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ABSTRACT 
 
Automatic analysis of facial gestures is an area of intense interest in 
the human-computer interaction design community. A robust way 
to discern facial gestures in images of faces, insensitive to scale, 
pose, and occlusion, is still the key research challenge in the 
automatic facial-expression analysis domain. A practical method 
recognized as the most promising one for addressing this problem 
is through a facial-gesture analysis of multiple views of the face. 
Yet, current systems for automatic facial-gesture analysis utilize 
mainly portraits or nearly frontal-views of faces. To advance the 
existing technological framework upon which research on 
automatic facial-gesture analysis from multiple facial views can be 
based, we developed an automatic system as to analyze subtle 
changes in facial expressions based on profile-contour fiducial 
points in a profile-view video. A probabilistic classification method 
based on statistical modeling of the color and motion properties of 
the profile in the scene is proposed for tracking the profile face. 
From the segmented profile face, we extract the profile contour and 
from it, we extract 10 profile-contour fiducial points. Based on 
these, 20 individual facial muscle actions occurring alone or in a 
combination are recognized by a rule-based method. A recognition 
rate of 85% is achieved.  

 
 

1. INTRODUCTION 
 
A long-term goal in human-computer interaction (HCI) research is 
to approach the naturalness of human-human interaction [1]. This 
means integrating “natural” means that humans employ to interact 
with each other into HCI. With this motivation, automatic speech 
recognition has been a topic of research for decades. Recently, also 
other human interactive modalities such as gaze, body and facial 
gestures have gained intense interest as potential modes of HCI [1].  

As a step towards a multimodal HCI design, the main focus of 
our current research is whether and how facial gestures could be 
included as a new mode of HCI. The major impulse to investigate 
facial-gestures human communicative modality for inclusion into 
HCI comes from the significance of this modality within human-
human interaction. Facial gestures (underlying a facial expression) 
regulate our social interactions [2]: they clarify whether our current 
focus of attention (a person, an object or what has been said) is 
important, funny or unpleasant for us. They are the most powerful, 
natural and immediate means for humans to communicate their 
emotions [2, 3]. Within our research, we first investigated whether 
and to which extent human facial gestures could be recognized 
automatically. This paper presents a part of our research concerning 
automatic recognition of facial gestures from face-profile images.  

Most approaches to automated facial gesture analysis attempt to 
recognize a small set of prototypic emotional facial expressions, 
i.e., fear, sadness, disgust, anger, surprise and happiness [4]. This 
practice may follow from the work of Darwin and more recently 
Ekman [3], who suggested that basic emotions have corresponding 
prototypic expression. In everyday life, however, such prototypic 
expressions occur relatively infrequently; emotions are displayed 
more often by subtle changes in one or few discrete facial features, 
such as raising the eyebrows in surprise [2]. To detect such subtlety 
of human emotion, automatic recognition of facial gestures (i.e., 
fine-grained changes in facial expression) is needed. 

Facial gestures are anatomically related to contractions of facial 
muscles [5]. Contractions of facial muscles produce changes in 
both the direction and magnitude of the motion on the skin surface 
and in the shape and location of the permanent facial features (eyes, 
mouth, etc.). To reason about shown facial gestures, the face, its 
features and their current appearance should be detected first. A 
problematic issue here is that of scale, pose, and occlusion: rigid 
head and body movements of the observed person usually cause 
changes in the viewing angle and the visibility of the tracked face 
and its features. As noted in [7], perhaps the most promising 
method for addressing this problem is through the use of multiple 
cameras yielding multiple views of the face and its features. To 
date, nonetheless, the works on automatic facial gestures analysis 
have avoided dealing with facial views other than a frontal one: 
portraits (e.g., [6, 8]) or nearly-frontal views of faces (e.g., [9, 10]) 
constitute the input data processed by the existing systems. For 
exhaustive reviews on the past attempts to address the problems of 
automatic facial gesture recognition in frontal and nearly-frontal 
views of faces, readers are referred to [4, 6]. 

From several methods for recognition of facial gestures based 
on visually observable facial muscular activity, the FACS system 
[5] is the most commonly used in the psychological research. 
Following this trend, all of the existing methods for automatic 
facial gesture analysis, including the method proposed here, 
interpret the facial display information in terms of the facial action 
units (AUs) of the FACS system [4, 6]. Yet none automatic system 
is capable of encoding the full range of facial mimics, i.e., none is 
capable of recognizing all 44 AUs that account for the changes in 
facial display. From the previous works, the automatic facial 
mimics analyzers presented in [10] and [8] perform the best in this 
aspect: they code 16 and, respectively, 27 AUs occurring alone or 
in a combination in frontal-view face images.  

The research reported here addresses the problem of automatic 
AU coding from face profile image sequences. It was undertaken 
with two motivations:  
1. In a frontal view of the face, facial gestures such as showing the 

tongue (AU19) or pushing the jaw forwards (AU29) represent 
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segmentation based on tracking of the local statistical color and 
motion properties of the Face and the Background.   

The method operates at three levels. At Level 1 (pixel level) a 
feature vector is estimated for each pixel in the current frame. At 
Level 2 (region level) a watershed color segmentation method 
decomposes the current frame in a number of color regions. The 
statistical properties of the color regions are estimated subsequently 
under the assumption that the same process, which is modeled as a 
multivariate Gaussian, generates the feature vectors at pixels inside 
the same region. At Level 3 (object level) a labeling based on 
probabilistic classification of the color regions takes place. Each 
color region is projected in the previous frame where an estimation 
of the label field is available. For each object present in a window 
surrounding the area of projection, we estimate the parameters of 
the model (a multivariate Gaussian) describing the objects color 
and motion properties. Then, each color region is assigned the 
object label such that the joint probability of the label field and the 
observed color and motion features is maximized. Once each color 
region is labeled, the local models are re-estimated for the current 
frame. An iterative region-classification / model-estimation routine 
is performed until no color region changes its label. Typical results 
of this method are illustrated in Fig. 3. For further details about this 
method, readers are referred to [11]. 

 
3. PROFILE CONTOUR & FEATURE EXTRACTION 

 
The contour of the face profile region (referred to as “face profile 
contour” in the text below), generated by the face profile tracking 
method (Fig. 3), is utilized for further analysis of shown facial 
gestures. We proceed with feature points’ extraction (Fig. 4) under 
two assumptions: (1) the face images are non-occluded nearly left 
profile view with possible in-plane head rotations, and (2) the first 
frame is in a neutral expression. After initializing the feature points 
in the first frame based on the face region of the initial label field, 
they are automatically extracted from the tracked face profile 
contour for the rest of the sequence. 

To account for possible in-plane head rotations and variations 
in scale of the tracked face profile, the face profile contour is 
normalized in each frame based on two referential points (Fig. 4): 
the tip of the nose (P4) and the top of the forehead (P1). The major 
impulse to the usage of these referential points comes from their 
stability with respect to non-rigid facial features’ movements: facial 
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Fig. 2: Outline of the face profile tracking method 



muscles’ contractions do not cause physical displacements of these 
points [12]. The tip of the nose and the top of the forehead are 
extracted as the leftmost and, respectively, the uppermost leftmost 
point of the generated contour. To handle possible inaccuracies in 
detection of the referential points caused by inaccuracies in the 
segmentation of the face profile region, we exploit all: information 
from the previous frames, the knowledge about temporal dynamics 
of rigid head movements (usually they occur gradually in time) and 
the knowledge about the facial stability of the referential points. A 
small window WB (its height and width set to 3% of the length of 
P1P4 measured in frame t-1) centered at the loci of a referential 
point extracted from frame t-1 is searched for the pertinent point in 
frame t. If a referential point cannot be defined such that it belongs 
to the face profile contour determined for frame t, the relevant 
referential point determined for frame t-1 is used instead. Finally, 
the face profile contour is normalized by carrying out affine 
transformations of it such that the line P1P4 between the referential 
points discerned for the current frame is of the same length and 
orientation as the line P1P4 determined for the first frame.  

To extract the feature points from the normalized face profile 
contour, we move from image to function analysis and treat the 
left-hand side of the normalized face profile contour (up to the 
determined referential point P1) as the profile contour function. We 
extract the extremities of this function (i.e., the zero-crossings of 
the function’s 1st order derivative). Given the a priori knowledge 
on where the convexities and concavities of a left face profile are, 
we analyze the extracted extremities to find out where the function 
is arched. The maximums and minimums of the function’s 2nd order 
derivative are extracted as the feature points (Fig. 4). To ascertain 
correct extraction of the feature points when the tongue is visible 
(P7’ and P7’’ exist), we extract the feature points in the particular 
order (i.e., P1, P4, P2, P3, P10, P5, P9, P7 or P7’ and P7”, P6, P8). 
To handle inaccuracies in feature points’ detection (e.g., frame 91, 
Fig. 3) and to remove false positives and negatives, we exploit both 
the knowledge about facial anatomy and geometric characteristics 
of the extreme points and the information from the previous frames. 
Similarly to the case of WB defined for referential points P1 and 
P4, a standard “search” window WP has been defined for each 
feature point P with respect to anatomically possible directions and 
magnitudes of the motion on the skin surface affecting the temporal 
location of P. The feature point Pt is determined further for frame t 
such that it represents a specific zero crossing (Fig. 4) of the 1st 
order derivative of the profile contour function defined for frame t 
and belongs to the WP set around the location of Pt1 discerned for 
frame t1. If Pt cannot be defined, Pt-1 is used instead.  

 
4. PARAMETRIC FEATURE REPRESENTATION 

 
Each AU of the FACS system is anatomically related to contraction 
of a specific facial muscle [5]. Contractions of facial muscles 
produce motion in the skin surface and deform the shape and 
location of the facial features (eyebrows, mouth, chin, etc.). Some 
of these changes in facial expression are observable from the 
changes in the tracked face profile contour and the related feature 
points. To classify detected changes of the face profile contour in 
terms of facial muscle activity (i.e., in terms of AUs of the FACS 
system), these changes should be represented first as a set of 
suitable feature parameters.  

We defined six mid-level feature parameters in total: two 
describing the motion of the feature points, two describing their 
state, and two describing shapes formed between certain feature 
points. The definitions of the parameters, which are calculated for 
each frame, are given in Fig. 5.  

Feature points motion 
up/down (P) = yPt1 – yPt 
If up/down(P) < 0, P moves up. 

in/out(P) = xPt1 – xPt 
If in/out(P) > 0, P moves outward.

Feature points state 
If P9 equals P7, absent(P9). 
If there is no maximum of f” 
between P5 and P7, absent(P6).  
Similarly for P7’, P7” and P8 (see 
Fig. 4). 

increase/decrease(AB) = ABt1 – 
ABt, where  
AB = √ {(xA – xB)² + (yA – yB)²} 
If increase/decrease(AB) < 0, 
distance AB increases. 

Shapes formed by feature points 
The physic meanings of angular(P6P8) = true and 

increased_curvature(P5P6) are shown below. 
 

 
Fig. 5: Parametric representation of face-profile-contour 

features for AU recognition 

Fig. 3: Results for the “pleasant surprise” sequence. 1st and 3rd 
columns: Superposition of the contour of the face profile region 
on the original frames. 2nd and 4th columns: Face profile region 
(i.e., the label field for segmentation in two objects). Results are 

shown for frames 1, 36, 42, 91, 105, and 115. Fig. 4: Feature points (profile contour fiducials) 



5. ACTION UNIT RECOGNITION 
 
The last step in automatic facial mimics analysis is to translate the 
extracted facial expression information (i.e., the calculated feature 
parameters) into a description of shown facial changes such as the 
AU-coded description of shown facial expression. To achieve this, 
we utilize a fast-direct-chaining rule-based method that encodes 20 
AUs occurring alone or in a combination in the current frame of the 
input face-profile image sequence. A full list of the utilized rules is 
given in [13]. Motivated by the FACS system, each of these rules is 
defined in terms of the predicates of the mid-level representation 
(Fig. 5) and each encodes a single AU in a unique way according to 
the relevant FACS rule. For example, the rule utilized for coding 
AU12, which is described in the FACS system as an oblique 
upward pull of the lip corners (i.e., smile), is the following:  

IF in/out(P6) < 0 AND in/out(P8) < 0 AND 
increase/decrease(P5P6) ≤ 0 AND increase/decrease(P6P8) 
≤ 0 AND increased_curvature(P5P6) = false THEN AU20. 

 
6. EXPERIMENTAL EVALUATION 

 
Though AU-coded facial expression image databases are available 
in general, these databases contain portraits or nearly frontal-views 
of human faces. Since these data are not suitable for testing our 
face-profile-based AU encoder, we generated our own test data.  

The test data set has been created in office environments (e.g., 
Fig. 3, Fig. 5) with the help of 5 certified FACS coders drawn from 
college personnel. The acquired test images represent a number of 
demographic variables including ethnic background (European, 
Asian and South American), gender (60% female) and age (20 to 
35 years). The subjects were asked to display series of expressions 
that included single AUs and combinations of those. Forty image 
sequences of variable length (110 to 240 frames) of nearly left-
profile view of subjects’ faces were recorded by utilizing a CCD 
digital PAL camera. The size of the face region in each frame was 
at least 135×175 pixels. Sequences began with a neutral expression 
with no head rotation. Metadata were associated with the acquired 
test data given in terms of AUs scored by 4 certified FACS coders. 
As the actual test data set, we used 32 image sequences for which 
the overall inter-coders’ agreement about displayed AUs was above 
75%. The AU-coded descriptions of shown expressions obtained 
by human FACS coders were compared further to those produced 
by our method. The results of this comparison are given in Table 1. 
Table 1: Recognition results for the upper face AUs (AU1, AU4, 
AU9), the AUs affecting the jaw (AU17, AU26, AU27, AU29) and 
those affecting the mouth (AU8, AU10, AU12, AU15, AU16, 
AU18, AU19, AU20, AU23, AU24, AU25, AU28, AU36):  

# denotes the number of AUs’ occurrences,  
C denotes correctly recognized AUs’ occurrences,  
M denotes missed AUs’ occurrences,  
IC denotes incorrectly recognized AUs’ occurrences. 

 # C M IC Rate 
upper face 18 15 1 2 83.3% 
mouth 82 66 5 11 80.5% 
jaw 36 33 1 2 90.9% 
Total: 136 114 7 15 84.9% 

 
7. CONCLUSIONS 

 
In this paper, we introduced an automatic system for analyzing 
subtle changes in facial expression based on changes in face profile 

contour tracked in a nearly left-profile-view image sequence. The 
significance of this contribution is in the following:  
1. The presented approach to automatic AU recognition extends 

the state of the art in automatic facial gesture analysis in 
several directions, including the number of AUs, the difference 
in AUs and the facial view handled.  

2. The proposed method for AU recognition provides a basic 
understanding of how to achieve automatic AU coding in face 
profile image sequences. Hereupon further research on facial 
gesture analysis from multiple facial views can be based. For 
example, as a first step, the proposed method could be 
combined with a method for AU recognition from frontal-view 
face image sequences to achieve AU recognition from dual-
views of the face (as suggested in [8] for static face images). 

In addition, the algorithm explained here could greatly speed up the 
time-consuming (manual) process of acquiring AU-labeled data on 
which generative probability models for AU recognition in face-
profile image sequences could be trained (e.g., HMM for AU 
recognition – the main focus of our further research on this topic). 
Nonetheless, before this algorithm could be actually deployed for 
such a purpose, it needs some refinements. For instance, once the 
referential points have been located, they can be used for 
stabilizing the face profile region yielding a more robust face 
profile tracking. Also, although the proposed method demonstrates 
concurrent validity with manual FACS coding of test data set, 
additional field trials and quantitative validation studies are 
necessary to confirm this finding.  
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