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Abstract
The Facial Action Coding System (FACS) is an objective
method for quantifying facial movement in terms of 44
component actions, i.e. Action Units (AUs). This system is
widely used in behavioral investigations of emotion,
cognitive process and social interaction. Highly trained
human experts (FACS coders) presently perform the coding.
This paper presents a system that can automatically
recognize 30 AUs, their combinations and their intensity.
The system employs a framework for hybrid facial feature
detection and an expert system for facial action coding in
static dual-view facial images. Per facial feature, multiple
feature detection techniques are applied and the resulting
redundant data is reduced so that an unequivocal facial
expression geometry ensues. Reasoning with uncertainty is
used to encode and quantify the encountered facial actions
based on the determined expression geometry and the
certainty of that data. Eight certified FACS coders tested the
system. The recognition results demonstrated rather high
concurrent validity with human coding.

Introduction   

Facial expressions play the main role in the non-verbal
aspect of human communication [11]. Besides, facial
movements that comprise facial expressions provide
information about affective state, personality, cognitive
activity and psycho-pathology. The Facial Action Coding
System (FACS) [4] is the leading method for measuring
facial movement in behavioural science. FACS is currently
executed manually by highly trained human experts (i.e.
FACS coders). Recent advances in computer technology
open up the possibility for automatic measurement of facial
signals. An automated system would make classification
and quantification of facial expressions widely accessible
as a tool for research and assessment in behavioural science
and medicine. Such a system could also form the front-end
of an advanced human-computer interface that performs
interpreting (e.g. [10]) communicative facial expressions.

This paper presents a system that performs facial
expression recognition as applied to automated FACS
encoding. From 44 facial actions defined by FACS, our
system automatically recognizes 30 facial actions, their
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combinations and their intensity by applying different AI
techniques and non-AI techniques integrated into a single
system. We use a hybrid approach, i.e. a combination of
different image processing techniques, to extract facial
expression information from a static dual-view image.
Then we employ a rule-based expert system to encode and
quantify the encountered facial actions from the extracted
facial expression information and the certainty of that data.
Finally another expert system is applied to adjust this result
(if necessary), based on an emotional classification of the
encountered facial expression. Validation studies on the
prototype demonstrated that the recognition results
achieved are in 90% consistent with those of eight FACS
coders. In addition it has been shown that the quantification
of the facial action codes achieved by the system deviates
in average for 8% from that done by the FACS coders.

Facial Action Coding System
The Facial Action Coding System (FACS) [4] has been
developed to facilitate objective measurement of facial
activity for behavioural science investigations of the face. It
is a system designed for human observers to visually detect
independent subtle changes in facial appearance caused by
contractions of the facial muscles. In a form of rules, FACS
provides a linguistic description of all possible visually
detectable facial changes in terms of 44 so-called Action
Units (AUs). Using these rules, a trained human FACS
coder decomposes an observed expression into the specific
AUs that produced the expression.

Although FACS is the most prominent method for
measuring facial expressions in behavioral science, a major
impediment to its widespread use is that its manual
application is time consuming in addition to the time
required to train human experts. Each minute of videotape
takes approximately one hour to score and it takes 100
hours of training to achieve minimal competency on FACS.
Automating FACS would not only make it widely
accessible as a research tool, it would also increase the
speed of coding and improve the precision and reliability of
facial measurement.

In addition to providing a tool for behavioral science
research, a system that outputs facial action codes would
provide an important basis for man-machine interaction
systems. In natural interaction only 7% of the meaning of a



communicative message is transferred vocally while 55% is
transferred by facial expressions [11]. FACS provides a
description of the basic elements of any facial expression.
Integration of automated systems for facial action coding,
speech recognition and interpretation of those
communicative signals would make human-computer
interaction more natural, more efficient and more effective.

Automatic Recognition of Facial Actions
Recent advances in computer vision and pattern analysis
facilitated automatic analysis of facial expressions from
images. Different approaches have been taken in tackling
the problem: analysis of facial motion [6], [1], [12], grey-
level pattern analysis [20], analysis of facial features and
their spatial arrangements [2], [8], [13], [10], holistic
spatial pattern analysis [7], [17]. The image analysis
techniques in these systems are relevant to the goal of
automatic facial expression data extraction, but the systems
themselves are of limited use for behavioural science
investigations of the face. In many of these systems the
discrimination of expressions remained at the level of few
emotion categories, such as happy, sad or surprised, rather
than on a finer level of facial actions. Yet, for
investigations of facial behaviour itself, such as studying of
the difference between genuine and simulated affective
state, an objective and detailed measure of facial activity
such as FACS is needed.

Explicit attempts to automate facial action coding in
images are few [3]. Black et al. [1] use local parameterised
models of image motion and few mid-level predicates that
are derived from the estimated motion parameters and
describe the encountered facial change. Here the specificity
of optical flow to action unit discrimination has not been
described. Essa et al. [6] use spatio-temporal templates to
recognise two facial actions and four prototypic emotional
expressions. Cohn et al. [2] achieved some success in
automating facial action coding by feature point tracking of
a set of points manually located in the first frame of an
examined facial image sequence. Their method can identify
8 individual AUs and 7 AUs combinations. Here, each
image sequence should start with a neutral facial expression
and may not contain more than one face action in a row.

In fact, it is not known whether any of the methods
reported up-to-date is sufficient for describing the full
range of facial behaviour. None of the systems presented in
the literature deals with both, facial action coding and
quantification of the codes.

A New Approach
This paper presents a system capable of interpreting static
dual-view facial images in terms of facial actions and their
intensities involved in the shown facial expression. The
system was developed to achieve both:
1. person independent, robust, fully automatic extraction
of facial expression information from a dual-view
2. robust, fully automatic quantified facial action coding.

The study of feasibility demonstrated that a rule-based
expert system, combined with image analysis techniques
for facial expression information extraction, is appropriate
paradigm for expression recognition as applied to
automated FACS encoding. Here, the rule-based character
of FACS and the overall characteristics of the task (i.e. it is
a cognitive task that involves reasoning rather than
numerical computation on a stable and narrow knowledge
domain defined by FACS) decided the issue.

Our system consists of four integral parts (Figure 1): data
generator, data evaluator, data analyzer and post-processor.
The Facial Data Generator is a framework for “hybrid”
facial expression information extraction from a dual-view
facial image where for each prominent facial feature (eyes,
eyebrows, nose and mouth) multiple feature detectors are
applied. This part of the system is presented first. Then the
Data Evaluator is explained. The Facial Data Evaluator
selects per facial feature the best from the results of the
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applied detectors, substitutes missing data by setting and
checking hypotheses about the overall facial appearance
and assigns certainty measures (i.e. our confidence in data)
to the evaluated data. The Facial Data Analyzer, presented
next in this paper, has been implemented as a rule-based
expert system that converts the evaluated facial expression
data into quantified facial action codes. Finally the Post-
Processor is presented. It is a CLIPS implemented rule-
based expert system, which classifies the current expression
into one of the six basic emotions [5] and based on the
result adjusts (if necessary) the result obtained in the
previous processing stages. The paper provides technical
data on system development, software environment, testing
procedures and results. A discussion about the strengths
and limitations of the system concludes the paper.

Facial Data Generator

FACS was primarily developed for human observers to
perform facial action encoding from full-face photographs
of an observed person. Efforts have recently turned to
measuring facial actions by image processing of video
sequences [2], [6], [1]. This became a trend since there is a
growing psychological research that argues that facial
expression dynamics are critical in expression analysis.
Nevertheless, our work is more in line with the original
purpose of FACS – measuring of static facial actions. In
our system only the end-state of the facial movement is
measured in comparison to an expressionless face of the
same subject. The movement itself is not measured.

The system deals with static dual-view facial images.
Two digitized cameras mounted on the head of the user
acquire the images. The cameras are fastened to two
holders attached to a headphone-like device. One camera
holder is placed in front of the face at approximately 15
centimeters from the tip of the nose (obtains the frontal
view). The other camera is placed on the right side of the
face at approximately 15 centimeters from the center of the
right cheek (obtains the side view). The camera setting
ensures the presence of the face in the scene and some out-
of-plane head motions cannot be encountered together with
the non-rigid facial motion (i.e. the images are scale and
orientation invariant).

The existing systems for facial image analysis usually
utilize a single kind of feature detectors [3]. In contrast, we
are proposing a hybrid approach to facial expression data
extraction. To localize the contours of the prominent facial
feature (eyebrows, eyes, nose and mouth), for each feature
the Facial Data Generator concurrently applies multiple
detectors of different kinds. For instance, a neural network-
based approach originally proposed by Vincent et al. [16]
that finds the micro-features of the eyes and an active
contour method proposed by Kass et al. [9] with a greedy
algorithm for minimizing the snake’s energy function [19]
perform currently automatic detection of the eyes. But, any
other detector picked up “off the shelves” that achieves
localization of the eye contour can be used instead. For
profile detection, a spatial approach to sampling the profile
contour from a thresholded side-view image is applied [18].
Instead of fine-tuning the existing feature detectors or
inventing new ones, known techniques are combined.

The motivation for integrating multiple detectors is the
increase in quality of a “hybrid detector”. Each typical
feature detector has circumstances under which it performs
better than another detector. Hence, the chances for
successful detection of a given feature increase with the
number of integrated detectors. Therefore, by integrating
different detectors per facial feature into a single
framework, the percentage of missing data is reduced.

The requirement posed on the development of the Facial
Data Generator was the integration of the existing detectors
in an easy-to-enlarge interactive user-friendly platform that
can operate stand-alone as well as a part of a larger system.
The stand-alone mode, illustrated in Figure 2, is used for
testing of different detectors. Availability of JDK and JNI
made Java perfectly suitable for the development of such a
software platform. More details about the design of the
Facial Data Generator and the integrated feature detectors
can be found in [14].

After invoking all integrated detectors, each localized
facial feature contour is stored in a separate file. The files
form the input to the Facial Data Evaluator (Figure 1).

Facial Data Evaluator

The Facial Data Evaluator operates in two stages. First it
delimits the geometry of the encountered expression by
choosing the “best” of the redundantly detected facial

Figure 2. Screen shot of stand-alone mode of the Facial
Data Generator



features stored in the files, which form the output of the
Facial Data Generator. In the second stage, the defined
facial expression geometry is represented in terms of our
face model. The set of the face-model points, together with
the assigned certainty factors (CFs), forms the input to the
Facial Data Analyzer.

Selection among the Detected Facial Features
The reasoning of the first stage applies the knowledge
about the facial anatomy (e.g. the inner corners of the eyes
are immovable points) to check the correctness of the
results achieved by the facial feature detectors. Based on
this check, each file forming the output of the Facial Data
Generator is flagged with one of the labels: good, missing,
missing one, highly inaccurate and highly inaccurate one.
If a single point represents the localized contour of a facial
feature, the file containing that result is labeled as missing.
In the case of the pair features (eyes and brows), the file
may be labeled as missing one. A file is labeled as highly
inaccurate if there is a lack of consistency in the extracted
facial expression geometry. For example, a file containing
the result of an eye detector is labeled as highly inaccurate
one if the localized inner corner of an eye deviates for more
than 5 pixels from the inner corner of the pertinent eye
localized in the expressionless face of the same subject.
The files that pass this check are labeled as good. Finally an
inter-file consistency check is performed. If the contour
stored in the tested file deviates for more than 10 pixels in
any direction from relevant contours stored in the other
files, the tested file is discarded.

When all of the files are evaluated in terms of missing
and highly inaccurate data, the files labeled as missing or
highly inaccurate are discarded and the facial expression
geometry is determined by the results stored in the left over
files. To make the best choice between the results of
different detectors, which detect the same feature, the
priorities n ∈  µ are used. These have been off-line
manually assigned to the integrated detectors based on their
overall evaluation results. Each facial feature is delimited
by the content of a not discarded file that comprises that
feature detected by the detector of the highest priority. The
priority of the selected detector n (where n = N is the
highest priority a detector can have) determines the CF
assigned to the feature as given in formula (1).

In the case of the eyes and eyebrows it may happen that
the remained files are labeled as missing one or highly

inaccurate one. The eye/eyebrow that has been successfully
localized by a detector with the highest priority is used to
substitute its pair feature that has been badly localized. The
CF of the successfully detected feature is set according to
formula (1), while the CF of the feature being replaced is
calculated as given in formula (2).

If detection of a certain feature fails (i.e. all of the
relative files are discarded), the pertinent feature detected
in the expressionless face of the same subject is used to
substitute the missing feature. The CF assigned to the
feature being substituted in this way is set to 1/2N.

Representation by the Face Model
We utilize a point-based face model composed of two 2D
facial views, namely the frontal and the side view (Figure
3). There are two main motivations for this choice. First,
the rules of FACS can be converted straightforwardly into
the rules for deforming a point-based face model. Second,
the validity of the model can be inspected visually by
comparing the changes in the model and the changes in the
modeled expression.

The frontal-view face model is composed of 19 facial
points. The utilized side-view face model consists of 10
profile points, which correspond with the peaks and valleys
of the curvature of the profile contour function [18].

Since all of the detectors integrated into the Facial Data
Generator extract contours of the facial features and since
the images are scale- and orientation invariant, localizing
the model points from the extracted contours of the facial
features is straightforward. For instance, point A and point
B are localized as the outermost left, respectively, the
outermost right point of the contour of the left eye. Point F
and point G are localized as the upper, respectively, the
lower intersection point of the eye contour with a line going
parallel to the vertical face axis through the middle of the
line AB (as illustrated in Figure 3).

To each of the model points a CF is assigned that is
equal to the CF assigned to the facial feature to which the
point belongs. For example, the CF assigned to the points
of the side-view model is equal to the CF that has been
assigned to the sampled profile contour.

Facial Data Analyzer

The Facial Data Analyzer is the kernel of our system. It
performs reasoning with uncertainty about facial actions
and their intensity. Table 1 provides the mapping between
30 FACS rules and 30 rules of our expert system.

Each rule of the knowledge base given in Table 1
recognizes activation of a single AU based on the facial
change caused by that AU. This means that each rule
encodes a certain facial action based on discrepancy of the
spatial arrangement of the model points between the
current and the neutral expression of the same person.

CF = (1 / N) * n (1)

CF = (1 /(N + 1)) * n (2)

Figure 3. Face model



Table 1.  User-oriented pseudo-code of the rules for facial action coding from the face model deformation (Figure 3)
AU FACS rule ES rule
1 Raised inner

brows
increased ∠ BAD
and ∠ B1A1D1

2 Raised outer
brow

increased ∠ BAD
or ∠ B1A1D1

4 Lowered /
frowned
brows

P2 downwards,
not increased
curvature P2-P3

5 Raised upper
lid

increased 3F or
increased 4F1

6 Raised cheek activated AU12
7 Raised lower

lid
no AU12 & AU9
FG>0 F1G1>0,
3F>0, 4F1>0,
decreased 3G or
decreased 4G1

8 Lips towards
each other
(teeth visible,
lips tensed &
less visible)

increased P5P6,
P6 outwards,
P8 outwards,
curvature P6-P8 [
increased P8P10

9 Wrinkled
nose

increased
curvature P2-P3

10 Raised upper
lip

P6 upwards,
P6 outwards,
decreased P5P6,
not increased
curvature P2-P3

12 Mouth
corners pulled
up

decreased IB,
decreased JB1,
increased CI,
increased CJ

AU FACS rule ES rule
13 Mouth

corners pulled
sharply up

decreased IB,
decreased JB1,
decreased CI,
decreased CJ

15 Mouth corner
downwards

increased IB or
increased JB1

16 Depressed
lower lip

P8 downwards,
P8 outwards,
decreased P8P10

17 Raised chin P10 inwards
18 Lips puckered decreased IJ>t1
19 Tongue

showed
curvature P6-P8
contains 2 valleys
and a peak

20 Mouth
stretched

increased f16,
not increased f12
not increased f13

23 Lips tightened
but not
pressed

no AU28b,
no AU28t,
no AU8,
decreased KL,
KL>0,
not decreased IJ,
not increased IB,
not increased JB1

24 Lips pressed
together

no AU28b,
no AU28t,
no AU8,
decreased KL,
KL>0,
decreased IJ<t1

AU FACS rule ES rule
25 Lips parted increased P6P8,

P4P10<t2
26 Jaw dropped t2<P4P10<t3
27 Mouth

stretched
P4P10>t3

28 Lips sucked
in

Points P6 and P8
are absent

28b Bottom lip
sucked in

Point P8 is absent

28t Top lip
sucked in

Point P6 is absent

36t Bulge above
the upper lip
caused by
tongue

increased
curvature P5-P6

36b Bulge under
the lower lip

Point P9 is absent

38 Nostrils
widened

absent AUs: 8, 9,
10, 12, 13, 14,
15, 18, 20, 24, 28
increased HH1

39 nostrils
compressed

decreased HH1

41 Lid dropped not decreased 3G
decreased FG,
decreased 3F
or
decreased F1G1,
decreased 4F1,
not decreased
4G1

The rules have been uniquely defined. In other words, each
model deformation corresponds to unique set of AU-codes.

We utilized a relational list (R-list) to represent the
relations between the rules of the knowledge base. The
used R-list is a four-tuple list where the first two columns
identify the conclusion clause of a certain rule that forms
the premise clause of another rule, identified in the next
two columns of the R-list. Each premise clause of each rule
given in Table 1 is associated with an S-function, as
defined in (3), which influences a so-called cumulative
membership grade (MG) of the premise of the rule.

The parameters of S-function are on-line defined by the
contents of the database (DB) containing the maximal
encountered deformations of the face model. For instance,
the S-functions associated with the premises of the rule for
recognition of AU5 are defined as S5_1(x; 0, ½max_3F,
max_3F) and S5_2(x; 0, ½max_4F1, max_4F1) where x is

the actual deformation of the distance 3F, respectively 4F1,
and the max_3F and max_4F1 are retrieved from the DB.

The database of extreme model deformations is on-line
altered. For each facial-distance/ profile-contour (defined in
Table 1), the difference is calculated between that feature
detected in the expressionless face and the pertinent feature
detected in the current expression. If the determined
difference is higher than the related value stored in the DB,
the content of the DB is adjusted. The initial values of the
extreme model deformations are set off-line, prior the
system execution, based on a representative set of facial
expressions of the currently observed person. This
representative set of facial expressions, i.e. observed
persons’ individual extreme-displays (IED) set, consists of
the 6 basic emotional expressions, neutral expression and 4
maximal displays of AU8, AU18, AU39 and AU41. This
set of 11 expressions has been experimentally proved to be
sufficient for initialisation of the values stored in the DB of
extreme model deformations (see rules for facial
expression emotional classification in [13]).

Fast direct chaining as defined by Schneider et al. [15]
has been applied as the inference procedure. It is a breadth-
first search algorithm that starts with the first rule of the
knowledge base and then searches the R-list to find if the
conclusion of the fired rule forms a premise of another rule

S(x; α, β, γ) = 0  for  x≤α
S(x; α, β, γ) = 2[(x-α)/(γ−α)]² for  α<x<β
S(x; α, β, γ) = 1 – 2[(x-γ)/(γ−α)]² for β<x<γ         (3)
S(x; α, β, γ) = 1 for  x≥γ

where α and γ  are function’s end points and

β=(α+γ)/2 is so-called crossover point



that will be fired in the next loop. Otherwise, the process
will try to fire the rule that in the knowledge base comes
after the rule last fired.

The model points delimited by the Facial Data Evaluator
(Figure 3) determine the facial-distances/ profile-contours
employed by the rules (Table 1). The CFs associated with
the model points define the CF of the related distance/
contour as given in formula (4).

The overall certainty of the premise of a fired rule is
calculated as defined by Schneider et al. [15]:
1. For the portion of the premise that contains clauses c1
and c2 related as c1 AND c2, CF = min (CF_c1, CF_c2).
2. For the portion of the clause that contains clauses c1 and
c2 related as c1 OR c2, CF = max (CF_c1, CF_c2).
3. If the premise contains only clause c, CF = CF_c.

Further, the cumulative membership grade MG_p of the
premise of a rule is calculated and multiplied by 100% to
obtain the quantification of the AU code encrypted by that
rule. MG_p of a rule’s premise p is calculated from the
membership grades MG_c associated with the clauses c of
the premise p.
1. For a clause c of a kind “certain AU (not) activated”,
MG_c = 1. For the portion of the premise that contains c
AND c1 or c OR c1, where the clause c1 is of another kind,
MG_p = MG_c1.
2. For a clause c of a kind “certain point absent /present”,
MG_c = 1. For the portion of the premise that contains c
AND c1 or c OR c1, where the clause c1 is of another kind,
MG_p = MG_c1.
3. For a clause c where two values are compared, MG_c =
S(x; α, β, γ), where S is the S-function associated with c.
For a portion of the premise that contains c AND c1, where
c and c1 are of the same kind, MG_p = avg (MG_c,
MG_c1). For a portion of the premise that contains c OR
c1, MG_p = max (MG_c, MG_c1).
4. If the premise contains only clause c, MG_p = MG_c.

A processing loop of the inference engine ends with
updating the DB of the extreme model deformations,
updating a list of fired rules (LFR) and searching the R-list
for a rule that the process will try to fire in the next loop.
LFR prevents the inference engine from firing a rule twice.
If a rule has fired, its number is added to this list.

Post Processor

In the case a certain facial feature fails to be detected by the
Facial Data Generator, the Facial Data Evaluator utilises
the pertinent feature detected in the expressionless face to
substitute missing data. Hence, exact information about the
examined expression is lost. To diminish this loss, we
exploit a higher level “emotional grammar” of facial
expressions defined by Ekman [5]. The main idea is that
there is a higher possibility that a smile is coupled with
“smiling” eyes than with expressionless eyes.

The system’s post-processor utilizes an existing CLIPS-
implemented expert system, HERCULES, to classify the
observed facial expression into the six basic emotion
categories. Since HERCULES has been presented
elsewhere [13], just a short description of its processing is
provided here. The attention is paid on integration and
actual employment of HERCULES within the system for
automated facial action encoding.

HERCULES accepts an AU-coded description of the
encountered expression and converts this into a set of
emotion labels. The rules for emotional classification of the
facial actions are straightforwardly acquired from the
linguistic descriptions of the prototypic facial expressions
given by Ekman [5]. Five certified FACS coders have
validated these rules using a set of 129 dual view images
representing the relevant combinations of AUs. In 85% of
the cases, the human observer and the system evenly
labeled the observed expression [13].

HERCULES returns a set of quantified emotion labels.
An emotion label is quantified according to the assumption
that each AU, forming a part of a certain basic expression,
has an equal influence on that expression’s intensity.

Input to the Post-Processor consists of the expression
geometry delimited by the Facial Data Evaluator and the
quantified AU-codes determined by the Facial Data
Analyzer. The geometry of the current expression is
checked for presence of an expressionless facial feature. A
simple control of the assigned CFs performs this check. A
CF equal to 1/2N is assigned to a facial feature only if the
pertinent feature detected in the expressionless face has
substituted the feature. If there is a feature having CF equal
to 1/2N, HERCULES is invoked. Otherwise, the system’s
processing terminates and displays the result – the
quantified AU-codes and the certainty of these conclusions.

If HERCULES is invoked, this result is adjusted upon
the acquired emotional classification of the analyzed
expression. The returned list of emotion labels is searched
and a kind of backward reasoning of HERCULES’
inference engine is performed for the emotion label with
the highest weight and the facial feature marked as
expressionless. The rules given in Table 2 are used to
reason about the possible deformation of the marked facial
feature whereupon the system’s final result is then adjusted.

Table 2. The rules for determining the appearance of the
missing facial feature (i.e. the appropriate AU code) based on
emotional classification of the encountered expression

Eyes Eyebrows Mouth
Sadness 7 if 1 1 15
Fear 5+7 1 if 5 20
Happiness 6 q 12
Surprise 5 1+2 26
Disgust 9 9 9
Anger 7 4 24

CF_feature = min (CF_point1,…,CF_pointN)(4)



In order to quantify appropriately the newly added AU,
the AU-codes comprising the analyzed expression are
compared to the AU-codes comprising the prototypic
expression, which characterizes the emotion category to
which the analyzed expression has been classified. The
AU-codes that belong to both are marked and their average
intensity is assigned to the newly added AU. The CF
assigned to this AU is obtained as given in formula (5).

System Development and Evaluation

The system is developed according to the Incremental
Development model. This model is characterized by
integrated prototyping where the design phases - coding,
integration and implementation - are split in successive
increments of functionality. The successive increments,
covering the full breadth of the system in an easy-to-
integrate way, were selected according to the main parts of
the system: Facial Data Generator, Data Evaluator, Data
Analyzer and Post-Processor. Each part has been developed
independently and then integrated into the operational and
tested prototype presented in this paper. Chronologically,
the Facial Data Generator and the Post-Processor have been
developed in parallel and before the other parts of the
system.

Since the system is to be used on different software
platforms for purposes of behavioral science research as
well as a part of human-computer interface, robustness,
user-friendliness and portability were the requirements
posed on the development. Integrating multiple detectors
into a single workbench for facial expression information
extraction and applying the reasoning with uncertainty on
the extracted data insure robustness and precision of the
system. JDK and JNI made Java a proper tool for fulfilling
all other constraints posed on the development.

The operational prototype presented here has not been
deployed in a real-world environment. The aim is to
develop a robust, fully operational, intelligent multi-
modal/media human-computer interface which will
perform encoding and interpreting of all human
communicative signals, namely, speech, facial expressions,
body movements, vocal and physiological reactions. Still, if
regarded merely in the scope of human-behavior-
interpretation application domain, the prototype has been
evaluated by the end-users since eight certified FACS
coders have performed the validation studies on the
prototype. Validation studies addressed the question
whether the interpretations acquired by the system are
acceptable to human experts judging the same images.

Testing Images and Testing Subjects
The overall performance of the system’s prototype has
been evaluated on a database containing 1040 dual views
(see Figure 1 for a testing image example). Eight certified
FACS coders participated in building of this database.

Subjects were of both sexes and ranged in age (22-34) and
ethnicity (European, South American and Asian).

The database of testing images contains the dual views
of each subject displaying 2x30 expressions of separate AU
activation, 4 maximal displays of AU8, AU18, AU39 and
AU41, 2x6 basic emotional expressions, a neutral
expression and 53 expressions representing combinations of
AU activation. The images have been recorded under
constant illumination using fixed light sources attached
next to the mounted cameras and none of the subjects had a
moustache, a beard or wear glasses.

Facial Action Encoding Performance
Two certified FACS coders validated the rules for AU
coding by evaluating 90 expressions of separate AU
activation displayed by other three coders. In 100% of the
cases the image representing the activation of a certain AU,
produced according to our rules (Table 1), has been labeled
with the same AU-code by the coders. This result has been
expected, however, since all of the rules have been
acquired from FACS in a straightforward manner.

The facial action coding achieved by the system was
89.6% (i.e. 90% for the upper face AUs, 85% for the lower
face AUs and 94% for the AUs combinations) when
compared to human coding of all images in the database.

Facial Action Codes Quantification Performance
In order to compare quantification of the AU-codes done
by our system with that done by humans, we collected the
data from a questionnaire. For each image from the
database shown by a certain subject, we asked the other
seven subjects to assign an individual index of intensity
impression to each of the activated AU(s) displayed in the
image. While determining the indexes for the images of an
observed subject, the coders used that persons’ individual
extreme-displays (IED) set. Finally, for each image in the
database, an average index of intensity impression has been
calculated.

For each of the eight subjects, his/her IED-set was also
used to set the initial values in the database of extreme
model deformations. The rest of his/her dual views have
been used to evaluate the performance of the system by
comparing the system’s result and the average index of
intensity impression related with a relevant image. Then the
results for a total of 952 testing images have been averaged.
The average disagreement between the AU intensity
assigned by the system and the relevant average index of
intensity impression was 0.08 (i.e. 8%), respectively 0.16
(i.e. 16%), in the case of the correctly recognized AU with
a CF >= 0.3, respectively CF < 0.3. Disagreements were
mostly caused by “inaccuracy” of the human eye when
comparing the currently observed facial deviation with a
relevant deviation shown in the images of the observed
subject’s IED-set.

CF = ò * min{CFs_marked_AU-codes} (5)



Conclusion

The system presented in this paper brings together three
fundamentally diverse technologies: psychologically and
anatomically founded FACS [4], image analysis and AI.
The system encodes and quantifies 30 different facial
actions from static dual-view facial images.

By a large number of experiments, a confident system
performance measurement is obtained that indicates rather
robust and accurate facial action coding that the system
accomplishes. When tested on 1040 dual-view images,
facial action correct recognition rate achieved by the
system was 89.6%. Average disagreement between the
facial action intensity calculated by the system and that
assigned by human experts was 0.08 (i.e. 8%), respectively
0.16 (i.e. 16%), in the case of the correctly recognized
facial action with a CF >= 0.3, respectively CF < 0.3.

In comparison to the existing explicit attempts to
automate facial action coding [2], [1], [6], the system
presented in this paper is new and fundamentally different
by the use of AI technology. Also it deals with automatic
facial action coding in a more effective way. The best of
the existing similar systems [2] performs recognition of 15
different facial actions. None of the existing similar
systems quantifies the facial action codes. Our system
performs accurate fully automatic coding and quantification
of 30 different facial actions in static facial dual-views.

There are a number of ways in which the presented
system could be improved. First of all, the system cannot
encode the full range of facial behavior. From a total of 44
AUs defined in FACS, the presented prototype can encode
30 AUs from a dual-view image of encountered facial
expression. The facial feature detectors integrated into the
system are far from perfect and have not been proved
capable of detecting all facial changes underlying a full
range of facial behavior. The facial motions should be
modeled and real-time spatio-temporal detectors of facial
movement should be integrated into the system to allow
tracking of fast facial actions such as wink, blink and
wiping of the lips. Modeling the facial motion will also
allow analysis of facial expression dynamics, which seems
to be crucial in expression analysis.

Another limitation of the presented prototype is evident
in a time-consuming performance. While the execution of
the reasoning process takes some 3-4 seconds, complete
processing of a single image takes 3 minutes in average due
to the time-consuming image processing. Real-time image
analysis would need to be achieved if the system is to be
used as a part of a realistic man-machine interface.

We are not aware of any system, including our own,
which perfects automatic facial action coding either in
photographs or in video sequences. We still seek and
investigate the possibilities.
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