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ABSTRACT
Automatic distinction between posed and spontaneous ex-
pressions is an unsolved problem. Previously cognitive sci-
ences’ studies indicated that the automatic separation of
posed from spontaneous expressions is possible using the face
modality. However, little is known about the information
from head and shoulder motion. In this work, we propose
to (i) distinguish between posed and spontaneous smiles by
fusing head, face, and shoulder modalities, (ii) investigate
which modalities carry important information and how the
modalities relate to each other, and (iii) to which extent the
temporal dynamics of these signals attribute to solving the
problem. A cylindrical head tracker is used to track head
motion and two particle filtering techniques to track facial
and shoulder motion. Classification is performed by kernel
methods combined with ensemble learning techniques. We
investigated two aspects of multimodal fusion: the level of
abstraction (i.e., early, mid-level, and late fusion) and the
fusion rule used (i.e., sum, product and weight criteria). Ex-
perimental results from 100 videos displaying posed smiles
and 102 videos displaying spontaneous smiles are presented.
Best results were obtained with late fusion of all modalities
when 94.0% of the videos were classified correctly.

Categories and Subject Descriptors
I.2.10 [Vision and scene understanding]: [Video analy-
sis]; H.1.2 [User/Machine systems]: [Human information
processing, Human Factors]

General Terms
Human Factors, Algorithms, Experimentation

Keywords
Human information processing, Deception detection, Multi-
modal video processing
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1. INTRODUCTION
Human-to-human interaction is multimodal. People natu-

rally communicate multimodally by means of language, tone,
facial expression, gesture and head movement, body move-
ment and posture and possess a refined mechanism for the
fusion of these data. To date, machines are not well able to
emulate this ability.

Psychological research findings suggest that humans rely
on the combined visual channels of face and body more than
any other channel when they make judgements about human
communicative behaviour [2]. However, most of the existing
expression analysers are monomodal and target human fa-
cial affect analysis, only learning to recognise a small set of
prototypical emotional expressions [18]. To facilitate the de-
tection of subtle facial signals like a frown or a wink instead
of prototypical expressions several research groups have be-
gun research on machine analysis of facial muscle actions.
These atomic facial signals, or AUs, are defined in the Fa-
cial Action Coding System (FACS, [12]). Every possible fa-
cial expression can be described as a specific combination of
AUs. A number of promising prototype systems have been
proposed recently that can recognise 15 to 27 different AUs
(from a total of 44 AUs) in either (near-) frontal view or
profile view face image sequences [18].

In addition, independently of whether the approach is AU-
or affect-oriented, most of the past work on automatic fa-
cial expression analysis is aimed at the analysis of posed
(i.e., volitionally displayed) facial expression data. Only re-
cently few works have been reported on machine analysis of
spontaneous facial expression data (e.g. [3, 27]). However,
to the best of our knowledge, no vision-based system ex-
ists yet that is based on FACS, takes multiple behavioural
cues into account (e.g., facial, head an shoulder gestures),
and automatically discerns between posed and spontaneous
expressions.

Overall, computer vision and human-computer interaction
(HCI) communities have not adequately exploited the ex-
pressive information carried by the body modality [15]. At-
tempts to recognise affective body movements are few and
efforts are mostly on the analysis of posed body actions with-
out considering the facial actions (e.g., [6]). Static postures
of acted emotions were recorded by De Silva et al. [25] using
a motion capture system, but the authors did not attempt
to recognise the postures automatically.

Although it has been commonly stated that reliable as-
sessment of human affect requires the concurrent use of mul-
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tiple modalities [15], relatively few works have focused on
implementing affect recognition systems using multimodal
data [19]. Gunes and Piccardi [13] presented an approach
to bimodal recognition of posed expressions of emotions by
recording face and body gestures simultaneously using two
cameras. Kapoor and Picard focused on the problem of de-
tecting the level of interest in a child who is solving a puz-
zle [16]. They combined sensory information from the face
video, the posture sensor (a chair sensor) and the game be-
ing played in a probabilistic framework. Karpouzis et al. [17]
fused data from facial, bodily and vocal cues using a simple
recurrent network to detect emotions. Cohn et al. [7] con-
ducted a multimodal analysis of spontaneous smiles, com-
paring data from the face and the head modalities. However,
in that study no fusion of the data was carried out. The ma-
jor findings reported by these works were: when recognis-
ing affective states from multimodal nonverbal data, body
gestures or postures provide better information than other
modalities (i.e., face), and the fusion of multiple modalities
significantly outperforms classification using the individual
modalities [13, 16].

This paper reports on a method for automatic, multi-cue
discrimination between posed and spontaneous smiles. We
focus on smiles because of their importance in human devel-
opment and communication. Developmentally, smiles are
one of the first emotion expressions to appear, they oc-
cur with relatively high frequency throughout the lifespan
and they express a multitude of meanings, including joy,
appeasement and greetings, and they often serve to mask
anger, disgust, and other negative emotions.

In our study, we explore the following three issues: Firstly,
we want to know what the relative importance of the face,
the head and the shoulders are for the problem of posed vs.
spontaneous smile recognition. It is widely accepted that
facial expressions reveal whether a display of affect is posed
or genuine [8, 10, 14]. However, there is no such consensus
when it comes to the relevance of bodily motion.

Darwin argued that because our bodily actions are easier
to control on command than our facial actions, the infor-
mation contained in the signal of body movements should
be less significant than the face, at least when it comes to
discerning spontaneous from posed behaviour [10]. Ekman
however, argued that people do not bother to censor their
body movements [10] and therefore, the body would be the
more ‘leaky’ source. Furthermore, research in nonverbal be-
haviour and communication theory stated that truthful and
deceptive behaviour differ from each other in lack of head
movement [5] and lack of illustrating gestures which accom-
pany speech [9]. Therefore, we expect to find valuable infor-
mation concerning the nature of a nonverbal expression (i.e.,
posed or spontaneous) in head and shoulder movements as
well as in facial actions.

Secondly, we want to investigate the importance of the
temporal dynamics of nonverbal behaviour for the problem
of posed vs. spontaneous smile recognition. The body of re-
search in cognitive sciences which suggests that the temporal
dynamics of human facial behaviour are a critical factor for
interpretation of the observed behaviour, is large and grow-
ing [1, 4, 14]. They are the key parameter in differentiation
between posed and spontaneous facial expressions [10, 14].
For instance, it has been shown that spontaneous smiles, in
contrast to posed smiles, are slow in onset, can have multi-
ple AU12 apices (multiple peaks in the mouth corner move-

Figure 1: Illustration of the tracking procedure and
the points used to obtain the tracking data: (a-c)
for the head and shoulder modalities, and (d) for
the face modality.

ment), and are accompanied by other AUs that appear either
simultaneously with AU12 or follow AU12 within 1s [8]. For
the body modality, DePaulo et al. reported that deceivers’
body actions appeared overcontrolled and abrupt [9]. Based
on these findings, expect that the temporal dynamics will
play a significant role in the recognition of posed vs. spon-
taneous smiles.

Thirdly, we will look into the effect that different multi-
modal data fusion strategies have on the classification ac-
curacy of posed and spontaneous smiles and compare these
with monomodal classification results. The fusion strategies
differ from each other mainly in two aspects: the abstraction
level of the used features and the way classification results
are combined.

The remainder of this paper is organised as follows. Sec-
tion 2 presents the various techniques employed for track-
ing the movement of the head, facial features, and shoul-
ders. Section 3 describes how the recognition of the temporal
phases (onset, apex offset) of these modalities is achieved.
Section 4 discusses the strategies used for fusing the ex-
tracted data. Section 5 provides the experimental results
and Section 6 presents the conclusions drawn from the study.

2. TRACKING
We employ a different tracker for each modality: a Cylin-

drical Head Tracker to track the head motion [29], Parti-
cle Filtering with Factorised Likelihoods to track 12 fiducial
points in the face [20, 21], and Auxiliary Particle Filtering
to track the shoulders motion [22]. Fig. 2 shows the facial
and shoulder points that we track.

To capture the head motion we employ the Cylindrical
Head Tracker developed by Xiao et al. [29]. The head
tracker estimates the six degrees of freedom of head motion:
horizontal and vertical position in the scene, distance to the
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Figure 2: Tracked points Tf1 . . . Tf12 of the face and
tracked points Ts1 . . . Ts5 of the shoulders.

camera (i.e. scale), pitch, yaw and roll. This is denoted as
the set of parameters Th = {Th1 . . . Th6} with dimensions
n ∗ 6. Here n is the number of frames of the input image.
A cylindrical head model is manually fitted to the initial
face region (see Fig. 1), and the face image is cropped and
projected onto the cylinder as the template of head appear-
ance. For any given subsequent frame, the face template
is projected onto the image plane assuming that the pose
has remained unchanged from the previous frame. Then,
the difference between the projected image and the current
frame is computed, providing the correction of the estimated
head pose.

To capture all facial motion that is characteristic for smiles,
we track four points on the mouth and eight points in the eye
region (see Fig. 2). For the mouth we track the mouth cor-
ners, the upper, and the lower lip. For the eyes we tracked
the inner and outer eye corners as well as the upper and
lower eyelids. The algorithm we used to track these fa-
cial points is Particle Filtering with Factorised Likelihoods
(PFFL) [20]. The facial points are located in the first frame
using an automatic facial point detector [28]. The size of
all the faces are scaled using the interocular distance (IOD),
defined as the distance between the inner eye points. We
used the head tracker data to register the images so that
the face has the same pose in every frame. We subsequently
track each colour template in the rest of the image sequence
with the PFFL algorithm. We used the observation model
proposed in [21], which is both insensitive to variations in
lighting and able to cope with small deformations in the tem-
plate. This polymorphic aspect is necessary as many areas
around facial points change their appearance when a facial
action occurs (e.g. the mouth corner in a smile). The facial
point tracking scheme results for every image sequence in a
set of points Tf = {Tf1 . . . Tf12} with dimensions n ∗ 12 ∗ 2.

The motion of the shoulders is captured by tracking 2
points on each shoulder and one stable point on the torso,
usually just below the neck (see Fig. 2). The stable point
is used to remove any rigid motion of the torso (see section
4). We use standard Auxiliary Particle Filtering (APF) [22]
instead of PFFL because it is less complex and faster than
PFFL, it does not require learning the model of prior proba-
bilities of the relative positions of the shoulder points, while
resulting in sufficiently high accuracy. The shoulder tracker

results in a set of points Ts = {Ts1 . . . Ts5} with dimensions
of n ∗ 5 ∗ 2.

3. TEMPORAL SEGMENTATION
A face or body action can be in any one of four possible

phases: (i) the onset phase, where muscles are contracting
and the changes in appearance are growing stronger, (ii)
the apex phase, where the face/body action is at a peak
and there are no more changes in appearance due to this
particular action, (iii) the offset phase, where the muscles
responsible for the face/body action are relaxing and the
face/body returns to its original, neutral appearance, and
(iv) the neutral phase, where there are no signs of activation
of the investigated face/body action.

According to [8, 10, 27], timing, duration and speed of
facial actions are highly important cues for distinguishing
posed from spontaneous facial expressions. Especially the
speed at which a facial expression develops or diminishes
during respectively the onset and offset phases has proved
to be highly discriminative. In section 4 we will define these
cues in terms of the speed of tracked points or, in the case
of the head, the angular and translational velocity of the
entire head. In order to be able to compute these cues, or
attributes, separately for the onset, apex and offset temporal
segments of a face/body action, we first need to know when
every temporal segment of every modality begins and ends.

For the recognition of the temporal segments of the face,
we adopted the method proposed in [26]. This method com-
putes for every frame of an input face video a set of spatio-
temporal attributes based on the tracked facial points, which
are then passed on as input to a multiclass classifier that de-
cides what temporal segment of what AU the frame belongs
to. The multiclass classifier used is a one-vs-one Gentle Sup-
port Vector Machine (GentleSVM). We detect temporal seg-
ments for AU6, AU12 and AU13. This segmentation results
in a number of mf = mAU6 + mAU12 + mAU13 temporal
segments for the face modality.

The temporal segments of the head and the shoulder modal-
ities are obtained using a rule-based expert system as we do
not have the manually labelled temporal segment data for
these modalities based on which an automatic detector could
be trained. The temporal segments are found as follows. We
only consider one action to be possible for the head and the
shoulders, that is we only check if the head or the shoulders
are in their neutral position or not. Given the displacement
of an arbitrary time series z of vectors with length n:

δ(z, t) = z(t) − z(1) (1)

we find:

qb1(t) = ‖δ(b1, t)‖ (2)

rb1(t) = ‖d(b1, t)‖/dt (3)

qb2(t) = ‖δ(b2, t)‖ (4)

rb2(t) = ‖d(b2, t)‖/dt (5)

where b1 = {Th4, Th5, Th6} is the time series of pitch, roll
and yaw and b2 = {Th1, Th2, Th3} is the vector of the head
positions. Both are subsets of Th. Now, for each time t we
say that the head is in its neutral phase if both the angle
difference and the head translation are close to zero, that
is, IFF qb1 < θ1 AND qb2 < θ2. If the head is not in its
neutral phase, we continue to check whether the head is in
its apex phase, that is, whether the angular velocity or the
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translational velocity are sufficiently close to zero. This is
the case IFF rb1 < θ3 AND rb2 < θ4. If the head is neither
in its neutral nor in its apex phase, we check the sign of the
first derivative to time of the angular motion d(δ(rb1, t))/dt
and the current position of the head. If the head is moving
away from it’s neutral position, we assign the onset phase,
otherwise we assign the offset phase. This results in mh

temporal segments for the head modality.
To find the temporal segments for the shoulders, we use

the same strategy as for the head. Now, h1(t) denotes the
angle made by the horizontal axis and the line connect-
ing shoulder points Ts1 and Ts2 at time t and h2(t) is the
angle made by the horizontal axis and the line connecting
shoulder points Ts3 and Ts4 at time t. This results in ms

temporal segments for the shoulder modality, and in total
m = mf + mh + ms temporal segments for all modalities
together. The values of the thresholds δ1 . . . δ4 were found
using cross validation during training.

4. FUSION STRATEGIES
As outlined in the introduction, one of the goals of this

paper is to investigate the effects on the recognition per-
formance by using different abstraction levels of the feature
definition, different abstraction levels of the classification
schemes, and different fusion rules. In order to achieve this,
we implement three different fusion strategies to tackle the
problem of multimodal posed vs. spontaneous smile recog-
nition; early, mid-level and late fusion. We distinguish two
types of features. Early fusion uses low-abstraction features
while mid- and late level fusion use high-abstraction fea-
tures.

4.1 Early fusion
In early fusion, the elementary attributes of each modality

are combined into one low-abstraction feature vector, which
serves as the input to one classifier. In our case, the el-
ementary attributes are simple operations on the tracking
data, such as the distances between two tracked points or
the angular velocity of the pitch of the head. Features are
computed and passed to the classifier on a per-frame basis,
resulting in a time-series of classification predictions y with
length n for every input video.

From the head modality we simply used the output from
the tracker (see section 2), fh = Th.

From the face modality, we concatenated the x - and y-
values of all tracked points, the distances between all pairs
of points and the angles between the line connecting two
points and the horizontal axis:

ff (t) = {Tf1,x(t), Tf1,y(t), . . . , Tf12,y(t),

η(Tf1(t), Tf2(t)), . . . , η(Tf11(t), Tf12(t)),

α(Tf1(t), Tf2(t)), . . . , α(Tf11(t), Tf12(t))} (6)

where Tfi,d(t) is the value of tracked point i at time t for di-
mension d (either x or y), α(p1, p2) denotes the angle defined
by the line connecting two points and the horizontal axis,
and η(p1, p2) denotes the Euclidean distance between two
points. For the shoulder modality, we defined the feature
vector as follows:

fs(t) = {α(Ts1(t), Ts2(t)), α(Ts4(t), Ts3(t),

[δ(Ts1,y, t) + δ(Ts2,y, t)], [δ(Ts3,y, t) + δ(Ts4,y, t)]} (7)

See Fig. 2 for the numbering of the shoulder points. To
obtain our final feature vector used in early fusion, we first
concatenated the above attributes as f = {fh, ff , fs}. Then,
we defined

Fe(t) = {f(t), d(f(t))/dt, δ(f, t)} (8)

In this definition of our features, we denominated the first
term of the right hand side of eq.(8) as the static features
and the second and third terms as the dynamic features.

The feature vector Fe(t) serves as input to a GentleSVM-
Sigmoid classifier. This tandem arrangement of feature se-
lection using GentleBoost and classification using SVMs has
been shown to attain high classification rates [26]. Unfortu-
nately the output of an SVM is not a good measure for
the posterior probability of its prediction. Therefore we
pass the output of the SVM to a sigmoid function that has
been shown to provide a reasonable measure for the poste-
rior probability [23]. We will refer to this feature selection-
classifier combination as a GentleSVM-Sigmoid classifier.
The vector Fe(t) provides the tth element of the time series
of predictions y. Under a Maximum-a-Posteriori (MAP)
approach, y(t) must be assigned to one of the two possi-
ble classes (posed or spontaneous), according to maximum
posterior probability.

4.2 Mid-level fusion
Mid-level fusion attains a higher level of data abstraction

within every modality, yet we still fuse all attributes into
one vector, and use only one classifier. Often the elemen-
tary attributes of early fusion are used to define a set of
abstract symbols (such as AUs), or they are used to com-
pute more heuristic features. In our approach, we transform
the elementary attributes derived previously into both sym-
bols and higher level features. The symbols we derive at this
stage are the temporal segments of AU6, AU12 and AU13
and the temporal segments of the head and shoulder action.
We refer to the combination of symbols and higher level fea-
tures as the high-abstraction features.

For each temporal segment, we define attributes based
on the works of Cohn and Schmidt, Ekman, and Valstar
et al. [8, 10, 27]. These include the morphology, speed,
symmetry, duration, apex overlap (i.e., number of frames
that two actions are in apex simultaneously), trajectory of
a face/body action and the order in which the temporal
segment of the different face/body actions occur. Similar to
the case of early fusion, we concatenate the attributes of all
modalities into one vector, which serves as the input to a
GentleSVM-Sigmoid classifier.

Because the GentleSVM-Sigmoid classifier requires the in-
put vectors to be of the same length, we were forced to
change our definition of the temporal segments. Face/body
actions frequently have multiple apices before returning to
its neutral position. We decided to force any sequence of
temporal segments into the temporal pattern onset-apex-
offset. To do so, we chose the apex segment with the longest
duration as the apex phase of our new forced temporal pat-
tern. The beginning of the new — forced — onset is chosen
as the first non-neutral frame before the apex. Conversely,
the end of the new forced offset is chosen as the last non-
neutral frame after the apex phase. The neutral segments
are discarded as, by definition, they should not contain any
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information. This results in k forced temporal segments for
all modalities.

When enforcing this particular temporal pattern, infor-
mation about the original temporal pattern of the symbols
is lost. In order to retain some of this information, we com-
pute a number of concurrency attributes M for every video.
The concurrency feature vector M is computed before we
enforce the new temporal pattern and contains the duration
of all symbols, the order in which the symbols are activated
and the duration of overlap of the symbols.

We thus define for every temporal segment of the forced
pattern the following set of features. For each segment of
a face action (either AU6, AU12, or AU13) or shoulder ac-
tion (motion) we define the mean/max displacement and
the mean/max velocity of the tracked properties during that
segment as:

gsymbol,segment =

( Ptm
t=t1

δ(T, t)

tm + 1 − t1
, max

t=t1...tm
δ(T, t),

Ptm
t=t1

d(T (t))/dt

tm2 + 1 − t1
, max

t=t1...tm
d(T (t))/dt

)

(9)

where t1 and tm are the first and the last frames of a tem-
poral segment, respectively. T is the tracking data of the
eye points when considering AU6, the mouth points when
considering AU12 or AU13, the head tracking when con-
sidering head action, and the shoulder tracking data when
considering shoulder action. Additionally, for the face and
shoulder modalities we compute the asymmetry value a. For
the head modality, we define a to be an empty set. The fi-
nal feature vector for mid-level fusion is thus found as the
union of M , g and a for all symbols S ={AU6,AU12,AU13,
head action, shoulder action} and for all forced temporal
segments R ={onset, apex, offset}:

Fm =

8

<

:

[

i∈S,j∈R

(gi,j),
[

i∈S,j∈R

(ai,j), M

9

=

;

(10)

Because the values of all features depend on the time pa-
rameters t1 and tm we consider all mid-level parameters to
be temporal dynamic.

Given the feature vector Fm, where Fm describes an en-
tire smile, we again use a GentleSVM-Sigmoid classifier to
predict the class of the video under the previously described
MAP approach.

4.3 Late fusion
Late fusion is similar to mid-level fusion in the sense that

we again attain a high level of data abstraction within every
modality. However, in the case of late fusion we also attain
a higher level of abstraction for the classification procedure,
computing a separate posterior probability for each tempo-
ral segment. This removes the need to enforce the strict
onset-apex-offset temporal pattern used in mid-level fusion.
Indeed, we will use all m temporal segments, collected from
all modalities. In this way we obtain a variable number of
predictions y for every video. This enables the system to
discard a modality when needed (e.g., when the shoulders
move out of view), as the fusion rules we employ are invari-
ant to the number of inputs. We compute a concurrency
feature vector M that contains the duration of all temporal
segments each modality, the order in which the segments

Table 1: Description of the three late fusion criteria
used: sum, product and weight.

sum k = argmax2

k=1
p(wk|Ffl + Fhl + Fsl)

product k = argmax2

k=1
p(wk|Ffl ∗ Fhl ∗ Fsl)

weight k = argmax2

k=1
σfp(wk|Ff )

+σhp(wk|Fhl) + σsp(wk|Fsl)

are activated and the overlap of the apex phases of every
combination of symbols.

Every temporal segment from every symbol generates one
feature vector. This vector is defined as:

Fl(i) = {g(i), a(i)} (11)

where i is a temporal segment. Again, all features are con-
sidered dynamic. Each feature vector Fl(i) is used as input
to the appropriate GentleSVM-Sigmoid classifier. That is,
we train a different classifier for every temporal segment type
for every symbol. Thus we train one GentleSVM-Sigmoid for
the onset phase of AU12, one for the apex phase of shoulder
actions, etc. A separate classifier is trained for the con-
currency attributes. The vector Fl(i) then provides the ith

element of predictions y. After achieving this, the general
approach of late fusion of the individual classifier outputs
can be described as follows.

The time series y represents the whole image sequence
and Fl = (Ffl, Fhl, Fsl) represent the overall feature vec-
tors consisting of the face Ffl, head Fhl, and shoulder Fsl

feature vectors. Under a Maximum-a-Posteriori (MAP) ap-
proach, y must be assigned to one of the two classes (w1, w2),
having maximum posterior probability p(wk|y). Once the
posterior probabilities per modality per temporal segment
are obtained by again passing the output of the SVM to
a sigmoid function as proposed by Platt [23], late fusion
is applied. The three separate classifiers provide the pos-
terior probabilities p(wk|Fhl), p(wk|Ffl) and p(wk|Fsl) for
the head, face and shoulder modalities, respectively, to be
combined into a single posterior probability p(wk|y) with
one of the fusion methods described in Table 1. Note that
the weights are derived from the classification results on the
training data during cross validation.

5. RESULTS
We evaluated the three fusion approaches on 100 videos

of posed smiles and 102 videos of spontaneous smiles using
10-fold cross-validation. The videos were taken from the
MMI-facial expression database. All videos were recorded
from a near-frontal view, under controlled lighting condi-
tions. During the recordings, the subjects for the posed
dataset were asked to show a series of facial actions, one of
which was a smile. The subjects in the spontaneous videos
were recorded while watching cartoons or clips of nauseat-
ing footage for about 10 minutes. All videos were edited
to ensure that they contained exactly one smile. Multiple
apices were allowed, the video was only cut when the face
had returned to its neutral phase.

Table 3 shows the classification results for all fusion strate-
gies. To our best knowledge, the system presented here is the
first to propose discerning posed from spontaneous smiles by
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Table 2: Selected low-abstraction features to distin-
guish posed from spontaneous smiles.

Relevance Modality Feature definition

1 Face: δ(η(Tf3(t), Tf4(t)), t)
2 Shoulders: Tf2,y(t)
3 Face: δ(α(Tf1(t), Tf4(t)), t)
4 Head: Tf3,x(t)
5 Face: δ(Tf2,x(t), t)

Table 3: Classification, recall and precision rates for
the different fusion strategies employed.

Fusion strategy Cl. rate Recall Precision
Early 0.886 0.889 0.880

Mid-level 0.881 0.883 0.886
Late (sum) 0.931 0.956 0.920

Late (product) 0.940 0.964 0.933
Late (weight) 0.931 0.943 0.927

fusing video data from face, head and body actions. All re-
sults were obtained using 10-fold cross-validation. For the
purpose of computing the precision and recall, we consid-
ered spontaneous smiles to be the positive class. Overall we
can say that the proposed system works as desired, being
able to discern between posed and spontaneous smiles with
fairly high accuracy. There is no significant difference be-
tween early and mid-level fusion at a 5% significance level.
Late fusion does score significantly higher than early fusion
and mid-level fusion.

The high results for late fusion could be explained by two
factors. First there is the high classification abstraction.
Specialised classifiers are learnt to distinguish posed from
spontaneous smiles for each segment of a smile, i.e., during
the onset of head motion, the apex of a smile, etc. Because
all specialised classifiers return a posterior probability, the
fusion rule can then be used to generalise from the results
per segment of an action to the entire action (i.e. a smiling
face with its accompanying bodily action).

The second explanation for the high score for late fusion is
the high data abstraction. The low-abstraction features only
describe simple attributes: positions, distances and angles
of points. Moreover, they only describe those attributes at
one point in time — the frame for which they are defined.
The high-abstraction features capture more general physical
phenomena such as the duration of a temporal segment, the
average speed during onset and the order in which actions
occur.

To investigate what the relative importance of each modal-
ity was, we adapted the early fusion strategy. We per-
formed seven tests, each time using a different combination
of modalities. The results of this test are shown in Table 4.
For enhanced resolution, the results listed are computed per
frame basis, instead of per video. In addition, Table 5 pro-
vides a matrix showing which of the results were statisti-
cally different on a 5% significance level. When we regard
only single modalities (combinations I, II and III), the head
modality performs best according to our results. However,
the recognition rates between the separate modalities are not
significantly different at a 5% significance level (P = 0.05).
Early fusion of all modalities (combination VII) is signifi-

Table 4: Comparison of classification rate, recall and
precision of the different modalities separately and
fused.

Modality Cl. rate Recall Precision
I Face 0.812 0.841 0.868

II Head 0.822 0.823 0.916
III Shoulders 0.794 0.793 0.915
IV Face-Head 0.867 0.897 0.893

V Face-Shoulders 0.871 0.896 0.899
VI Head-Shoulders 0.845 0.861 0.899

VII All 0.895 0.919 0.916

Table 5: Matrix of statistical significant different
classification rates. Roman indices relate to the
modality combinations listed in table 4. A 1 indi-
cates statistically significantly different results.

I II III IV V VI VII
I 0 0 0 0 1 0 1
II 0 0 0 0 1 0 1
III 0 0 0 1 1 1 1
IV 0 0 1 0 0 0 0
V 1 1 1 0 0 0 0
VI 0 0 1 0 0 0 1
VII 1 1 1 0 0 1 0

cantly better then any of the single-modality combinations.

To further investigate the relevance of the different modal-
ities, we performed an analysis of the features selected by
GentleBoost. For early fusion, 62% of the selected features
originated from the face modality, 16% from the head modal-
ity, and 22% origined from the shoulder modality. For mid-
level fusion, 40% of the features came from the face modal-
ity, 40% from the head modality, 13,3% from the shoulder
modality and 6,7% of the selected features origined from the
concurrency features (which span all modalities). For early
fusion GentleBoost selected 45 low-abstraction features, of
which the first 5 are listed in Table 2. The first 5 selected
features for mid-level fusion are listed in Table 7.

In late fusion, feature selection takes place in the sepa-
rate classifiers specialised for each temporal phase of each
modality so a comparison of the selected features is not fea-
sible. However, we might learn something from the classi-
fication performance of the specialised classifiers. Table 6
lists the classification results attained when we use only one
specialised classifier to classify an entire video into a posed
or a spontaneous smile. From this table, we can read two
things: first, the head modality seems to be most reliable in
late fusion. Second, the offset phase seems to carry the least
information.

Table 6: Classification rates for the specialised clas-
sifiers used in late fusion. There is no temporal
phase associated with the concurrency classifier.

Onset Apex Offset
Face 0.719 0.612 0.451
Head 0.781 0.826 0.742

Shoulders 0.752 0.766 0.638

Concurrency 0.781
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Figure 3: Mean velocity of the right mouth corner in
x-direction during onset (x-axis) vs. mean velocity
of the right mouth corner in x-direction during offset
(y-axis). Crosses denote spontaneous smiles.

Based on the results for feature selection and the results
of combinations of modalities, given our data, we might con-
clude that the head is the most important modality for dis-
tinguishing between posed and spontaneous smiles. This is
in agreement with both other HCI works [13, 16] and cogni-
tive scientists’ works [5, 11]. But more importantly, the re-
sults show that the modalities complement each other. The
result of all modalities combined (the fused result, same as
the early-fusion result of table 3) is significantly better at
P = 0.05 than any of the other modalities separately. This
confirms our hypothesis that a multimodal approach bene-
fits posed vs. spontaneous smile detection.

To answer our question regarding the relevance of tem-
poral dynamics for automatic multimodal posed vs. spon-
taneous smile recognition, we again provide an analysis of
the feature selection process. Table 2 shows all the selected
features for low-abstraction features and Table 7 those for
high-abstraction features, including the modality that the
feature originated from. In the case of high-abstraction fea-
tures, the originating temporal segment is listed as well. For
early fusion, 24.4% of the selected features were static fea-
tures, while 75.6% of the features were dynamic features.

While the fraction of static features was greater then we
expected, we can still clearly see that the temporal dynamics
are the most important features for automatic multimodal
posed vs. spontaneous smile recognition. This is also re-
flected in the high classification results of late fusion, which
uses only temporal dynamics. Fig. 3 shows a scatter plot of
the mean velocity of the right mouth corner in x-direction
during onset and offset. As we can see, spontaneous smiles
have both a slower onset and a slower offset, consistent with
the cognitive sciences’ findings [8].

Ekman predicted that the asymmetry of facial actions is
an indicator for distinguishing posed from spontaneous ex-
pressions [10]. We did not find any evidence for this however,
only one of the selected high-level features was an asymme-
try feature. Although this observation is in disagreement
with Ekman’s findings, the same lack of correlation between
asymmetry and the nature of the expression was previously
reported by Schmidt et al. [24].

Table 7: Selected high-abstraction features to dis-
tinguish posed from spontaneous smiles.

Rel. Mod./seg. Feature
1 onset head: mean angular velocity
2 concurrency: order apex shoulders
3 apex head: max translational displ.
4 apex head: mean angular velocity
5 apex shoulders: max angular velocity of left shoulder

6. CONCLUSION
We have shown that our proposed multimodal approach to

automatic distinction between posed and spontaneous smiles
is extremely accurate. From the results presented, it is clear
that fusing video data from the face, head and shoulders
increases the accuracy. This is in agreement with the body
of work in cognitive sciences indicating that humans leak
their intentions not only through facial expressions, but also
through their body language. It is hard to say which modal-
ity is the most important. The results seem to indicate that
the head is the most reliable source, followed closely by the
face. However, more experiments are needed to confirm this.
Dynamic attributes are clearly more important than static
ones. This can be seen from the large number of dynamic
features selected during early fusion, as well as from the
high results for late fusion. Regarding the different fusion
strategies, late fusion clearly performs best. The first rea-
son for this is that with late fusion we are able to decompose
the problem in smaller subproblems, for which we can train
specialised classifiers. Another major benefit of late fusion is
the use of high-abstraction features, which encode important
temporal dynamic attributes of human nonverbal behaviour.
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