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ABSTRACT
Previous research on automatic laughter detection has mainly
been focused on audio-based detection. In this study we
present an audio-visual approach to distinguishing laugh-
ter from speech based on temporal features and we show
that integrating the information from audio and video chan-
nels leads to improved performance over single- modal ap-
proaches. Static features are extracted on an audio/video
frame basis and then combined with temporal features ex-
tracted over a temporal window, describing the evolution of
static features over time. The use of several different tem-
poral features has been investigated and it has been shown
that the addition of temporal information results in an im-
proved performance over utilizing static information only. It
is common to use a fixed set of temporal features which im-
plies that all static features will exhibit the same behaviour
over a temporal window. However, this does not always hold
and we show that when AdaBoost is used as a feature se-
lector, different temporal features for each static feature are
selected, i.e., the temporal evolution of each static feature is
described by different statistical measures. When tested on
96 audiovisual sequences, depicting spontaneously displayed
(as opposed to posed) laughter and speech episodes, in a
person independent way the proposed audiovisual approach
achieves an F1 rate of over 89%.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: Pattern Recognition—
Applications; J.m [Computer Applications]: Miscella-
neous

General Terms
Algorithms
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Audiovisual data processing, laughter detection, non-linguistic
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1. INTRODUCTION
Interpersonal communications are regulated by audiovi-

sual feedback provided by the involved parties. There are
several channels through which the feedback can be pro-
vided with the most common being speech. However, spo-
ken words are highly person and context dependant [5], so
speech recognition and extraction of semantic information
about the underlying intent is a very challenging task for ma-
chines [28]. Other channels which provide useful feedback in
human-human interactions include facial expressions, head /
hand gestures and non-linguistic vocalizations. While there
are numerous works on automatic recognition of facial ex-
pressions and head/hand gestures, automatic recognition
of non-linguistic vocalisations remains an unexplored area.
Scherer [20] defines non-linguistic vocalizations as very brief,
discrete, nonverbal expressions of affect in both face and
voice. People are very good at recognizing emotions just
by hearing such vocalizations [21], which suggests that rich
information related to human emotions is encoded by these
vocalizations. For example, laughter is a very good indicator
of amusement and crying is a very good indicator of sadness.

One of the most important non-linguistic vocalizations is
laughter, which is reported to be the most frequently an-
notated non-verbal behaviour in meeting corpora [10]. In
the same work it is reported that 8.6% of the time when a
person vocalizes in a meeting is spent on laughing. Laugh-
ter is a powerful affective and social signal since people very
often express their emotion and regulate conversations by
laughing [19]. In human - computer interaction (HCI), au-
tomatic detection of laughter can be used as a useful cue for
detecting the user’s affective state and conversational sig-
nals such as agreement and, in turn, facilitate affect-sensitive
human-computer interfaces [13]. Also, semantically mean-
ingful events in meetings such as topic change or jokes can
be identified with the help of a laughter detector. In addi-
tion, such a detector can be used to recognize segments of
non-speech in automatic speech recognition and for content-
based video retrieval.

Few works have been recently reported on automatic laugh-
ter detection. The main characteristic of these studies is that
only audio information is used, i.e., visual information car-
ried by facial expressions of the observed person is ignored.
Existing approaches to laughter detection include the work
of Lockerd and Mueller [11] and Cai et al. [1], who used spec-
tral/cepstral coefficients and HMMs for laughter detection,
the work of Campbell et al. [2], who used phonetic features
and HMMs to detect four types of laughter, and the work of
Kennedy and Ellis [9], who trained Support Vector Machines
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(SVM) with Mel-Frequency Cepstral Coefficients (MFCCs)
and delta MFCCs. The most extensive study in this area
was made by Truong and Leeuwen [24], who compared the
performance of different auditory frame and utterance level
features using different classifiers and different combinations
thereof. To the best of our knowledge, four approaches have
been proposed so far that are based on audiovisual informa-
tion [8], [15], [16], [18]. Ito et al. [8] built an image-based
laughter detector based on spatial locations of facial feature
points and an audio-based laughter detector based on MFCC
features. The two individual detectors are fused on decision
level achieving 80% average recall rate using 3 sequences of 3
subjects in a person dependent way. Reuderink [18] used vi-
sual features based on principal components analysis (PCA)
and RASTA-PLP features for audio processing. Gaussian
mixture models and support vector machines were used as
classifiers which were fused on decision level obtaining an
equal error rate of 14.2%. Petridis and Pantic [15], [16] used
spectral features and prosodic features together with visual
features based on PCA as the audio and visual features re-
spectively. Both decision- and feature-level fusion were used
which outperformed single-modal detectors, achieving over
90% recall in a person-independent test.

In this paper, we present an audiovisual approach to dis-
criminating laughter episodes from speech episodes based on
temporal features, i.e. features which describe the evolution
of static features over time. Our research on an audiovi-
sual approach rather than an audio-only approach to laugh-
ter recognition is mainly driven by research on audiovisual
speech and affect recognition that reported improved perfor-
mance over audio-only speech/affect recognition [17], [28].
We should note that we use only spontaneous (as opposed
to posed) displays of laughter and speech episodes from the
audiovisual recordings of the AMI meeting corpus [12] in
a person-independent way which makes the task of laugh-
ter detection even more challenging [28]. We compare the
performance of different temporal features for both single-
modal and audiovisual detectors. Our results show that each
static feature is best described in time by the combination of
several temporal features (which are different for each static
feature) rather than a fixed set of temporal features applied
to all static features. We used decision and feature level
fusion and found that their performance is equivalent when
temporal features are used. Our results also show that au-
diovisual laughter detection outperforms single-modal (au-
dio / video only) laughter detection, attaining an F1 rate of
over 89%.

2. DATASET
Posed expressions may differ in visual appearance, audio

profile, and timing from spontaneously occurring behavior.
For example, spontaneous smiles are smaller in amplitude,
longer in total duration, and slower in onset and offset time
than posed smiles [26]. It is also believed that spontaneous
smiles exhibit the characteristics of automatic movement,
i.e. the motor routines seem to be pre-programmed [3].
On the other hand, posed smiles are less likely to exhibit
characteristics of pre-programmed motor routines, because
they are mediated by greater cortical involvement [3]. It is
reasonable to believe that this finding is also true for other
expressions apart from smiles. In conclusion, it is widely be-
lieved that spontaneous expressions may significantly differ
from posed expressions. Evidence supporting this hypothe-

sis is provided by the significant degradation in performance
of tools trained and tested on posed expressions when ap-
plied to spontaneous expressions. This is the reason we only
used spontaneous expressions in this study.

The AMI Meeting Corpus is an ideal dataset for our task
since it consists of 100 hours of meetings recordings where
people show a huge variety of spontaneous expressions. We
only used the close-up video recordings of the subject’s face
(720 x 576 pixels, 25 Frames Per Second (FPS) ) and the re-
lated individual headset audio recordings (16 kHz). The lan-
guage used in the meetings is English and the speakers are
mostly non-native speakers. For our experiments we used
seven meetings (IB4001-IB4011) and the relevant recordings
of eight participants (6 young males and 2 young females) of
Caucasian origin with or without glasses and no facial hair.

All laughter and speech segments were pre-segmented based
on audio. Initially, laughter segments were selected based on
the annotations provided with the AMI Corpus. After ex-
amining the extracted laughter segments we only kept those
that do not co-occur with speech and laughter is clearly au-
dible. Speech segments were also determined by the anno-
tations provided with the AMI Corpus. We selected those
that do not contain long pauses between two consecutive
words. In total, we used 40 audio-visual laughter segments,
5 per person, with a total duration of 58.4 seconds (with
mean duration µ = 1.46 seconds and standard deviation σ
= 1.09 seconds) and 56 audio-visual speech segments with
a total duration of 118.08 seconds (with mean duration µ =
2.11 seconds and standard deviation σ = 1.09 seconds).

3. SYSTEM OVERVIEW
As an audiovisual approach to laughter detection is in-

vestigated in this study, information is extracted simultane-
ously from the audio and visual channel. For each channel
the following two types of features are used:
Static: Static features are computed for each audio / video
frame based on information provided by the current frame
only and ignoring any past information.
Temporal: Temporal features are computed for each audio
/ video frame but information is extracted from a temporal
window of duration T ending at the current frame. This
is equivalent with using a sliding window of duration T for
extracting the temporal features which moves forward one
frame at a time. In this way, not only the current state
of the frame is taken into account but also its history, i.e
how it reached the current point. In this way we capture
some temporal characteristics of displayed audiovisual be-
havioural cues which seem to be very important for inter-
pretation of human behaviour, as argued in psychological
literature (e.g., [19]). For both audio and video we compare
4 different temporal feature sets.

1. PCA-based: One of the most common approaches to
extract features from temporal windows is to stack all
the features together and then apply a dimensionality
reduction technique, like PCA or LDA, to reduce the
very high dimensionality. In this study, we extract the
audio / visual features for each audio / video frame
contained in the temporal window T and then we apply
PCA. We keep the first n principal components which
account for more than 90% of the variation. Therefore,
the information of the temporal window is encoded in
n temporal features.
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2. Mean and Standard Deviation: Again, we extract
the audio / visual features for each audio / video frame
contained in the temporal window T, and then com-
pute the mean and standard deviation of each feature.
A similar approach was used by Kennedy and Ellis [9]
but instead of considering a temporal window of length
T, they considered the whole laughter segment. We
prefer simple statistical features like mean and stan-
dard deviation following the findings presented in [22]
and given their good performance in [9]. Using this
approach the information of the temporal window is
encoded in 2 ∗ K temporal features, where K is the
number of static features per frame.

3. Polynomial Fitting: The values that features take
over the temporal window T, create a curve which can
be approximately described by a pth order polynomial.
This approach was successfully adopted by [25] for fa-
cial action unit detection. We experimented with lin-
ear, quadratic and cubic polynomials. The best re-
sults were obtained with a quadratic polynomial. Only
these results are presented in this paper. Therefore,
the evolution of each feature fk over the temporal win-
dow is described with 3 parameters, fk1, fk2 and fk3

as shown in eq. 1.

fk = fk1t
2 + fk2t + fk3, k ∈ [1...K] (1)

4. AdaBoost-based: When considering temporal fea-
tures, which describe the evolution of static features
over time T, it is common to apply the same set of func-
tions to all static features. In other words, the assump-
tion is made that the evolution of all static features in
time can be described in the same way. However, this
is not always true and it is reasonable to believe that
the temporal evolution of (some) static features will be
different. In order to capture those different character-
istics we consider a pool of features, which contain all
above-mentioned feature sets, together with the follow-
ing statistical features: median, 3rd and 4th moments,
1st and 3rd quantiles, kurtosis, skewness, and weighted
mean and standard deviations (samples which are fur-
ther away in time from the current frame are weighted
less than samples closer to the current time when the
mean and standard deviation are computed). Then,
we apply feature selection by means of AdaBoost. In
this way, we can keep the temporal features that best
describe the evolution of each static feature.

AdaBoost: AdaBoost is a machine learning technique and
is one of the most popular ensemble learning methods. Train-
ing occurs in N rounds, by incrementally adding weak learn-
ers to a final strong learner. AdaBoost can be used either
as a classification tool or as a feature selector [27]. In the
latter case, if a pool of M features is available and the weak
learner is restricted to use only one feature per round, then
Adaboost finds the best single feature in each round. In
other words, the feature used to train the best weak classi-
fier in round Ni is the best feature for that round. In this
way a feature set of the N best features will be available
after N rounds.

Details on how the static audio and visual features are ex-
tracted are presented in sections 4 and 5. Once the static and
temporal features are extracted for both modalities, then
they are fused with the two commonly used fusion methods,
decision level and feature level fusion.

Feature Level Fusion: The extracted audio and visual
features are combined and then fed to a classifier. Process-
ing of all features increases the dimensionality of the prob-
lem and makes the problem more complex since it requires
a large amount of training data. In addition, an important
issue that usually has to be addressed is that of the synchro-
nization of features coming from different modalities. Once
the features are synchronized, the most common approach
to feature level fusion, which is also used in this paper, is
their concatenation.
Decision Level Fusion: The most commonly used level of
fusion is decision level fusion, which is based on the fusion
of modalities on a higher level, i.e. each modality is pro-
cessed independently and then the final outputs are fused
using various integration rules. This approach does not re-
quire synchronization of features coming from different data
streams but the correlation between the features across dif-
ferent sources is lost.

4. AUDIO MODULE
The audio module is responsible for the audio signals pro-

cessing. It extracts features from the audio signal on a
frame-by-frame basis which are then used by the classifi-
cation algorithm. The features used in this study are the
Perceptual Linear Prediction (PLP) coefficients . Spectral
or cepstral features, such as PLP features [7], have been suc-
cessfully used for speech recognition. Although they were
designed for speech recognition applications they have been
also successfully used for laughter detection as well [24], [15].
Petridis and Pantic [16], for example, reported a higher suc-
cess rate in automatic laughter detection when using PLP
features than other prosodic features. The same result is also
reported by Truong and Leeuwen [24] who compared PLP
with other non-spectral features. e.g. pitch and energy. By
experimenting with the number of PLP coefficients we found
that the use of 7 PLP coefficients [16], instead of 13 which is
commonly used in speech recognition applications, leads to
better performance for the task of laughter detection. This
is also consistent with the finding of Kennedy and Ellis [9].
In [15], it was reported that a frame rate of 50 FPS with a
50% overlap has almost the same performance as when us-
ing higher frame rates. Therefore, the framerate of 50 FPS
was selected, i.e., the window size is 40ms and the step-
size is 20ms. In addition to the 7 PLP coefficients, their
delta features were calculated as well. The delta features
are calculated by a linear regression over a short neighbor-
hood around the target spectral feature. The slope of the
fitted line represents the derivative of the spectral feature
and therefore captures some local temporal characteristics.
In total, 14 auditory features are computed per frame.

5. VIDEO MODULE
The video module is responsible for the visual signals pro-

cessing. The first step is to track some characteristic facial
points, which will be used subsequently for feature extrac-
tion. Then a Point Distribution Model (PDM) is learnt with
the aim of decoupling the head movement from the move-
ment produced by the displayed facial expressions.

5.1 Tracking
To capture the facial expression dynamics, we track 20

facial points as shown in Fig. 1 in the video segments.
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Figure 1: PCA analysis of facial point tracking. Up-
per row: actually tracked facial points. Bottom
row: (left) 20 facial points after they have been re-
constructed using the first 6 principal components,
(right) 20 facial points after they have been recon-
structed using principal components 7 to 10.

These points are the corners / extremities of the eyebrows (2
points), the eyes (4 points), the nose (3 points), the mouth
(4 points) and the chin (1 point). To track these facial points
we used the Patras - Pantic particle filtering tracking scheme
[14]. The points were manually annotated in the first frame
of an input video and tracked for the rest of the sequence.
Hence, for each video segment containing K frames, we ob-
tain a set of K vectors containing 2D coordinates of the 20
points tracked in these frames.

5.2 Decoupling of Head and Face
While speaking and especially while laughing, people tend

to exhibit large head movements. It is even more so in
the case of our data since we use recordings of naturalis-
tic (spontaneous) expressions rather than deliberately dis-
played episodes of speech and laughter. As shown in [26]
large head movements typify spontaneous rather than acted
behaviour. Since we are interested in learning facial expres-
sion configurations typical for speech and laughter episodes,
we need to distinguish between changes in the location of fa-
cial points caused by facial expressions and changes caused
by rigid head movements. In other words, we need to decou-
ple head movements from facial expressions. To do so we use
a similar approach to that of Gonzalez-Jimenez and Alba-
Castro [6], in which Principal Component Analysis (PCA) is
used for decoupling, skipping the alignment of the shapes in
order to capture the head movement as well. This approach
is based on PDMs [4].

First, we concatenate the (x, y) coordinates of the 20
tracked points in a 40-dimensional vector. Then we use PCA
to extract 40 principal components (PCs) for all the frames
in the dataset. PCA is defined as an orthogonal linear trans-
formation that transforms the data to a new coordinate sys-
tem such that the greatest variance of the data comes to lie
on the 1st coordinate (i.e., 1st PC), the 2nd greatest vari-
ance on the 2nd coordinate, and so on. Given that in our
dataset head movements account for most of the variation
in the data, lower-order PCs are expected to reflect rigid-
movement aspects of the data while higher-order PCs are

expected to retain non-rigid-movement (facial expression)
aspects of the data. To test this assumption, we computed
the PCs for the whole dataset and then reconstructed the
position of the points in each frame by using different combi-
nations of the PCs with the help of the following equations:

b = (x− x)P (2)

x ≈ x̂ = x + bP T (3)

where P contains N out of the 40 eigenvectors, b is a N-
dimensional vector, x is the mean shape and x is the input
tracked points. With the help of eq. 2 we can compute the
shape parameters b and then the face can be reconstructed
using eq. 3. As can be seen from Fig. 1, it seems that indeed
the lower-order PCs (1 to 6) reflect rigid-movement aspects
of the data, while the higher-order PCs (7 - 10) reflect facial
expression aspects of the data. The same has been reported
by Gonzalez-Jimenez and Alba-Castro [6]. Ideally, we would
like that the first 6 PCs contain only rigid head motion infor-
mation whereas the other PCs (7-10) contain only non-rigid
facial motion. However, this claim cannot be made in a gen-
eral case as it depends on the training data used to built
the PDM. As shown in [16] the head pose does not contain
useful information therefore only the PCs 7 to 10 were used.

6. EXPERIMENTAL STUDIES
In order to investigate which temporal features are most

informative for the task at hand, we conducted several ex-
perimental studies by using different temporal features for
audiovisual laughter detection as well as for audio-only- and
video-only-based laughter detection. In all the experiments
we performed leave-one-subject-out cross validation, using
in every validation fold all samples of one subject as test
data and all other samples as training data. Then the re-
sults obtained in each fold are averaged in order to get the
final results. In this way it is guaranteed that the obtained
results are subject independent. Since neural networks are
used as classifiers, each time a cross-validation loop runs,
the obtained results are slightly different due to different
initialization conditions. The results presented in Fig. 2
and Tables 1, 2 and 3 are the average results of running
each cross-validation loop 25 times. In order to assess if
the performance of two classifiers is statistically significant
t-tests have been conducted. In each cross validation fold,
all features used for training are z-normalized to a mean µ
= 0 and standard deviation σ = 1. Then, the obtained µ
and σ are used to z-normalize the features in the test set.
The F1 measure is used as the performance measure.
F1 Measure: Recall and precision are two commonly used
rates for measuring the performance of binary classifiers.
Recall is defined as the portion of the positive examples re-
trieved by the classifier over the total number of existing
positive examples (including the ones not retrieved by the
classifier). Precision is defined as the portion of the actual
positive examples that exist in the total number of exam-
ples retrieved as positive by the classifier. While recall and
precision rates can be individually used to determine the
quality of a classifier, it is often more convenient to have a
single measure to do the same assessment. The Fα measure
combines the recall and precision rates in a single equation:

Fα =
(1 + α)× precision× recall

α× precision + recall
(4)
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where α defines how recall and precision will be weighted. In
the case that recall and precision are evenly weighted then
the F1 measure is defined where α = 1.

6.1 Single-modal laughter detection
In this set of experiments, the laughter vs speech detector

uses information extracted from only one modality, video or
audio. The static audio-based detector uses a neural network
trained using 14 PLP-related features (described in section
4) extracted in each frame at 50 FPS. Similarly, the static
video-based detector uses a neural network trained using the
4 shape parameters (PCs 7 - 10), which describe the facial
expressions as shown in Section 5, extracted in each frame at
25 FPS. Classification is done per frame. In order to inves-
tigate the performance of the temporal features, we trained
four classifiers using one temporal feature set (see section 3)
at a time in addition to the static features. The shortest
laughter segment in the dataset is 360 ms and the longest
temporal window considered was 320 ms. The results for
video and audio are shown in Tables 1 and 2 respectively.
Audio: From Table 1 it can be seen that as the length of
the temporal window increases, so does the F1 measure for
the temporal features based on mean and standard devia-
tion and Adaboost. On the other hand, the PCA-based and
polynomial-fitting features result in lower and almost steady
performance respectively as the temporal window increases.
It is worth pointing out that the addition of the simplest fea-
tures based on mean and standard deviation leads to a sig-
nificant performance increase from 68.18% to 74.68%. Sim-
ilarly, the use of AdaBoost-based features results in an even
higher increase in performance obtaining an F1 measure rate
of 76.77%. Therefore, we only consider the Adaboost fea-
tures with the longest possible temporal window (320ms)
for audiovisual fusion. When using AdaBoost as a feature
selector we need a stopping criterion, i.e., we need a way to
define the number of rounds, N, it will run directly influenc-
ing the number of most informative features it will select.
In order to do that, we add a large number of features and
then select N as the value that gives a good compromise
between the number of features (we want as few features
as possible) and error over the training set. Using this ap-
proach, AdaBoost stops after 23 rounds. The total number
of temporal features considered, which includes the features
described in section 3, is 196.
Video: As can be seen from Table 2, when it comes to
video modality, only the PCA-based and the polynomial-
fitting features result in an increasing performance as the
temporal window increases. However, the addition of the
PCA-based feature degrades the performance of the video
classifier since the obtained F1 measures are lower than the
F1 measures for the static-video-features based classifier. On
the other hand, the addition of the polynomial-fitting fea-
tures is beneficial since an F1 rate of 85% is achieved for
the longest temporal window (in correspondence to F1 of
83.49% achieved when only static features are used). This
increase is statistically significant at a 95% confidence in-
terval (p-value = 0.0001). The performance of the other 2
temporal feature sets results in a peak either for a 160ms or
a 240ms temporal window. The improvement when adding
the mean and standard deviation is statistically significant
at a 95% confidence interval (p-value = 8 ∗ 10−4) but this
is not the case with AdaBoost features since the p-value is
0.0617. The same stopping criterion is used for AdaBoost

as in the case of audio features, which results in the selec-
tion of 13 features. The total number of temporal features
considered (see section 3) is 56. Although AdaBoost was
successfully used to select the most informative temporal
features in audio the same is not true for video. A possible
explanation is that the we use a fixed-length window. Most
of the audio feature sets reach the maximum performance
at the same window length. For example, mean and stan-
dard deviation (Table 1) and the other statistical features
considered in AdaBoost reach the maximum performance
in 320ms. This is why AdaBoost reaches its best perfor-
mance for the window length of 320ms. This does not hold
for video, since different temporal features achieve the max-
imum performance in different window lengths. So, it is ex-
pected that feature selection by AdaBoost will benefit with
the inclusion of temporal features calculated over various
window lengths.

We also notice that the performance gain from the inclu-
sion of the temporal features is not as high as in the audio
modality. This is not surprising since the information con-
tained in a single video frame is much richer compared to
the information contained in a single audio frame. This is
evident from the successful development of several frame-
based computer vision applications, for example [23], [27],
and it is also supported by our results. Therefore, the ex-
tra information made available by means of adding more
video frames is less significant than that made available by
means of adding of more audio frames. The main conclu-
sions drawn from the above experiments can be summarized
as follows:

1. The best temporal features for audio-based laughter
detection are the statistical features selected by Ada-
boost whereas for video-based laughter detection the
best temporal features are the quadratic-fitting fea-
tures.

2. For audio-based laughter detection, the longer the win-
dow the better the performance calculated in terms of
the F1 measure. This is not true for video, since the
peak performance is achieved for window lengths of
160s and 320ms.

3. The use of temporal features is more beneficial for au-
dio than it is for video-based laughter detection.

4. It is beneficial for audio-based laughter detection to
consider a combination of different temporal features,
which describe the evolution of static features over
time in a sliding window, rather than considering a
fixed set of predefined temporal features, e.g. mean
and standard deviation only.

5. We see that even simple statistical temporal features
like the mean and standard deviation can lead to a sig-
nificant improvement in performance. In both cases,
audio- and video-based laughter detection, they are the
second best feature set. Particularly for video, the dif-
ference between the best result of mean and standard
deviation (84.70%) and the best result of quadratic-
fitting (85%) is not statistically significant at a 95%
confidence interval (p -value = 0.0209).

6. AdaBoost achieves very good results in audio even
with short windows. For example, the temporal fea-
tures extracted over a 160ms window is better than
any other feature set no matter how long the window
is.
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Feature Sets Dim T = 80ms T = 160ms T = 240ms T = 320ms
Static Features + Delta Features

PLP + ∆ PLP 14 68.18 68.18 68.18 68.18
Static Features + Temporal Features

PCA-based 41 68.17 68.01 67.42 65.73
Mean + Std 42 71.95 72.87 73.71 74.68

AdaBoost-based 37 72.32 75.24 75.50 76.77
Quadratic Fitting 56 70.06 69.96 70.04 69.38

Table 1: Mean F1 rate over 25 experiments for various feature sets/window lengths for the audio-only detector

Feature Sets Dim T = 80ms T = 160ms T = 240ms T = 320ms
Static + Delta Features

b7 − b10 4 83.49 83.49 83.49 83.49
Static + Delta + Temporal Features

PCA-based 11 82.58 82.97 83.09 83.21
Mean + Std 12 84.15 84.66 84.70 83.63

AdaBoost-based 17 82.81 84.01 83.63 83.58
Quadratic Fitting 16 83.74 84.56 84.66 85

Table 2: Mean F1 rate over 25 experiments for various feature sets/window lengths for the video-only detector
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Figure 2: ROC curves for audio-, video-only, deci-
sion and feature level fusion. The markers indicate
the operating point of each detector which corre-
sponds to the F1 rates presented in Tables 1, 2, 3

6.2 Audiovisual laughter detection
In this set of experiments, we use information extracted

from both modalities, video and audio. As described in sec-
tion 3, multimodal data is fused on decision and feature
level. The SUM rule is used as the integration function for
the decision level fusion. In feature level fusion, the video
features are upsampled to 50 FPS and then concatenated
with the audio features.

Table 3 shows the F1 measure for the two different types of
fusion and the different types of feature sets used for fusion.
We used the best audio and visual features for combina-
tion, i.e. AdaBoost-based for audio with a window length of
320ms and quadratic-fitting features for video with a win-
dow length of 320ms. In addition, we also consider one more
case that is worth investigating and is shown in the last row
of Table 3. In the case in question, we first extract all tem-
poral features for audio and video and concatenate them (re-
sulting in a feature vector with 196 + 56 = 252 dimensions).
Then we apply AdaBoost to select the best 36 features. This

choice is based on the fact that the best performance of Ad-
aBoost is achieved with 23 and 13 features for audio and
video respectively.

Fig. 2 shows the ROC curves for the best audio-only,
video-only and audiovisual detectors. The markers indicate
the operating point of each detector which corresponds to
the F1 rate presented in Tables 1 (7th row), 2 (8th row) and
3 (6th row). These results, together with the results pre-
sented in Table 3 clearly indicate that integrating the tem-
poral information from audio and video leads to an improved
performance over single-modal and static-features-only ap-
proaches. When comparing the two different types of fu-
sion, we see that decision and feature level fusion are almost
identical when the temporal feature sets are used. How-
ever, decision-level clearly outperforms feature-level fusion
when static features are used. In other words, we see that
feature-level fusion benefits more from the addition of the
temporal features. This is not surprising since feature-level
fusion is expected to take advantage of the correlation be-
tween the two modalities which is stronger (more apparent)
when longer temporal windows are considered. The corre-
lation between the synchronized audio and video frames is
weaker (less apparent) when only one frame is used.

It is also interesting to note that the second type of fea-
ture level fusion (concatenation of audio and video features
followed by the AdaBoost-based selection of a smaller set of
the most informative featrues) performs equally well with
the first type of feature fusion, i.e. when the best features
sets from each modality are used. The main conclusions
drawn from the above experiments can be summarized as
follows:

1. For both types of multimodal data fusion, the inclu-
sion of the temporal features results in improved per-
formance over the static feature set performance.

2. Audiovisual laughter detector outperforms single-modal
detectors when temporal features are used. When static
features are used, only the decision-level leads to sig-
nificant improvement over single-modal laughter de-
tection.
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Type of Fusion Audio features Visual Features F1
Static Features

Decision Level PLP + ∆PLP b7 − b10 86.53
Feature Level PLP + ∆PLP b7 − b10 83.72

Static Features + Temporal Features
Decision Level PLP + ∆PLP + AdaBoost b7 − b10 + Quadratic Fitting 89.31
Feature Level PLP + ∆PLP + AdaBoost b7 − b10 + Quadratic Fitting 89.08
Feature Level PLP + ∆PLP + b7 − b10 + AdaBoost 89.23

Table 3: F1 measure for the two different types of audiovisual fusion, decision and feature level fusion
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Figure 3: Distribution of the selected audio and
visual features. QF: quadratic fitting, M-STD:
mean & standard deviation, W.M-STD: weighted
M-STD, Q13: 1st/3rd quantiles, Med: Median,
Mom: 3rd/4th moments, K:Kurtosis, S:Skewness

3. Performances of laughter detectors based on feature-
level fusion and decision-level fusion are equivalent when
temporal features are used. This can be interpreted as
an indication that the correlations between the used
audio and visual features are weak.

4. Decision-level outperforms feature-level-fusion-based
laughter detectors in the case of static features.

6.3 Feature Analysis
As mentioned in section 6.1, the concatenation of all tem-

poral audio and video features followed by feature selection
by AdaBoost performs equally well with the first type of fea-
ture fusion, i.e. when the best features sets from each modal-
ity are used. Therefore, it is worthy investigating which
audio and video features are selected. Fig. 3 shows the
distribution of the AdaBoost-selected audio and visual fea-
tures from the various temporal feature sets. The features
that have been most frequently selected by the AdaBoost
from either audio or video features are those belonging to
the 1st/3rd quantiles. The audio features being least fre-
quently selected are those from the kurtosis feature set. The
video features that have not been selected at all are those
from the kurtosis and skewness feature sets. We can also
see that the audio temporal features are more often selected
than the visual temporal features with the only exception
being the quadratic-fitting feature set from which more vi-
sual than audio temporal features are selected. In total, the
ratio between the selected audio and visual temporal fea-
tures is 68.9:31.1. It is also interesting to point out that
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Figure 4: Map showing the total number of times
a temporal feature (horizontal axis) was selected to
describe a static audio/visual feature(vertical axis)

features from a single feature set were never selected for
more than 15.9% for audio (quantiles) and 9.6% for video
(quantiles). In other words, the fact that there is no domi-
nant feature set suggests that indeed the time evolution of
each static feature is different and various temporal features
should be used. This is better illustrated in Fig. 4 which
shows the temporal features selected by AdaBoost for each
static audio and visual features in all 25 experiments. It is
obvious that the selected temporal features vary a lot be-
tween different static features. Since in each experiment an
8-fold cross-validation is run each temporal feature cannot
be selected more than 200 times.

7. CONCLUSIONS
In this paper we proposed a (semi-)automated audiovisual

system for distinguishing laughter from speech episodes. We
investigated the use of different temporal features in order
to describe the time evolution of the static features. It has
been shown that the additional information provided by the
temporal features is beneficial for this task. It has been also
demonstrated by means of experimental evaluation that it
is better to use a (different) combination of temporal fea-
tures for each static feature rather than applying the same
set of temporal features. Regarding the level at which mul-
timodal data fusion should be performed, both decision- and
feature-level fusion approaches resulted in equivalent perfor-
mances when temporal features were used. However, when
static features were used, decision-level fusion outperformed
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feature-level fusion. The results also suggest that integrating
the information from audio and video leads to improved reli-
ability over single-modal approaches when temporal features
are used. Future work includes investigations of different
temporal features per static feature computed in windows
of different lengths, which is expected to be beneficial for
video.
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