explain and instruct on issues related to AI program-
ming in general and intelligent (multi-) agent applica-
tions in particular.

In contrast to the classic approach to teaching AI, which is an
objectivist approach as shown in Table I, this course approaches
AI asasetof techniques for making software that ismore intuitive
andeasiertouseandformakingusersmoreproductive.Therefore,
this course had to depart from the orthodox objectivist approach
to teaching programming to novices where assessment exercises
have no real connection to how the student will apply the newly
obtained knowledge and skills to previously unseen real-world
problems [6]. An alternative, constructivist approach, where an
authentic real-world environment is provided in which students
apply and test their newly obtained knowledge and skills, seemed
to represent a better choice for the AI course in question. Recent
studies suggested, however, that the first-year undergraduates are
not ready for a pure constructivist teaching approach (e.g., the
approach used at Cornell University, Ithaca, NY; see Table I), in
which they are given a vaguely specified problem statement that

0018-9359/$20.00 © 2005 IEEE

PANTIC et al.: TEACHING INTRODUCTORY AI USING A SIMPLE AGENT FRAMEWORK 383

TABLE I
AN OVERVIEW OF AI INTRODUCTORY COURSES LECTURED AT VARIOUS UNIVERSITIES

they should refine and for which they should then develop a so-
lution [7]. Hence, a pragmatic synergy of objectivist and con-
structivist approaches to teaching programming to novices has
been adopted for the AI course in question. The overall course
was envisioned to include 20 hours of lectures (part one of the
course) and 80 hours of practical work (part two of the course).
This second part of the course, which is the main subject of this
paper, addresses various practical issues in AI programming in
general and issues in creating properly working intelligent agent
applications in particular. It builds on the first part of the courseby
teachingstudentshowtouseAIalgorithms,aboutwhichtheyhave
been lectured, for solving well-defined assignments (objectivist
approach) aimed at monitoring, filtering, and retrieving relevant
information from the World Wide Web (constructivist approach).

This paper will begin by examining the requirements for the
educational tool to be used in the second part of the AI course in
question. It will then survey several agent frameworks developed
elsewhere which were considered for use, and it will explain the
authors’ motivations to develop a novel simple agent framework
(SAF) for the purposes of the practical part of the AI course in
question. Next, the paper will explain the design of the SAF in de-
tail.Twoprogrammingassignmentsconstitutingthepracticalpart
of the AI course in question will receive particular attention. Fi-
nally, the paper will discuss experiences of both the class of 2002
and that of 2003, and it will provide concluding remarks.

II. EDUCATIONAL TOOL REQUIREMENTS

In the process of selecting the appropriate educational tool to
be used in the AI course in question, the authors identified sev-
eral constraints. Since the students attending the course are first-
year students who have only attended a course on the program-
ming language Java, all programs and examples to be developed
have to be implemented in Java. Another important issue, valid
for any introductory course, is the focus of the course. The focus
should be on learning how to use the basic AI algorithms to solve
real-world problems, rather than on learning how to use complex
software tools. Hence, the requirements that an educational tool
should fulfill in order to be appropriate for the purposes of the
AI course in question can be summarized as follows.

1) The tool should support the development of intelligent
agent applications aimed at monitoring, filtering, and
retrieving relevant information from the World Wide
Web.

2) It should be simple and user friendly, and it should in-
clude built-in, Java-implemented, agent templates that

facilitate example-based learning and can be edited
to include the desired AI algorithms according to the
goals of a programming assignment.

3) It should embody the concepts of concurrency (a kind
of multithreaded setup), multiagency (by allowing
simple communication from one agent to the other),
and persistency (saving settings between executions).

Numerous agent frameworks are proposed in the vast body of
literature [8], and many software packages enabling the devel-
opment of agent-based applications are currently available [9].
Nevertheless, none of these available agent frameworks satis-
fies all the requirements listed previously. Table II summarizes
the properties of the currently existing Java-based agent frame-
works with respect to the following issues.

1) Does the developer provide support for the tool?
2) Is the tool available for free?
3) Are useful examples readily available?
4) Is the related documentation readable?
5) Is synchronous agent-to-agent communication (i.e.,

waiting for reply) supported?
6) Is asynchronous agent-to-agent communication (con-

tinuing immediately) supported?
7) What is the communication transmission form?
8) Can the framework control the agents’ resources (e.g.,

the disk or network capacity used)?
9) Can the framework ask an agent to shut down?
10) Can the framework terminate the execution of a mal-

functioning agent?
11) Can the framework store agents’ states between execu-

tions?
12) Can the framework store objects (e.g., a database) be-

tween executions?
13) Does a self-explained graphical user interface (GUI)

per agent exist?
14) Does the GUI support an overview of all running

agents?

As can be seen from Table II, none of the available Java-
based agent frameworks is simple enough to be used by first-
year undergraduate students. The reason is that virtually all of
these frameworks have at least one of the following drawbacks.

• They lack readable documentation and readily available
useful examples (see the third and the fourth column of
Table II).

• They lack a GUI altogether, or the available GUI is not
self-explained and time-consuming consultation of the

384 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

TABLE II
OVERVIEW OF THE AVAILABLE JAVA-BASED AGENT FRAMEWORKS

documentation is necessary, or a GUI is available per
agent but there is no overview of all running agents at
the framework level (see the thirteenth and fourteenth
column of Table II).

Hence, the authors set out to create a novel Java-based agent
framework that would fulfill all the requirements listed previ-
ously and that would yield a tool appropriate for use in the in-
troductory AI course in question.

III. SIMPLE AGENT FRAMEWORK

The design of the simple agent framework (SAF), the first ver-
sion of which was developed in 2002 [13], has been driven by
the knowledge about the end users (i.e., first-year undergrad-
uates) and the stipulated purpose of the educational tool to be
developed (Section II). SAF can be seen as a common program-
ming interface delimiting the behavior of all the agents inte-
grated into the framework. Its functional specification can be
summarized as follows (see also the last row of Table II for a
summary of the functional specification):

SAF enables easy addition of intelligent agents. This goal
could be achieved by having the framework to instantiate and
configure the agent and then to call the agent’s methods as ser-
vice routines. That way the framework would be always in con-
trol, and it could use intelligent functions as appropriate. This
outcome is easy to achieve but hardly results in what one would
consider an intelligent agent. Therefore, the design that has been
chosen is to have the framework instantiate and configure the
agent and then to start it up in a separate thread. In this way, the
agent has some autonomy, although the agent is running in the
framework’s process space.

An agent can instruct the framework to start up another agent
(in contrast to the preliminary version of the SAF [13]). The
framework, in turn, keeps track of all agents and their parent
agents. A highly beneficial effect of this new capability is that
the framework no longer needs the clumsy and difficult-to-grasp
"batch" concept, which was first used to load different parts of a
multiagent system simultaneously. Instead of working with text
files containing ordered lists of agents, a single agent can be cre-
ated which starts up the appropriate agents for each multiagent
system. This "kickoff" agent is then the parent agent of all agents
that form the multiagent system in question. Hence, loading one
or more multiagent systems will result in one or more easily tra-
versable trees that will clearly indicate which agents are working
together to accomplish a single task (Fig. 1).

SAF supports simple event processing, allowing the agents
to handle the events coming from the outside world or from
other agents and to signal events to the outside world. Java uses
an event-processing model for various features, including the
features of the graphical toolkit (swing). However, this model
relies on the source of events to maintain a list of registered
event listeners and to deliver the subject events. To alleviate
the difficult task of programming agents, a Publish–Subscribe
event-processing system has been used in the SAF. This “delivery
system” manages events and dispatches them to the interested
agents. Both the events coming from the user and those coming
from other agents are represented as text strings, each of which
is called a message. All messages are sent to a channel, each of
which is analogous to a blackboard. The blackboard concept is
known to all students of Delft University of Technology since
it is the design pattern used to develop the system for posting
and distributing information about courses, exams, homework,

PANTIC et al.: TEACHING INTRODUCTORY AI USING A SIMPLE AGENT FRAMEWORK 385

Fig. 1. Screenshot of the GUI of the SAF.

etc. Each agent is accompanied by a text file listing all channels
from which and to which the agent reads and writes. If an agent
reads from a certain channel, it is notified of messages delivered
to that channel. Messages are received through a locally defined
(i.e., at the agent level) handle (channel, message) method.
To send a message, an agent should invoke a globally defined
(i.e., at the framework level) write (channel, message) method.
A complete list of methods supported by the framework is
given in Table III.

SAF supports adding domain knowledge and intelligence
to agents. Facilitating a composite design has attained this
functionality of the framework. Namely, a number of AI algo-
rithms were designed and developed in Java, including forward
and backward rule-based inference procedures, rule-based
constructs, semantic networks constructs, and several search
algorithms. The students can use the related Java classes to
provide the pertinent functions to their agents.

SAF supports the concept of concurrency needed to allow
agents to operate independently and yet at the same time. This
concept has been realized by starting each agent in a separate
thread, allowing it to access the delivery system described pre-
viously at its own convenience. To prevent overloads, the frame-

work initiates a queue of messages for each agent, stores it lo-
cally (i.e., at the agent level), and processes the messages one
by one.

SAF supports the concept of persistence. By enabling SAF
agents to instruct the framework to store values referenced by
a key, an easily understood form of object persistency has been
attained. The framework retains this (key, value) pair and allows
access to it at any time, even when the execution of the frame-
work has ceased in the meantime. To do so, the framework stores
(key, value) pairs to a text file and loads them when its execution
has commenced once again. On the other hand, SAF does not
support state persistency, which allows the programmer to shut
down a single agent (or even the entire framework) and to re-
store it later from the point where it was suspended. Although a
useful mechanism, a Java-implemented state persistency would
have to force certain restrictions onto the programmer, such as
the requirement to return control to the framework within a rea-
sonable time span. As a result, a state persistency system is con-
venient for the user and inconvenient for the programmer. Since
the students should use the SAF mainly to program multiagent
applications, the decision was made to forgo the implementa-
tion of state persistency.

SAF is a graphical, agent-building tool. The goal was to
develop a direct–manipulation interface in which WYSIWYG
(what you see is what you get) would be the guiding principle.
Another goal was simplicity and comprehensibility of the
GUI that could make up for differences in computing skills
and experience of the target users. Given that the target users
were first-year students with rather limited computing skills
in the majority of cases, the authors wanted to omit extensive
technical terminology, complex screen layouts, irreversible
actions, incomprehensible error messages, and unexpected
crashes. Thus, a simple self-explained GUI was developed that
is easy to understand and use. The GUI of the SAF visualizes
the overall traffic through channels, the agent hierarchy, and
the agents themselves (Fig. 1). Each agent is represented by
an appropriate icon suggesting the state of the agent—a green
smiley for an active agent, a red smiley for an inactive agent,
and a blue one for a suspended agent. By clicking the right
mouse button on an appropriate entry, the user opens the rele-
vant context menu with the related actions (Fig. 1). This menu
enables quick perception of and access to the relevant data, in
contrast to the preliminary version of the SAF [13], which only
showed two rigid lists (i.e., a list of channels and one of active
agents).

SAF enables the user to handle malfunctioning agents. As
is the case with the majority of the existing agent frameworks
[8], the SAF relies heavily on threads. In the case of multiagent
systems, the main drawback of this approach becomes apparent
when a malfunctioning agent ends up in a loop and crashes the
whole system, causing other, properly functioning agents to be-
come unresponsive as well. A way to tackle this problem is to
eliminate the agents that are using too many system resources.
However, Java does not offer enough information about system
processes to facilitate easy identification of the ones that con-
sume most of the available processing power. As an alternative
solution, the GUI of the SAF has been assigned the highest pri-
ority, and it has been made responsive to the user at all times.

386 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

TABLE III
METHODS SUPPORTED BY SAF

Fig. 2. Relationships between the SAF primary classes and their instances.

Since any item of the agent tree can be suspended, reawakened,
or even forcibly destroyed, the user can manually find and de-
stroy any malfunctioning agent. Neither the fastest nor the most
elegant solution, it is still considerably better than the one that
was available in the preliminary version of the SAF, restarting
the framework each time an ill-coded agent entered a loop [13].

SAF uses only two primary classes. The Manager is the base
class. It defines a common programming interface and behavior
for all the agents in the SAF. Within this class, all three global
methods listed in Table III are defined. All agents in the SAF
communicate with the environment and with each other by using
these methods (Fig. 2). Each agent extends the abstract Agent
class and uses its own versions of the handle and init methods
given in Table III. In turn, the users of the SAF only need to
know about these two classes to be able to create new SAF-
compatible agents.

IV. CONTENT OF THE COURSE

A. Layout of the Course: New-Media Utilization

Printed media have dominated education for ages. This
dominance arose because the knowledge captured in writing
and reproduced through printing was effectively searchable, ac-
cessible to diverse persons at many locations, and transmittable
from one generation to another. Large knowledge collections
available via new media such as the World Wide Web and the
Internet have recently become searchable and on-demand re-
trievable, an advantage long enjoyed by printed resources only.
Introducing these new media and the appropriate mechanisms

to search and retrieve available multimedia (textual, audio, and
visual) information into classrooms can enable teachers and
students to apply them in the course of their work. Although
“surfing the Internet” is not likely to become the main tech-
nique in helping students master existing components of the
curriculum, it will become an important element in education.
The stock of human knowledge is rapidly going online. Devel-
oping skills in finding appropriate information and knowledge
resources has always been an important curriculum goal for
students going to higher education. Hence, since the stock of
human knowledge increasingly becomes available online to any
person, at any place, at any time, developing the ability to select
and retrieve those resources most relevant to one’s purposes
becomes an important educational objective generally.

Furthermore, educators seem to face a difficult but common
dilemma. On the one hand, they are expected to make education
intellectually demanding. This goal is usually accompanied by
rigid educational projects, which alienate many students. On the
other hand, educators also want to engage each student so that
he or she can personally relate to what is being learned. How-
ever, “fetching”, free-choice projects that are often developed
for this purpose, turn out to be superficial and dubious in intel-
lectual value. If students can be given a standardized plan for
realizing an educational project but can be allowed to build per-
sonalized versions of the pertinent project from the wealth of
materials available on the Web, this approach may prove to be
a pedagogy that brings intellectual rigor while being engaging
for the student. This ideal synthesis of an objectivist and a con-
structivist approach to teaching has recently been proposed in
the literature [14]–[16], and the authors attempted to use it in
practice while defining the programming assignments of the in-
troductory AI course in question.

Two main programming assignments constitute the introduc-
tory AI course in question. The first one delves into the issues of
how to incorporate rule-based reasoning into an intelligent agent
and then to use it for constructive purposes—for example, to
rank available information according to a set of stipulated pref-
erences. The second exercise focuses on constructing intelli-
gent agents using the semantic network concepts and deploying
them to monitor, filter, and retrieve relevant information from
the Web. In both cases, the subject problems have been defined
so that the students are incited to program a variety of agents
which, in collaboration, achieve the given goal.

To alleviate “hard-core” programming tasks and to free
students’ time for efforts in understanding and exploring AI

PANTIC et al.: TEACHING INTRODUCTORY AI USING A SIMPLE AGENT FRAMEWORK 387

concepts and applications, chunks of code were handed out.
Namely, the SAF contains a couple of example agents (i.e.,
templates) that students can use as a starting point for building
their own agents (e.g., they can edit, enlarge, or enhance the
existing code). This capability also enables students to explore
the framework with running agents before they attempt to
design agents themselves. As already mentioned previously,
the authors implemented rule-based inference procedures,
semantic network constructs, and a few search methods in Java.
The related Java classes were made available to students.

Fostering teamwork skills and team spirit is an important
school curriculum goal. Hence, all the existing project-oriented
components of the Computer Science curriculum have been de-
signed for teams of students. In the case of the AI course in
question, the assignments have been designed for teams of five
or six students.

B. The First Assignment: Rule-Based Reasoning

The first assignment is as follows.

Create an agent-based system that translates a question-
naire, filled out by each participant in this course, into a
chart that expounds the suitability of each participant for
being a part of your team. Use SAF to build the required
system and employ rule-based reasoning. Explain the
choice of the utilized inference procedure and the final
ranking of the students being a part of your team.

Participating teams of students usually tackled this problem
in the following way (Fig. 3).

1) Build a Reader Agent that retrieves filled-out question-
naires (so-called survey data) from the Survey Data Web
page.

2) Build an Inference Agent that applies forward chaining
to determine the profiles of the fellow students based
upon their survey data. Begin by developing a knowl-
edge base containing a set of rules for determining the
profile of a student. The utilized questionnaire has been
designed so that it allows students to define a large va-
riety of such rules. For example, based upon an affirma-
tive answer to the question “Do you often take the ini-
tiative in a project team?” students may define rules for
deducing labels such as leader, arrogant, or stupid. By
combining different survey data and already deduced la-
bels, students may define rules for deducing labels such
as creative, dependable, nerd, etc.

3) Build a Score Agent that assigns to each of the fellow stu-
dents an estimate of his suitability for being a part of the
team. For example, being dependable can be a desired
property of a student and given a score of , while
know-it-all can be deemed to be an unwanted aspect and
given a score of .

4) Build a Lister Agent that assembles a ranking list by
sorting the scores provided by the Score Agent.

5) Provide the required explanations. The main reason that
students were asked to explain their choice of the infer-
ence procedure was to estimate whether they understood
the difference between forward and backward chaining.
They were asked to explain the final ranking generated

Fig. 3. General structure of the multiagent system to be developed for the first
assignment.

by their system to incite them to think about their roles in
the team. For example, if a member of a particular team
was estimated to be unsuitable for the pertinent team,
then either the subject member did not participate in the
development of the utilized rules and Score Agent, or he
was not able to defend his position on how the mecha-
nisms in question are to be developed.

C. The Second Assignment: Semantic Networks

The second assignment is as follows.

Create an agent-based system that retrieves and analyzes
the BBC news available via the Internet according to your
own preferences. Use SAF to build the required system
and employ the semantic network concepts. Explain the
drawbacks (if any) of the used approach.
Participating teams of students usually tackled this problem

in the following way (Fig. 4).

1) Build a Reader Agent that monitors the BBC Web
site and flags the system when a fresh news article is
posted.

2) Build a Make Network Agent that constructs a semantic
network representation for each article. Label each
word as either trivial (words like "a," "an," "the," "is,"
"has," etc.) or nontrivial and represent each nontrivial
word as a node of the network. Associate a relevance
property with each node to expound the frequency
with which the word in question occurs in the article.
Connect the nodes of the network and assign a match
property to each such link. This match property should
expound the frequency with which the connection in
question occurs within a single sentence.

3) Build an Analyzer Agent that selects nodes of the
semantic network having the highest values associated

388 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

Fig. 4. General structure of the multiagent system to be developed for the
second assignment.

with their relevance property. Output the selected
nodes, their links to other nodes, and the pertinent
linked nodes themselves.

4) Build a Find Connection Agent that monitors the gen-
erated semantic networks and outputs the series of usu-
ally connected words (e.g., “New York”, “World Trade
Center”, “Tony Blair”, etc.). Use values assigned to the
match property of the links.

5) Build a Filter Article Agent that labels the examined
article as being either important or unimportant. Check
whether the word related to a selected node is in the
list of keywords (in the list of preferred topics). Check
also whether a selected node has a strong link (i.e., is
usually connected) with another node and, if so, check
whether the word related to that node is in the list of
keywords. If either of these checks is in the affirmative,
label the analyzed article as being important.

6) Provide the required explanation. Students were asked
to list the drawbacks of their system to help to inspire
the conclusion that homonyms and synonyms might
(and probably will) affect the results generated by
their system. Another reason for doing so was to es-
timate whether they understood the drawbacks of the
utilized search algorithm, the advantages that could
be achieved by including a “trained” Find Connection
Agent into the filtering process, etc.

V. CLASSROOM ASSESSMENT

Evaluation of the utilized educational methods and materials
by students is an element of immense importance in the educa-
tional programs of Delft University of Technology. Based upon

Fig. 5. Grades assigned to the students for the quality of the delivered code.
In 2002, from 73 participants, 17.8% did not pass the course (had a grade<5).
In 2003, from 76 participants, 13.2% did not pass the course.

the feedback provided by students, the utilized tools and read-
ings can be improved to fit better the knowledge/skills of the
current generation of students, their preferences, and the cur-
riculum goals of the educational program in question. A stan-
dard questionnaire is available for eliciting students’ opinions
on computer science courses, including all the relevant ques-
tions about the suitability of the used tools and readings, the
parts of the course that taught them most, the overall educational
experiences of the student, and the ways the course could be en-
hanced.

In 2002, 73 students participated in the AI course in question.
They were divided into 14 teams of five or six students. Sixty
students successfully completed the two assignments described
previously (Fig. 5). Of 73 participants, 68 filled out the question-
naire for surveying students’ educational experience. In 2003,
76 students participated in the course (15 teams). In total, 66
students successfully completed the assignments (Fig. 5), and
72 students filled out the pertinent questionnaire.

In 2002, 67% of the students who filled out the questionnaire
indicated that the utilized educational tool is suitable for the
goals of the course. They commonly identified two drawbacks
of the 2002 version of the SAF [13]. One concerned the out-
dated look and feel of the GUI (composed only of a rigid list of
channels and a list of active agents). The other referenced that
whenever an ill-coded agent entered a loop, the framework be-
came unresponsive. As already mentioned previously, the cur-
rent version of the SAF addresses both limitations of the 2002
version. Hence, in 2003, 89% of the surveyed students indicated
that the utilized educational tool is suitable for the goals of the
course.

The students judged the two assignments described previ-
ously as being interesting and motivating (2002, 87%; 2003,
94%). The students claimed that they enhanced their skills
and acquired new, valuable, and applicable knowledge on the
instructed subjects (2002, 83%; 2003, 93%). They indicated
that most of the learning occurred with the design and imple-
mentation of the two multiagent systems (2002, 81%; 2003,
88%). Explaining the choice of a particular AI technique and
the drawbacks of the realized multiagent system was instructive
for the students (2002, 71%; 2003, 74%). Overall, the students

PANTIC et al.: TEACHING INTRODUCTORY AI USING A SIMPLE AGENT FRAMEWORK 389

were happy with the results of their work in terms of the per-
formance and usefulness of the developed multiagent systems
(2002, 86%; 2003, 89%).

These results indicate that the students found the developed
educational tool (SAF) and the specified programming as-
signments motivating and highly suitable for the purposes of
teaching the basics of AI. In addition, in comparison to another
introductory AI course for all computer science students of
Delft University of Technology (the course IN 2420, Table I),
which uses a traditional objectivist approach, students reported
that they learned significantly more from the AI course pre-
sented in this paper (the course IN 1851, Table I). In 2003,
out of 124 participants in the introductory AI course IN 2420,
83 students filled out the questionnaire surveying students’
educational experience. Of those, only 43% claimed that they
had enhanced their skills and acquired new, valuable, and
applicable knowledge on the instructed subjects. This finding
indicates the students’ perception of learning more effectively
when the traditional objectivist approach is combined with a
constructivist approach than when the objectivist approach to
teaching programming to novices is used alone.

However, as remarked by Schell [17], although students may
frequently report a perception of learning more than in tradi-
tional courses, quantitative measures do not always confirm this
perception. Therefore, in order to evaluate objectively the ed-
ucational benefit of the AI programming experience obtained
during the practical part of the AI course in question, the authors
performed an assessment. They compared the performance of
students’ answering the questions about rule-based reasoning
and semantic networks and the performance of students’ an-
swering the other four questions (search algorithms, predicate
logic, knowledge acquisition, and distributed AI) on the test.
The grade obtained for each question was compared with those
obtained for the other questions by computing the ratio between
the average score achieved by the students to the maximum
score for each question. The semantic networks question rated
the highest, 0.89, with the scores for the other questions equal to
0.69 (rule-based reasoning question and the distributed AI ques-
tion), 0.59 (search algorithms question), 0.45 (predicate logic
question), and 0.38 (knowledge acquisition question). These re-
sults indicate that the specified programming assignments im-
proved the students’ ability to apply the pertinent ideas to novel
problems. They also suggest that the course material is highly
suitable for the purposes of teaching students the basics of AI,
including semantic network concepts, rule-based reasoning, and
the intelligent agents paradigm.

VI. SUMMARY

This paper describes a flexible method of teaching introduc-
tory artificial intelligence (AI) using a novel Java-implemented
simple agent framework. The simplicity of the proposed agent
framework, a requisite quality for a tool aimed at teaching pro-
gramming to novices, has in its possession only those function-
alities that are specified by the intended educational purposes
and no other. The simple agent framework (SAF) supports the
development of intelligent agent applications aimed at moni-
toring, filtering, and retrieving relevant information from the

World Wide Web and embodies the concepts of concurrency,
multiagency, and persistency. It does not possess an object-ori-
ented database or a mechanism for performing remote proce-
dure calls since these provisions are not necessary for the de-
velopment of the intelligent agent applications in question, and
they would make the tool unnecessarily complex. In contrast to
the existing agent frameworks developed elsewhere (Table II),
and as indicated by classroom experience, SAF is a suitable tool
for teaching AI programming to novices for the following rea-
sons.

• It is simple; it is accompanied by readable documenta-
tion; and it provides readily available, useful examples
(i.e., built-in agent templates written in Java which can
be edited and to which “intelligence” can be added).

• It embodies simple, self-expained, visual interaction with
the user that may concern one, more, or all currently run-
ning agents (Fig. 1).

Based on classroom experience, and in comparison to the
commonly applied approaches to teaching introductory AI
(Table I), the significance of the example-based teaching
method proposed in this paper can be summarized as follows.

• The implemented pedagogy represents a synergy of ob-
jectivism and constructivism in teaching programming to
novices. It departs from commonly adopted objectivism
to avoid an approach that treats learning as simple acqui-
sition of facts, where the newly obtained knowledge and
skills are not transferred to previously unseen, real-world
problems [6]. It does not adopt a fully constructivist
approach either, in which students are given a vaguely
specified problem that they should refine and then solve,
since this approach has been proven unsuitable for
teaching programming to freshmen [7], [16]. Rather, it
blends the two approaches: the students are presented
with well-defined assignments (objectivist approach)
aimed at monitoring, filtering, and retrieving relevant
information from the World Wide Web (constructivist
approach). Classroom experience indicates that this “hy-
brid” teaching method significantly increases the extent
of learning compared with use of only the objectivist
approach to teaching programming to novices.

• The implemented pedagogy has intellectual rigor while
being engaging for students. The students are given a
standardized plan for realizing the assignments, but they
build personalized versions of the intended multiagent
systems according to their preferences from the large
stock of information available on the Web.

• The implemented pedagogy represents a method of
teaching intelligent, multiagent, system development
that provides the student with a deeper understanding
of the process in a real-world-oriented (Web-based),
cooperative (team-based) setting.

These results strongly indicate that the implemented pedagogy
and the utilized newly developed educational tool presented in
this paper form a highly effective way of teaching introductory
AI. In turn, the SAF system and the specified AI programming
projects can be widely useful for many different AI courses,
including courses for noncomputer-science majors.

390 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

Finally, the SAF system provides a basis for the develop-
ment of other courses having intelligent agents programmed to
perform specific tasks with the goal of solving more complex
problems. Robotics and computer games are examples of such
courses. The authors are currently engaged in the development
of the practical part of a machine learning course as a set of
assignments that requires the students to use SAF intelligent
agents and machine learning techniques to do the following:

• to detect the shown facial expression in an input video of
the face;

• to interpret this information in terms of emotions;
• to retrieve a video from a remote database of face images

picturing the same emotion displayed by a face being the
most similar to the face in the input video.

Once this machine learning course is developed, one could
assess the usefulness of SAF in contexts other than the one dis-
cussed in this paper.

ACKNOWLEDGMENT

The authors would like to thank the 68 MKT-undergraduate
students who participated in the course described in this paper in
2002 and provided the authors with numerous useful comments
on how to enhance the preliminary version of the SAF. The au-
thors would like to thank all 139 MKT undergraduates who eval-
uated the course in 2002 and 2003, as well as M. J. Nieman and
the anonymous reviewers for their helpful comments and sug-
gestions.

REFERENCES

[1] Dutch Statistical Bureau. [Online]. Available: http://statline.
cbs.nl/StatWeb/table.asp?PA=70 655ned&D1=11-71, 76-90, 120, 123,
146&D2=0 &D3=(l-11)-l&DM=SLNL&LA=nl&TT=2

[2] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Upper Saddle River, NJ: Pearson Education, 2003.

[3] D. Poole, A. Macworth, and R. Goebel, Computational Intelligence a
Logical Approach. Oxford, U.K.: Oxford Press, 1998.

[4] M. Negnevitsky, Artificial Intelligence. Harlow, London, U.K.:
Pearson Education Limited, 2002.

[5] J. P. Bigus and J. Bigus, Constructing Intelligent Agents Using
Java. New York: Wiley, 2001.

[6] J. Biggs, Teaching for Quality Learning at University. Buckingham,
U.K.: Open University Press, 1999.

[7] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D.
Kolikant, C. Laxer, L. Thomas, and I. Utting, “Multi-national, multiin-
stitutional study of assessment of programming skills of first-year CS
students,” in SIGCSE Bull., vol. 33, Apr. 2001, pp. 1–16.

[8] AgentLink. Agents in the Press—European co-ordination
action for agent-based computing. [Online]. Available:
http://www.agentlink.org/press/

[9] AgentLink. Agent Software—European co-ordination action for
agent–based computing. [Online]. Available: http://www.agentlink.org
/resources/agent-software.php

[10] FIPA–OS Agent Toolkit. [Online]. Available: http://www.emorphia.
com/research/about.htm

[11] Fujitsu Laboratories, Ltd. Pathwalker—Agent-oriented programming li-
brary. [Online]. Available: http://www.labs.fujitsu.com/en/freesoft/paw/

[12] IEEE Distributed Systems Online—Distributed Agents Projects. [On-
line]. Available: http://dsonline.computer.org/agents/projects.htm

[13] M. Pantic, R. Zwitserloot, and R. J. Grootjans, “Simple agent frame-
work,” in IEEE Int. Conf. Information Technology in Research Educa-
tion, Newark, NJ, Aug. 2003, pp. 426–430.

[14] J. B. Black and R. McClintock, “An interpretation construction approach
to constructivist design,” in Constructivist Learning Environments: Case
Studies in Instructional Design, B. G. Wilson, Ed. Englewood Cliffs,
NJ: Educational Technology, 1995, pp. 25–31.

[15] S.-F. Chang, A. Eleftheriadis, and R. McClintock, “Next-generation con-
tent representation, creation, and searching for new-media applications
in education,” Proc. IEEE, vol. 86, no. 5, pp. 884–904, May 1998.

[16] R. Lister and J. Leaney, “Bad theory versus bad teachers: Toward a
pragmatic synthesis of constructivism and objectivism,” in Int. Conf.
Higher Education Research and Development Society of Australasia,
Inc., Christchurch, New Zealand, Jul. 2003, pp. 429–436.

[17] G. P. Schell, “Universities marginalize online courses,” Commun. ACM,
vol. 47, no. 7, pp. 53–56, Jul. 2004.

Maja Pantic (S’98–M’02) received the M.S. and Ph.D. degrees in computer
science from Delft University of Technology, Delft, The Netherlands, in 1997
and 2001, respectively.

She joined the Data and Knowledge Systems Group (currently the Man–Ma-
chine Interaction Group) of the Electrical Engineering, Mathematics, and Com-
puter Science Department at Delft University of Technology as an Assistant
Professor in 2001. Her research interests pertain to the application of AI and
computational intelligence techniques in the analysis of different aspects of
human behavior for the realization of perceptual, context-aware, multimodal
human–machine interfaces. She is also actively involved in research activities
aimed at supporting learning in a more modern, natural, flexible, portable, and
on-demand manner.

Reinier Zwitserloot received the B.S. degree in computer science from Delft
University of Technology, Delft, The Netherlands, in 2003. He is currently
working toward the M.S. degree in computer science at the same university.

His major research interests include multiagent systems, distributed artificial
intelligence, and intelligent agent frameworks.

Robbert Jan Grootjans received the B.S. degree in computer science from
Delft University of Technology, Delft, The Netherlands, in 2003. He is currently
working toward the M.S. degree in computer science at the same university.

His major research interests include multiagent systems and agent framework
technology.

	toc
	Teaching Introductory Artificial Intelligence Using a Simple Age
	Maja Pantic, Member, IEEE, Reinier Zwitserloot, and Robbert Jan
	I. I NTRODUCTION

	TABLE I A N O VERVIEW OF AI I NTRODUCTORY C OURSES L ECTURED AT
	II. E DUCATIONAL T OOL R EQUIREMENTS

	TABLE II O VERVIEW OF THE A VAILABLE J AVA -B ASED A GENT F RAME
	III. S IMPLE A GENT F RAMEWORK

	Fig.€1. Screenshot of the GUI of the SAF.
	TABLE III M ETHODS S UPPORTED BY SAF
	Fig.€2. Relationships between the SAF primary classes and their
	IV. C ONTENT OF THE C OURSE
	A. Layout of the Course: New-Media Utilization
	B. The First Assignment: Rule-Based Reasoning

	Fig.€3. General structure of the multiagent system to be develop
	C. The Second Assignment: Semantic Networks

	Fig.€4. General structure of the multiagent system to be develop
	V. C LASSROOM A SSESSMENT

	Fig.€5. Grades assigned to the students for the quality of the d
	VI. S UMMARY

	Dutch Statistical Bureau . [Online] . Available: http://statline
	S. Russell and P. Norvig, Artificial Intelligence: A Modern Appr
	D. Poole, A. Macworth, and R. Goebel, Computational Intelligence
	M. Negnevitsky, Artificial Intelligence . Harlow, London, U.K.:
	J. P. Bigus and J. Bigus, Constructing Intelligent Agents Using
	J. Biggs, Teaching for Quality Learning at University . Buckingh
	M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-
	AgentLink . Agents in the Press European co-ordination action fo
	AgentLink . Agent Software European co-ordination action for age

	FIPA OS Agent Toolkit . [Online] . Available: http://www.emorphi
	Fujitsu Laboratories, Ltd . Pathwalker Agent-oriented programmin

	IEEE Distributed Systems Online Distributed Agents Projects . [O
	M. Pantic, R. Zwitserloot, and R. J. Grootjans, Simple agent fra
	J. B. Black and R. McClintock, An interpretation construction ap
	S.-F. Chang, A. Eleftheriadis, and R. McClintock, Next-generatio
	R. Lister and J. Leaney, Bad theory versus bad teachers: Toward
	G. P. Schell, Universities marginalize online courses, Commun. A

