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Abstract

This paper addresses the problem of human action
recognition by introducing a sparse representation of image
sequences as a collection of spatiotemporal events that are
localized at points that are salient both in space and time.
We detect the spatiotemporal salient points by measuring
the variations in the information content of pixel neighbor-
hoods not only in space but also in time. We derive a suit-
able distance measure between the representations, which
is based on the Chamfer distance, and we optimize this
measure with respect to a number of temporal and scal-
ing parameters. In this way we achieve invariance against
scaling, while at the same time, we eliminate the temporal
differences between the representations. We use Relevance
Vector Machines (RVM) in order to address the classifica-
tion problem. We propose new kernels for use by the RVM,
which are specifically tailored to the proposed spatiotem-
poral salient point representation. The basis of these ker-
nels is the optimized Chamfer distance of the previous step.
We present results on real image sequences from a small
database depicting people performing 19 aerobic exercises.

1. Introduction

Analysis and interpretation of image sequences plays
an important role in the development of a wide range of
vision-related applications, ranging from vision-based in-
terfaces for Human-Computer Interaction (HCI), to surveil-
lance and video indexing systems. Recognition and inter-
pretation of human activities is a significant research area
by itself, since a large amount of the information content
of image sequences is carried in the human actions that are
depicted in them. In order to obtain a semantic descrip-
tion of the content of a scene, we do not need to use all the
available information. A good description of the scene can

be obtained by considering the information around certain
points of interest such as corners and edges, that is, in ar-
eas that are rich in information. According to Haralick and
Shapiro [5] an interesting point is a) distinguishable from
its neighbors and b) its position is invariant with respect to
the expected geometric transformation and to radiometric
distortions. Schmid et al. [16] detect interesting points us-
ing a Harris corner detector and estimate gray value differ-
ential image invariants [11],[19] at different scales. Gilles
introduces the notion of saliency in terms of local signal
complexity or unpredictability in [4]. Finally, detectors of
interesting points are compared in [17],[18] in terms of re-
peatability rate and information content.

An important issue in salient point detection is the auto-
matic selection of the scale at which the salient points will
be detected. Lindeberg et al. [13] integrate a scale-space
approach for corner detection and search for local extremes
across scales. Itti et al [7] use a dyadic Gaussian pyramid
approach in order to construct saliency maps from given
images. The spatial distribution of each saliency map is
modeled with a dynamical neural network, in order to se-
lect locations of attention in the images. Kadir and Brady
[9],[8] extend the original Gilles algorithm and estimate the
information content of pixels in circular neighborhoods at
different scales in terms of the entropy. Local extremes of
changes in the entropy across scales are detected and the
saliency of each point at a certain scale is defined in terms
of the entropy and its rate of change at the scale in question.
In [6], the salient point detector developed in [9],[8] is com-
pared with methods that use global descriptors in order to
represent a given image, giving a clear advantage to the for-
mer method. Finally, an object recognition approach using
keypoints is described by Lowe in [14]. The detected key-
points are invariant to geometric and illumination changes
in the image. The spatial arrangement of the detected points
is then used for retrieving objects from cluttered images.

While a large amount of work has been done on object
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recognition and image retrieval, the concept of saliency has
only recently begun to be used for content-based video re-
trieval and for activity recognition. In [12], a Harris cor-
ner detector is extended in the temporal dimension, leading
to a number of corner points in time, called space-time in-
terest points. The resulting interesting points correspond
roughly to points in space-time where the motion abruptly
changes direction. The resulting representations are com-
pared using a Mahalanobis distance metric. In [3], hand
gestures are recognized by using a hierarchical hand model
consisting of the palm and the fingers. Color features un-
der different scales are then extracted and a particle filter-
ing approach is implemented to simultaneously track and
detect the different motion states occurring in the image se-
quence. In [10], visual interest points are computed from
dynamically changing regions in a given image sequence.
A selective control method is then used in order to equip
the recognition system. In [1], given image sequences are
used to construct Motion Energy Images (MEI) and Motion
History Images (MHI), for determining where and when re-
spectively motion occurs in the sequence. For recognition,
a set of moment invariants is calculated for each resulting
image and a Mahalanobis distance metric is applied in or-
der to discriminate between different kinds of motion. In
[21], a set of MEIs and MHIs is constructed from given im-
age sequences for the task of facial action recognition. A
k-Nearest-Neighbor Rule-based classifier is then utilized to
detect the various Action Units (AUs) that are being acti-
vated in each facial expression.

In this paper, we detect spatiotemporal features in given
image sequences by extending in the temporal direction the
salient feature detector developed in [9],[8]. Our goal is to
obtain a sparse representation of a human action as a set of
spatiotemporal points that correspond to activity variation
peaks. In contrast to the work of Laptev [12], our repre-
sentation contains the spatiotemporal points at which there
are peaks in activity variation such as the edges of a moving
object. While in our previous work [15] we did so by exam-
ining the entropy in spherical spatiotemporal volumes, here
we examine the entropy behaviour in spatiotemporal cylin-
ders. By this, we aim in improving the final recognition
rate that was reported in [15]. Like in [9], we automati-
cally detect the scales at which the entropy achieves local
maxima and form spatiotemporal salient regions by cluster-
ing spatiotemporal points with similar location and scale.
Each image sequence is represented as a set of spatiotem-
poral salient points, the locations of which are transformed
in order to achieve invariance against translation. We use
Relevance Vector Machines in order to address the classi-
fication problem. We propose new kernels for use by the
RVM, which are specifically tailored to the proposed spa-
tiotemporal salient point representation. More specifically,
we derive a suitable distance measure between the repre-

sentations, based on the Chamfer distance, and we optimize
this measure with respect to a number of temporal and scal-
ing parameters. In this way we achieve invariance against
scaling and we eliminate the temporal differences between
the representations. This optimized distance is used as the
basis for the definition of the kernel for the RVM. We test
the proposed method using real image sequences. Our ex-
perimental results show fairly good discrimination between
specific motion classes.

The remainder of the paper is organized as follows:
In section 2, the spatiotemporal feature detector used is
described in detail. In section 3 the proposed recogni-
tion method is analyzed, including the proposed space-time
warping technique. In section 4, we present our experimen-
tal results, and in section 5, final conclusions are drawn.

2. Spatiotemporal Salient Points

2.1. Spatiotemporal Saliency

Let us denote by Nc(s,�v) the set of pixels in an im-
age I that belong to a circular neighborhood of radius s,
centered at pixel �v = (x, y). In [9],[8], in order to de-
tect salient points in static images, Kadir and Brady define
a saliency metric yD(s,�v) based on measuring changes in
the information content of Nc for a set of different circu-
lar radiuses (i.e. scales). In order to detect spatiotemporal
salient points at peaks of activity variation we extend the
Kadir’s detector by considering cylindrical spatiotemporal
neighborhoods at different spatial radiuses s and temporal
depths d, in a similar way as [15], where only spherical
neighborhoods of radius s were used. More specifically,
let us denote by Ncl(�s,�v) the set of pixels in a cylindrical
neighborhood of scale �s = (s, d) centered at the spatiotem-
poral point �v = (x, y, t) in the given image sequence. At
each point �v and for each scale �s we will define the spa-
tiotemporal saliency yD(�s,�v) by measuring the changes in
the information content within Ncl(�s,�v). Since we are in-
terested in activity within an image sequence, we consider
as input signal the convolution of the intensity information
with a first-order Gaussian derivative filter. Formally, given
an image sequence I0(x, y, t) and a filter Gt, the input sig-
nal that we use is defined as:

I(x, y, t) = Gt ∗ I0(x, y, t) . (1)

For each point �v in the image sequence, we calculate the
Shannon entropy of the signal histogram in a cylindrical
neighborhood Ns(�s,�v) around it. That is,

HD(s, d, �υ) = −
∑
q∈D

p(q, s, d, �υ) log p(q, s, d, �υ) , (2)

The scale set for which the entropy is peaked is given by:

Ŝp = {(s, d) : HD(s − 1, d, �υ) < HD(s, d, �υ) > HD(s + 1, d, �υ) ∧
HD(s, d − 1, �υ) < HD(s, d, �υ) > HD(s, d + 1, �υ)} , (3)
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The saliency metric at the candidate scales is given by:

yD(s, d, �v) = HD(s, d, �v)WD(s, d, �v), ∀ (s, d) ∈ Ŝp , (4)

The first term of eq. 4 is a measure of the variation in the
information content of the signal. The weighting function
WD(s,�v) is a measure of how prominent the local maxi-
mum is at s, and is given by:

WD(s, d, �υ) =
s2

2s − 1

∑
q∈D

|p(q, s, d, �υ) − p(q, s − 1, d, �υ)|

+d
∑
q∈D

|p(q, s, d, �υ) − p(q, s, d − 1, �υ)|, ∀ (s, d) ∈ Ŝp , (5)

where the values in front of each summation in the right
part of eq. 5 are normalization factors. When a peak in
the entropy for a specific scale is distinct, then the corre-
sponding pixel probability density functions at the neigh-
boring scales will differ substantially, giving a large value
to the summations of eq. 5 and thus, to the corresponding
weight value assigned. On the contrary, when the peak is
smoother, then the summations in eq. 5, and therefore the
corresponding weight, will have a smaller value. Let us
note that we considered cylindrical neighborhoods of radius
s and depth d for simplicity reasons. However, more com-
plicated shapes, such as elliptical neighborhoods at different
orientations and axes ratios could be considered.

2.2. Salient Regions

The analysis of the previous section leads to a set of can-
didate spatiotemporal salient points S = {(�si, �vi, yD,i)},
where �vi = (x, y, t), �si and yD,i are respectively, the posi-
tion vector, the scale and the saliency value of the feature
point with index i. In order to achieve robustness against
noise we follow a similar approach as that in [9],[8] and
develop a clustering algorithm, which we apply to the de-
tected salient points. By this we define salient regions in-
stead of salient points, the location of which should be more
stable than the individual salient points, since noise is un-
likely to affect all of the points within the region in the same
way. The proposed algorithm removes salient points with
low saliency and creates clusters that are a) well localized
in space, time and scale, b) sufficiently salient and c) suffi-
ciently distant from each other. The steps of the proposed
algorithm can be summarized as follows:

1. Derive a new set ST by applying a global threshold T
to the saliency of the points that comprise S. Thresh-
olding removes salient points with low saliency.

ST = {(�si, �υi, yD,i) : yD,i > T} . (6)

2. Select the point i in ST with the highest saliency value
and use it as a seed to initialize a salient region Rk.
Add nearby points j to the region Rk as long as the
intra-cluster variance does not exceed a threshold TV .

1

|Rk|
∑

j∈Rk

c
2
j < TV , (7)

where Rk is the set of the points in the current region
k and cj is the Euclidean distance of the jth point from
the seed point i.

3. If the overall saliency of the region Rk is lower than a
saliency threshold TS , that is,

∑
j∈Rk

yD,j ≤ TS , (8)

discard the points in the region back to the initial set
of points and continue from step 2 with the next high-
est salient point. Otherwise, calculate the Euclidean
distance of the center of region Rk from the center of
salient regions already defined.

4. If the distance is lower than the average scale of Rk,
discard the points in Rk back to the initial set, and con-
tinue from step 2 with the next highest salient point.
Otherwise, accept Rk as a new cluster and store it as
the mean scale and spatial location of the points in it.

5. Form a new set ST consisting of the remaining salient
points, increase the cluster index k and continue from
step 2 with the next highest salient point.

To summarize, a new cluster is accepted only if it has suf-
ficient local support, its overall saliency value is above the
saliency threshold, and it is sufficiently distant in terms of
Euclidean distance from already existing clusters.

3. Kernel-based Recognition of Human Ac-
tions

3.1. Distance Function

Using the feature detection scheme described in section
2, we represent a given image sequence by a set of features,
where each feature corresponds to a cylindrical salient re-
gion of the image sequence in the space-time domain. A
wide variety of classification schemes depend on the defini-
tion of an appropriate distance metric. We use the Chamfer
Distance [2], as it can provide a distance measure between
feature sets with unequal number of features. More specif-
ically, for two feature sets F = {(xi, yi, ti), 1 ≤ i ≤ M}
and F ′ = {(x′

j , y
′
j , t

′
j), 1 ≤ j ≤ M ′} consisting of an M

and M ′ number of features, respectively, the Chamfer dis-
tance of the set F from the set F ′ is defined as follows:

D(F, F
′
) =

1

M

M∑
i=1

M′
min
j=1

√
(x′

j − xi)2 + (y′
j − yi)2 + (t′j − ti)2 . (9)

From eq. 9 it is obvious that the selected distance measure is
not symmetrical, as D(F, F ′) �= D(F ′, F ). For recognition
purposes, it is desirable to select a distance measure that is
symmetrical. A measure that satisfies this requirement is
the average of D(F, F ′) and D(F ′, F ), that is,

Dc(F, F
′
) =

1

2
(D(F, F

′
) + D(F

′
, F )) . (10)
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Let us note that for the calculation of the distance measure
we only consider the spatiotemporal position of the detected
salient points.

3.2. Space-Time Warping

There is a large amount of variability between feature
sets due to differences in the execution speed of the cor-
responding actions. Furthermore, we need to compensate
for possible shifting of the representations forward or back-
ward in time, caused by imprecise segmentation of the cor-
responding actions. To cope with both these issues, we de-
veloped a linear space-time warping technique with which
we model variations in time using a time-scaling parame-
ter a and a time-shifting parameter b. In addition, in or-
der to achieve invariance against scaling, we introduce a
scaling parameter σ in the proposed warping technique.
Prior to warping, we transform the spatial coordinates of
the detected salient regions so that they have zero mean,
in order to achieve invariance against translation. The pa-
rameters a, b, σ are estimated with a gradient-descent it-
erative scheme that minimizes the Chamfer distance be-
tween the sets. More specifically, let us denote by Fw =
{(σxi, σyi, a · ti − b), 1 ≤ i ≤ M} the feature set F with
respect to feature set F ′. Then, the distance between F ′ and
Fw is given by eq. 9 as:

D(Fw, F
′) =

1

M

M∑
i=1

M′
min
j=1

√
(x′

j
− σxi)

2 + (y′
j

− σyi)
2 + (t′

j
− a · ti + b)2 .

(11)

Similarly, the feature set F ′ with respect to feature set F
can be represented as F ′

w = {( 1
σ x′

j ,
1
σ y′

j ,
1
a · t′j + b), 1 ≤

j ≤ M ′} and their distance as:

D(F
′
w, F ) =

1

M′
M′∑
j=1

M
min
i=1

√
(xi −

1

σ
x′

j
)2 + (yi −

1

σ
y′

j
)2 + (ti −

1

a
· t′

j
− b)2 .

(12)

The distance to be optimized follows from the substitution
of eq. 11 and eq. 12 to eq. 10. We follow an iterative gra-
dient descent approach for the adjustment of the a, b and σ
parameters. The update rules are given by:

a
n+1

= a
n − λ1

∂Dc

∂an
, b

n+1
= b

n − λ2
∂Dc

∂bn
, σ

n+1
= σ

n − λ3
∂Dc

∂σn
,

(13)

where λ1, λ2, λ3 are the learning rates and n is the iteration
index. The iterative procedure stops when the values of a, b
and σ do not change significantly or after a fixed number of
iterations.

3.3. Relevance Vector Machine Classifier

A Relevance Vector Machine (RVM) [20] is a probabilis-
tic sparse kernel model identical in functional form to the
Support Vector Machines (SVM). In their simplest form,
Relevance Vector Machines attempt to find a hyperplane
defined as a weighted combination of a few Relevance Vec-
tors that separate samples of two different classes. Given a

dataset of N input-target pairs {(Fn, ln), 1 ≤ n ≤ N}, an
RVM learns functional mappings of the form:

y(F ) =

N∑
n=1

wnK(F, Fn) + w0 , (14)

where {wn} are the model weights and K(., .) is a Kernel
function. Gaussian or Radial Basis Functions have been ex-
tensively used as kernels in RVM. In our case, we use as
a kernel a Gaussian Radial Basis Function defined by the
distance function of eq. 10. That is,

K(F, Fn) = e
− Dc(F,Fn)2

2η , (15)

where η is the Kernel width. RVM performs classification
by predicting the posterior probability of class membership
given the input F . In the two class problem, a sample
F is classified to the class l ∈ [0, 1], that maximizes the
conditional probability p(l|F ). For L different classes, L
different classifiers are trained and a given example F is
classified to the class for which the conditional distribution
pi(l|F ),1 ≤ i ≤ L is maximized, that is:

Class(F ) = arg max
i

(pi(l|F )) . (16)

4. Experimental Results

Similar to [1], we use aerobic exercises as a test do-
main. We created our own set of examples, consisting of
19 aerobic exercises, performed twice by four different sub-
jects, leading to 152 corresponding feature sets. In Fig. 1
the salient regions detected in four instances of four sam-
ple image sequences are presented. The first two columns
depict two executions of the same exercise by two differ-
ent subjects while the last two columns depict the execution
of another exercise by the same pair of subjects. It is ap-
parent that there is consistency in the location and scale of
the detected salient regions between different executions of
the same exercise. The detected salient points seem to ap-
pear in areas with significant amount of activity, such as
the points at which the hands move. Moreover, it seems
that the scale of the detected regions is large when mo-
tion is fast (t4, t′2, t

′
3, t

′
4), and smaller when motion is slower

(t1, t2, t3, t′1). Finally, the algorithm does not guarantee that
detection of corresponding regions across the examples will
occur at the same time instance. For example, at the time in-
stances t2 and t3 in Fig. 1, the detection of the arms occurs
at neighboring time instances.

In order to test the influence of our space-time warping
algorithm, we randomly selected some examples from our
original example set and we resized them to 1.2, 1.4, 1.6 and
1.8 times their initial size. We applied in these sequences
the salient point detector of section 2 and we used the re-
sulting representations in order to warp them in space and
time with the original sequences. The result for a single pair
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of original-resized sequences is shown in Fig. 2, where the
latter has been cropped for illustration purposes, to show the
estimated scale. We also stretched the resized sequence in
time, so that its duration matches that of the original one.
From the figure it is clear, that the space-time warped se-
quence is closer to the original one. The σ parameter from
eq. 11 and eq. 12, for the resized sequence in Fig. 2, was
equal to 1.18, which is very close to the actual value of 1.2.
The difference can be attributed to the different size of the
subjects performing the action. The error variance of the es-
timated σ was small, and equal to 0.04, 0.07, 0.08 and 0.08,
for scaling factors 1.2, 1.4, 1.6 and 1.8 respectively.

We applied a Relevance Vector Machine Classifier to the
available feature sets to address the classification problem.
We constructed 19 classifiers, one for each class, and we
calculated for each test example F the conditional proba-
bility pi(l|F ), 1 ≤ i ≤ 19. We performed our experiments
in the leave-one-subject-out manner. That is, for estimating
each pi(l|F ), an RVM is trained by leaving out the example
F and all other instances of the same exercise, that were per-
formed by the subject from F . Each example was assigned
to the class for which the corresponding classifier provided
the maximum conditional probability, as depicted in eq. 16.
The corresponding recall and precision rates are given in
Table 4, along with the ones achieved by a k-nearest neigh-
bor classifier. As can be seen from this Table, for many
classes the recognition rate is pretty high, while for other
classes it is much lower (e.g. classes 7, 13). In Table 4 the
confusion matrix generated by the RVM classifier is given.
It is obvious from this table that there are mutual confusions
between specific classes, for instance classes 5, 6, 7, 12 and
13. The main differences between the corresponding ac-
tions are out of plane motions, not easily distinguished by a
single camera. The global recall rate for the RVM classifier
is 77.63%, an improved rate compared to [15], where spher-
ical spatiotemporal neighborhoods were used. The perfor-
mance achieved is relatively good, given the small number
of examples with respect to the number of classes, and the
fact that the subjects were not trained.

We used the average ranking percentile in order to mea-
sure the overall matching quality of our proposed algorithm.
Let us denote by rFn the position of the correct match for
the test example Fn, n = 1 . . . N2, in the ordered list of N1

match values. Rank rFn ranges from r = 1 for a perfect
match to r = N1 for the worst possible match. Then, the
average ranking percentile is calculated as:

r =

⎛
⎝ 1

N2

N2∑
i=1

N1 − rFn

N1 − 1

⎞
⎠ 100% . (17)

Our dataset consists of 152 image sequences divided in 19
classes, therefore N1 = 19 and N2 = 152. The average
ranking percentile for the RVM classifier is 97.25%, which
shows that for most of the missclassified examples, the cor-

Class Labels 1 2 3 4 5
kNN Recall/Prec. 1 / 1 1 / 1 1 / 1 1 / 1 0.38 / 0.5
RVM Recall/Prec. 1 / 1 1 / 1 1 / 1 0.75 / 1 0.38 / 0.6

Class Labels 6 7 8 9 10
kNN Recall/Prec. 0.25 / 0.67 0.63 / 0.45 1 / 1 0.75 / 1 1 / 0.8
RVM Recall/Prec. 0.25 / 0.5 0.63 / 0.63 0.75 / 1 0.75 / 1 1 / 1

Class Labels 11 12 13 14 15
kNN Recall/Prec. 0.75 / 1 0.75 / 0.75 0.38 / 0.21 1 / 1 0.5 / 0.29
RVM Recall/Prec. 0.88 / 1 0.5 / 0.57 0.75 / 0.35 1 / 0.89 0.88 / 0.64

Class Labels 16 17 18 19 Total
kNN Recall/Prec. 0 / 0 0.75 / 1 1 / 1 1 / 1 0.7434
RVM Recall/Prec. 0.5 / 0.5 1 / 0.89 0.88 / 0.88 0.88 / 0.78 0.7763

Table 1. Recall and Precision rates for the kNN and RVM classifiers

t1 t′1

t2 t′2

t3 t′3

t4 t′4

Figure 1. Detected spatiotemporal features in four sample image sequences, corre-
sponding to two action classes, for four time instances, ti, t′i, i = 1 . . . 4. For each
class the detected regions are drawn for two different subjects performing the action.

rect matches are located in the first positions in the ordered
list of match values.

Finally, we compared our method with past work on tem-
poral templates[1]. In [1], each single-view test example
was matched against seven views of each training example,
performed several times by an experienced aerobics instruc-
tor. A performance of 66.67% (12 out of 18 moves) was
achieved. Our training set consists of single view examples,
performed several times by non expert subjects. Noise and
shadow effects in our sequences create small, non-zero pixel
regions in areas of the corresponding MEIs and MHIs where
no motion exists. The recognition rate achieved is 46.71%.
Removal of spurious areas with simple morphological op-
erations led to deterioration in the overall performance.

5. Conclusions and Future Directions

In this paper, we extended the concept of saliency to the
spatiotemporal domain in order to represent human motion
with a sparse set of spatiotemporal features that, loosely
speaking, correspond to activity peaks. We did this by
measuring changes in the information content of neighbor-
ing pixels, in space and time. We devised an appropriate
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t1

t2

t3

Figure 2. Space-time warping. 1st column: Reference sequence, 2nd: space-time
warped sequence, 3d: stretched sequence and 4th: original sequence

Class labels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total
1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
2 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
3 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
4 0 0 0 6 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 8
5 0 0 0 0 3 2 0 0 0 0 0 0 3 0 0 0 0 0 0 8
6 0 0 0 0 2 2 2 0 0 0 0 0 2 0 0 0 0 0 0 8
7 0 0 0 0 0 0 5 0 0 0 0 0 1 0 0 1 0 0 1 8
8 0 0 0 0 0 0 0 6 0 0 0 2 0 0 0 0 0 0 0 8
9 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 1 0 1 0 8

10 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 8
11 0 0 0 0 0 0 0 0 0 0 7 0 1 0 0 0 0 0 0 8
12 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 0 0 0 8
13 0 0 0 0 0 0 1 0 0 0 0 1 6 0 0 0 0 0 0 8
14 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 8
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 1 0 0 0 8
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 8
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 8
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 1 8
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 7 8

Total 8 8 8 6 5 4 8 6 6 8 7 7 17 9 11 8 9 8 9 152

Table 2. RVM Confusion Matrix

distance measure between sparse representations, based on
the Chamfer distance, which allows us to use an advanced
kernel-based classification scheme, the Relevance Vector
Machines. We devised an iterative space-time warping tech-
nique which aligns in time the representations and achieves
invariance against scaling, while translation invariance is
achieved by appropriately transforming the features’ loca-
tion attributes. We illustrated the efficiency of our represen-
tation in recognizing human actions using as a test domain
aerobic exercises. We presented results on real image se-
quences that illustrate the consistency in the spatiotempo-
ral localization and scale selection of the proposed method.
Finally, we presented comparative results with other meth-
ods in the literature, where the performance achieved by our
proposed method was much higher.

In future research we wish to increase the power of the
proposed method by investigating the extraction of spa-
tiotemporal features around the detected salient points. This
is a natural extension of similar methods that extract texture
features around the detected points in the spatial domain.
Making the method robust to rotation is also an important
issue, which can be achieved by introducing an additional
parameter for rotation in the proposed space-time warping
technique.
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