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ABSTRACT
Past research on automatic laughter detection has focused
mainly on audio-based detection. Here we present an audio-
visual approach to distinguishing laughter from speech and
we show that integrating the information from audio and
video channels leads to improved performance over single-
modal approaches. Each channel consists of 2 streams (cues),
facial expressions and head movements for video and spec-
tral and prosodic features for audio. We used decision level
fusion to integrate the information from the two channels
and experimented using the SUM rule and a neural net-
work as the integration functions. The results indicate that
even a simple linear function such as the SUM rule achieves
very good performance in audiovisual fusion. We also exper-
imented with different combinations of cues with the most
informative being the facial expressions and the spectral fea-
tures. The best combination of cues is the integration of fa-
cial expressions, spectral and prosodic features when a neu-
ral network is used as the fusion method. When tested on
96 audiovisual sequences, depicting spontaneously displayed
(as opposed to posed) laughter and speech episodes, in a
person independent way the proposed audiovisual approach
achieves over 90% recall rate and over 80% precision.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: Pattern Recognition—
Applications; J.m [Computer Applications]: Miscella-
neous

General Terms
Algorithms
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Audiovisual data processing, laughter detection, non-linguistic
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1. INTRODUCTION
In human - human interaction, information is communi-

cated between the parties through various channels. Speech
is usually the dominant channel. However, spoken words are
highly person and context dependant [7], so speech recogni-
tion and extraction of semantic information is a very chal-
lenging task for machines [24]. Other cues like facial ex-
pressions, head gestures, hand gestures and non-linguistic
vocalizations play an important role in communication as
well. Although several works address the problem of recog-
nising facial expressions and / or head gestures, the recog-
nition of non-linguistic vocalisations is a quite unexplored
area. Scherer [20] defines non-linguistic vocalizations as very
brief, discrete, nonverbal expressions of affect in both face
and voice. Schroeder [21] has demonstrated that people can
recognize emotions with high accuracy just by hearing to
such vocalizations which in turn reveals their significance
in human communication. An attractive property of this
kind of communication is that it is not as heavily person-
dependent as speech is and, at the same time, it encodes rich
information about the other person’s emotional state [19].

One of the most important non-linguistic vocalizations is
laughter, which is reported to be the most often annotated
paralinguistic event occurring frequently in recorded natural
speech [22]. Laughter is a very good indicator of someone’s
mental state since people very often express their emotion
through laughter. Therefore, laughter is a powerful affective
and social signal.

In human - computer interaction (HCI), automatic detec-
tion of laughter can be used as a useful cue for detecting the
user’s affective state and facilitating affect-sensitive human-
computer interfaces [14]. Another application of laughter
detection is the identification of semantically meaningful
events in meetings such as topic change or jokes. Also, such
a detector can be useful for the detection of non-speech in
automatic speech recognition as well as for content-based
video retrieval.

Few works have been recently reported on automatic laugh-
ter detection. The main characteristic of these studies is that
only audio information is used, i.e., visual information car-
ried by facial expressions of the observed person is ignored.
Most of these studies use Hidden Markov Models (HMMs)
as the classification tool (just as is the case in automatic
speech recognition), [24]. This is mainly due to the ability
of HMMs to represent the temporal characteristics of the
phenomenon. Existing approaches to laughter detection in-
clude the work of Lockerd and Mueller [12], who used HMMs
and spectral coefficients, the work of Cai et al. [3], who used
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HMMs with Mel-Frequency Cepstral Coefficients (MFCCs)
and perceptual features, and the work of Campbell et al. [4],
who used phonetic features and HMMs to detect four types
of laughter. Another approach is that of Kennedy and El-
lis [11], who trained Support Vector Machines (SVM) with
MFCCs and delta MFCCs. The most extensive study in this
area was made by Truong and Leeuwen [22], who compared
the performance of different auditory frame and utterance
level features using different classifiers and different combi-
nation schemes. To the best of our knowledge, there are only
three approaches which use audiovisual information [10],[18],
[16]. Ito et al. [10] built an image-based laughter detec-
tor based on spatial locations of facial feature points and
an audio-based laughter detector based on MFCC features.
The output of the two detectors are combined with an AND
operator to yield the final classification for an input sample.
They attained 80% average recall rate using 3 sequences
of 3 subjects in a person dependent way. Reuderink [18]
used visual features based on principal components analysis
and RASTA-PLP features for audio processing. Gaussian
mixture models and support vector machines were used as
classifiers which were fused on decision level obtaining an
equal error rate of 14.2%. In our previous work [16], we
compared decision level and feature level fusion with audio-
and video-only laughter detection. We used spectral features
and displacements of the tracked facial points as the audio
and visual features respectively. Both fusion approaches out-
performed single-modal detectors, achieving on average 84%
recall in a person-independent test.

In this paper, we present our further research on audiovi-
sual discrimination of laughter episodes from speech episodes.
Our research on an audiovisual approach rather than an
audio-only approach to laughter recognition is mainly driven
by research on audiovisual speech recognition that reported
improved performance over audio-only speech recognition
[6], [17]. At this point we would like to remark that we use
spontaneous (as opposed to posed) displays of laughter and
speech episodes from the audiovisual recordings of the AMI
meeting corpus [13]. We focus on person-independent recog-
nition which makes the task of laughter detection even more
challenging. We compare the performance of audiovisual
laughter detectors where different combinations of auditory
and visual cues are used for detection. We experimented
with the audio channel consisting of two streams (cues):
spectral features (PLP) and prosodic features (pitch and
energy), and the visual channel consisting of two streams
as well: head movements and facial expressions. We used
decision level fusion to investigate which streams carry use-
ful information for laughter detection. The most important
cues were found to be facial expressions and spectral fea-
tures. Pitch and energy can sometimes be beneficial as well,
whereas the head movements do not seem to be of impor-
tance. Another significant finding is that a simple linear
function is sufficient for the fusion of audio and visual cues.
Our results show that audiovisual laughter detection outper-
forms single-modal (audio / video only) laughter detection,
attaining over 90 % recall.

2. DATASET
Posed expressions may differ in visual appearance, audio

profile, and timing from spontaneously occurring behavior.
For example, spontaneous smiles are smaller in amplitude,
longer in total duration, and slower in onset and offset time

Figure 1: Feature extraction for audiovisual laughter detec-
tion

than posed smiles [23]. Therefore it is not surprising that
tools trained and tested on posed expressions suffer a sig-
nificant degradation in their performance when applied to
spontaneous expressions. This is the reason we only use
spontaneous expressions in all the experiments.

The AMI Meeting Corpus is an ideal dataset for our task
since it consists of 100 hours of meetings recordings where
people show a huge variety of spontaneous expressions. We
only used the close-up video recordings of the subject’s face
(720 x 576 pixels, 25 frames per second) and the related
individual headset audio recordings (16 kHz). The language
used in the meetings is English and the speakers are mostly
non-native speakers. For our experiments we used seven
meetings (IB4001 to IB4011) and the relevant recordings of
eight participants (6 young males and 2 young females) of
Caucasian origin with or without glasses and no facial hair.
An example of laughter from the dataset we use together
with the tracking points is shown in Fig. 2.

All laughter and speech segments were pre-segmented based
on audio. Initially, laughter segments were selected based on
the annotations provided with the AMI Corpus. After ex-
amining the extracted laughter segments we only kept those
that do not co-occur with speech and laughter is clearly au-
dible. Speech segments were also determined by the anno-
tations provided with the AMI Corpus. We selected those
that do not contain long pauses between two consecutive
words. In total, we used 40 audio-visual laughter segments,
5 per person, with a total duration of 58.4 seconds (with
mean duration µ = 1.46 seconds and standard deviation σ
= 1.09 seconds) and 56 audio-visual speech segments with
a total duration of 118.08 seconds (with mean duration µ =
2.11 seconds and standard deviation σ = 1.09 seconds).

3. SYSTEM OVERVIEW
As an audiovisual approach to laughter detection is in-

vestigated in this study, information is extracted simultane-
ously from the audio and visual channel. The visual channel
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(a) Frame 2 (b) Frame 42

(c) Frame 82 (d) Frame 122

(e) Frame 162 (f) Frame 176

Figure 2: Example of a laughter episode, from the AMI corpus, with illustrated facial point tracking results
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is divided into 2 streams (cues): face and head movements as
shown in Fig. 1. Similarly, the audio channel is divided into
2 streams as well: spectral (PLP) prosodic features (pitch
and energy). Details on how the audio and visual features
are extracted are presented in sections 4 and 5. To recognize
whether an input audio and / or visual sample is an episode
of speech or an episode of laughter a neural network classi-
fier is used. Neural networks were used as the classifier since
they are able to learn non-linear function from examples.
However, any learning algorithm which can learn complex
functions from examples such as Support Vector Machines is
expected to perform equally well. Finally, each cue is mod-
elled by a neural network and then different combinations of
those cues are integrated using decision level fusion in order
to achieve audiovisual laughter detection as shown in Fig.
1. A simple linear function (SUM rule) is compared to non-
linear functions modelled by neural networks for the task of
audiovisual fusion.

In order to compare the performance of different laughter
detectors using different combinations of cues, the following
two measures are used.
F1 Measure: Recall and precision are two commonly used
rates for measuring the quality of binary classification prob-
lems. Recall describes the completeness of the retrieval. It
is defined as the portion of the positive examples retrieved
by the classifier over the total number of existing positive
examples (including the ones not retrieved by the classifier).
Precision describes the actual accuracy of the retrieval, and
is defined as the portion of the actual positive examples that
exist in the total number of examples retrieved as positive
by the classifier. While recall and precision rates can be in-
dividually used to determine the quality of a classifier, it is
often more convenient to have a single measure to do the
same assessment. The Fα measure combines the recall and
precision rates in a single equation:

Fα =
(1 + α)× precision× recall

α× precision + recall
(1)

where α defines how recall and precision will be weighted. In
the case that recall and precision are evenly weighted then
the F1 measure is defined where α = 1.
AUC: By varying the threshold on the output of the clas-
sifier we get the Receiver Operating Characterestic (ROC)
curve which is a plot of the true positive rate vs the false pos-
itive rate. A commonly used measure for comparing different
ROC curves is the Area Under the ROC Curve (AUC).

4. AUDIO MODULE
The audio module is responsible for the audio channel

processing, as shown in Fig. 1. It extracts features from
the audio signal on a frame-by-frame basis which are then
used by the classification algorithm. Two different cate-
gories of features are used in this study: 1) spectral features
which are derived from a special type of spectrum represen-
tation (cepstrum, which is the result of taking the fourier
transform of the spectrum) of the audio signal, and 2) and
non-spectral features which are based on other properties
of speech / laughter such as prosody. The spectral features
considered are the Perceptual Linear Prediction (PLP) coef-
ficients . The second category of features includes pitch and
energy features.
Spectral Features: Spectral or cepstral features, such as
PLP features [9], have been successfully used for speech
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Figure 3: F1 measure and AUC as a function of the number
of PLP coefficients used

recognition. They have been also successfully used for laugh-
ter detection as well. Truong and Leeuwen [22], for exam-
ple, reported a higher success rate in automatic laughter
detection when using PLP features than other non-spectral
features. The PLP signal analysis technique is based on the
short-term spectrum of the signal, subsequently modified by
several psychophysically based spectral transformations [9].

The use of 13 PLP coefficients is very popular in litera-
ture [22]. However, Kennedy and Ellis [11] reported that
the same level of performance is achieved with just 6 coef-
ficients. In order to investigate the influence of the number
of coefficients on laughter detection we experimented with
different number of coefficients. The performance measures
used were the F1 measure and the AUC. The results ob-
tained are shown in Fig. 3. As can be seen in terms of the
F1 measure and the AUC, 5 and 8 coefficients give the best
performance respectively. In both cases, 7 PLP coefficients
achieve the second best performance, so we decided to use
7 coefficients in this study. This result is consistent with
the finding of Kennedy and Ellis [11]. In [16] four different
frame rates were investigated, 25, 50, 75 and 100 frames per
second (fps) with 50% overlap. With the exception of 25
fps which resulted in poor performance, the rest resulted in
comparable performance. Therefore, the frame rate of 50
fps was selected, i.e., the window size is 40ms and the step-
size 20ms. In addition to the 7 PLP coefficients, their delta
features were calculated as well. The deltas are calculated
by a linear regression over a short neighborhood around a
spectral feature. The slope of the fitted line represents the
derivative of the spectral feature and therefore can capture
some local temporal characteristics which seem to be very
important for interpretation of human behavioural cues, as
argued in psychological literature (e.g., [19]). So in total 14
features are computed per frame.
Prosodic features: The two most commonly used prosodic

features in studies of emotion detection are pitch and energy
[24]. Both of them have also been used in previous works
on audio-only laughter detection [22]. Pitch is the perceived
fundamental frequency of a sound. While the actual funda-
mental frequency can be precisely determined through physi-
cal measurement, it may differ from the perceived pitch. Ba-
chorowski et al. [1] found that the mean pitch in both male
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4: Principal Component Analysis - 1st row: Effect of varying b1, 2nd row: Effect of varying b2, 3rd row: Effect of
varying b3, 4th row: Effect of varying b7, 5th row: Effect of varying b8
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Figure 5: PCA analysis of facial point tracking. Upper row:
actually tracked facial points. Bottom row: (left) 20 facial
points after they have been reconstructed using the first 6
principal components, (right) 20 facial points after they have
been reconstructed using principal components 7 to 10.

and female laughter was higher than in modal speech. Pitch
was computed in each frame using the same algorithm as
Praat [2].The energy feature used is the Root-Mean-Square
(RMS) energy. In addition, the deltas of energy and pitch
were computed resulting in 4 features. Those features are
extracted in the same frame rate as the PLP coefficients, i.e.
every 20ms over a window of 40ms.

5. VIDEO MODULE
The video module is responsible for the visual channel

processing as shown in Fig. 1. The first step in this module
is to track some characteristic facial points which then they
will be used for feature extraction. Then a Point Distribu-
tion Model (PDM) is learnt with the aim of decoupling the
head movement from the facial expressions. The features
are extracted from the visual channel on a frame-by-frame
basis which are then used by the classification algorithm.
Two different categories of features are used in this study:
1) features which correspond to the head movements, and
2) features which correspond to the facial expressions.

5.1 Tracking
To capture the facial expression dynamics, we track 20

facial points, as shown in Fig. 2 and Fig. 5, in the video
segments. These points are the corners / extremities of the
eyebrows (2 points), the eyes (4 points), the nose (3 points),
the mouth (4 points) and the chin (1 point). To track these
facial points we used the Patras - Pantic particle filtering
tracking scheme [15], applied for tracking color-based tem-
plates centered around the facial points to be tracked. The
points were manually annotated in the first frame of an in-
put video and tracked for the rest of the sequence. Hence,
for each video segment containing K frames, we obtain a
set of K vectors containing 2D coordinates of the 20 points
tracked in K frames.

5.2 Decoupling of Head and Face
While speaking and especially while laughing, people tend

to exhibit large head movements. It is even more so in

the case of our data since we use recordings of naturalis-
tic (spontaneous) expressions rather than deliberately dis-
played episodes of speech and laughter. Since we are inter-
ested in seperating facial expression configurations (relevant
to speech and laughter episodes) from head movements, we
need to distinguish between changes in the location of fa-
cial points caused by facial expressions and changes caused
by rigid head movements. In other words, we wish to de-
couple head movements from facial expressions so we can
investigate the effect of each cue seperately. To do so we use
a similar approach with Gonzalez-Jimenez and Alba-Castro
[8] in which Principal Component Analysis (PCA) is used
for decoupling, skipping the alignment of the shapes in or-
der to capture the head movement as well. This approach
is based on PDMs [5] and has also been used in [18].

First, we concatenate the (x, y) coordinates of the 20
tracking points in a 40-dimensional vector. Then we use
PCA to extract 40 principal components (PCs) for all the
frames in the dataset. PCA is defined as an orthogonal
linear transformation that transforms the data to a new co-
ordinate system such that the greatest variance of the data
comes to lie on the 1st coordinate (i.e., 1st PC), the 2nd
greatest variance on the 2nd coordinate, and so on. Given
that in our dataset head movements account for most of the
variation in the data, lower-order PCs are expected to re-
flect rigid-movement aspects of the data while higher-order
PCs are expected to retain non-rigid-movement (facial ex-
pression) aspects of the data. To test this assumption, we
computed the PCs for the whole dataset and then recon-
structed the position of the points in each frame by using
different combinations of the PCs with the help of the fol-
lowing equations:

b = (x− x)P (2)

x ≈ x̂ = x + bP T (3)

where P contains N out of the 40 eigenvectors and b is a
N-dimensional vector. With the help of equation 2 we can
compute the shape parameters b and then the face can be
reconstructed using equation 3.

As can be seen from Fig. 4 and Fig. 5, it seems that
indeed the lower-order PCs reflect rigid-movement aspects
of the data, while the higher-order PCs reflect facial ex-
pression aspects of the data. The same has been reported
by Gonzalez-Jimenez and Alba-Castro [8]. We can further
investigate what is captured by each PC by varying the ele-
ments of shape parameters b one at a time between 3 stan-
dard deviations from the mean value and leaving all other
elements at zero. In this way we can vary the shape x̂ using
equation 3. The variance of the ith parameter, bi, is given
by its corresponding eigenvalue λi , so each bi takes values
in the range of ±3

√
λi . The variation corresponding to the

ith parameter, bi, is called the ith mode of the model [5]. By
visual inspection we can identify which PCs contain facial
expression information (non-rigid motion) and which con-
tain head pose information (rigid motion).
Head: Modes 1, 2, and 3 are shown in Fig. 4a - 4l. We
see that the 1st, 2nd, and 3rd PCs correspond to horizon-
tal movement, vertical movement and rotation respectively.
Similarly, the 4th, 5th and 6th modes correspond to scale
and left / right head yaw respectively. In other words the
first 6 PCs contain the head pose information. Therefore,
we use the first 6 shape parameters, i.e. b1 to b6, as the head
features.
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Cues Features Used F1 AUC
Video Only

Face b7 to b10 0.83 0.945
Head b1 to b6 0.525 0.652

Face + Head b1 - b6 + b7 - b10 0.753 0.937
Audio Only

Spectral Features 7 PLP Coef. + 0.69 0.886
7 Deltas

Prosody Pitch + Energy + 0.534 0.761
2 Deltas

Spectral + Prosodic 14 Spectral + 0.668 0.879
Features 4 Prosodic

Table 1: F1 measure and AUC for audio- and video-only
laughter detector. The fusion function for the two audio /
video cues is the SUM rule

Facial Expressions: Modes 7 and 8 are shown in Fig. 4m
- 4t. We see that the 7th and 8th modes correspond to
mouth opening and closing respectively. In our study, we
use shape parameters from 7 to 10, i.e. b7 to b10 as the
facial expressions features. Higher modes result in almost
no visible expressions and therefore, they are not used in
further processing.

Ideally, we would like that the first 6 shape parameters
contain only rigid head motion information whereas the other
shape parameters (7-10) contain only non-rigid facial mo-
tion. However, this is not true and depends on the training
data used to built the PDM. This is shown, for example, in
Fig. 4a - 4d where apart from the horizontal head movement
subtle facial expressions are also present. The same problem
is reported in [8] so their training set was augmented with
artificial symmetric samples.

6. EXPERIMENTAL STUDIES
In order to investigate which cues carry most of the use-

ful information, we conducted several experimental studies
by combining different audio and visual cues for audiovi-
sual laughter detection as well as for audio-only- and video-
only-based laughter detection. In all the experiments we
performed leave-one-subject-out cross validation, using in
every validation fold all samples of one subject as test data
and all other samples as training data. The results given
in Tables 1, 2, 3 and Fig. 6 represent an average of the
results obtained for each fold. In this way it is guaranteed
that the obtained results are subject independent. In each
cross validation fold, all the features used for training are
z-normalized to a mean µ = 0 and standard deviation σ =
1. Then, the obtained µ and σ are used to z-normalize the
features in the test fold. The training and testing of the
classifiers is performed on a video / audio frame-level ba-
sis. ROC curves, F1 measures, recall and precision rates are
used as the performance measures. The following sections
describe our results in single-modal and audiovisual laughter
detection.

6.1 Single-modal laughter detection
In this set of experiments the detector of laughter vs speech

uses information extracted only from one modality, video or
audio. The audio-based detector uses two neural networks
trained using 14 features for PLP and 4 for pitch and energy
respectively, extracted in each frame at 50FPS. Similarly,

Cues Recall Precision
Face 0.846 0.815
PLP 0.702 0.679

Face + PLP (SUM) 0.871 0.861
Face + PLP + Head (SUM) 0.853 0.878

Face + PLP (NN) 0.9 0.824
Face + PLP + P & E (NN) 0.919 0.835

Table 3: Recall and precision rates for the best performing
audio (2nd row), visual (1st row) and combination of audio
and visual cues (rows 3 - 6)
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Figure 6: ROC curves for audio-, video-only and decision
level fusion. The markers indicate the operating point of
each detector which corresponds to the recall and precision
rates presented in Tables 1, 2 and 3

the video-based detector uses two neural networks trained
using 6 features for head and 4 for face, extracted in each
frame at 25 FPS. In both cases the SUM rule is used as the
integration function. The performance of each channel is
shown in the 5th and 9th rows respectively in Table 1.

In order to investigate the performance of each cue seper-
ately, we trained four classifiers using one cue at a time. The
results are shown in Table 1. As can be seen, the best per-
forming cues for video and audio are the face and the spec-
tral features respectively. Head movements and prosodic
features perform much worse, an indication that they do
not contain much useful information for laughter detection
when used alone. Even when they are used together with the
face and the spectral features respectively they result in de-
graded performance compared to face and spectral features
alone.

6.2 Audiovisual laughter detection
In this set of experiments we use information extracted

from both modalities, video and audio. Each cue within
each modality is modelled by a neural network and then the
outputs of the networks are fused using either another neural
network or the SUM rule. We tried all the possible combi-
nations of audio and visual cues and the results are shown
in Table 2. The best two combinations are shown in bold for
both rules. The spectral features and the face are between
the best performing combinations no matter which rule is
used. This is not surprising since they are the best perform-
ing cues in each modality as shown in section 6.1. In the
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NN SUM rule
Cues F1 Measure AUC F1 Measure AUC

Face + PLP 0.861 0.967 0.866 0.976
Face + P & E 0.85 0.958 0.843 0.962
Head + PLP 0.647 0.875 0.657 0.888

Head + P & E 0.554 0.737 0.545 0.792
Face + PLP + P & E 0.875 0.967 0.839 0.97
Head + PLP + P & E 0.641 0.873 0.687 0.895
Face + Head + PLP 0.832 0.957 0.865 0.978

Face + Head + P & E 0.742 0.936 0.803 0.96
Face + Head + PLP + P & E 0.847 0.958 0.847 0.975

Table 2: F1 measure and AUC for the audiovisual laughter detector based on different combinations of the audio and visual
cues.

case of the SUM rule, the combination Face + Head + PLP
is the second best combination and achieves almost the same
performance with Face + PLP. This means that the addition
of the head does not add any truly useful information that
can be exploited by the SUM rule. In fact, as can be seen
from Table 2, the addition of head movements in the fea-
ture set tends to degrade the detector’s performance. This
is an indication that head movements are not important for
distinguishing between laughter and speech. On the other
hand the use of prosodic features in addition to Face + PLP
adds information which can be successfully exploited by the
neural network resulting in the best overall performance. In
fact, from Table 2 we see that, in general, the addition of
pitch and energy to the feature set tends to slightly increase
the detector’s performance. It is interesting that the detec-
tor’s performance improves when pitch and energy is used
together with the visual cues but not when used with the
spectral features. For example, compare the 7th and 9th
rows of Table 1 with the 3rd row of Table 1 and 4th row of
Table 3. This example illustrates the benefits of fusing audio
and visual cues since complementary information carried by
the audio and video channels can be exploited.

The best performing combination of Face + Head + P & E
is an example where the use of a nonlinear function for audio-
visual fusion is clearly advantageous over a linear function.
However, we see that the performances of the neural net-
work and the SUM rule are comparable. This implies that
the use of a nonlinear function modelled by a neural network
does not help much. In other words, a linear function is a
very good option for the fusion of audio and visual cues.

Table 3 shows the recall and precision rates for the best
performing cues in audio, video and audiovisual laughter
detection. Fig. 6 shows the ROC curves for the audio-,
video-only and audiovisual detectors. The markers indicate
the operating point of each detector which corresponds to
the recall and precision rates presented in Tables 1, 2 and 3.
The results clearly indicate that integrating the information
from audio and video leads to an improved performance over
single-modal approaches. This is consistent with the results
presented in [16].

From Table 3 we also see that neural networks achieve
a very high recall rate, over 0.9, in the expense of a lower
precision value. On the other hand the SUM rule achieves a
balance between recall and precision rates. This is also true
for the other combinations of audio and visual cues shown
in Table 2.

7. CONCLUSIONS
In this paper we proposed a (semi-)automated audiovisual

system for distinguishing laughter from speech episodes. To
the best of our knowledge, this is the first study investigat-
ing which combination of audiovisual cues leads to the best
performance. Initial results suggest that visual information
is more important than auditory information for distinguish-
ing laughter from speech. This is a significant finding, espe-
cially since visual information has been largely neglected so
far in studies on non-linguistic vocal outbursts. The results
also suggest that integrating the information from audio and
video leads to an improved reliability over single-modal ap-
proaches. It is also interesting that a linear function per-
forms very well as the integration function for audiovisual
fusion. In this study, only decision level fusion was only in-
vestigated. So, when it comes to the level at which the two
channels should be integrated, further research is needed.
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